2010年上海交通大学船舶结构力学试题((精)
- 格式:doc
- 大小:10.50 KB
- 文档页数:2
船舶结构力学习题集第一章绪论思考题1.什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧失稳定性后,会大大减低船体抵抗总弯曲的能力?3.船舶在航行时为什么会发生扭转现象?船体结构中还有哪些构件在受载后会发生扭转?4.应力集中是由什么因素引起的?船体结构中哪些部位会发生应力集中?应力集中可能导致什么后果?5.何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。
第二章单跨梁的弯曲理论思考题1.梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?2.单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3.为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下两梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4.梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么?5.梁复杂弯曲时的边界条件与梁横弯曲时的边界条件有何不同?它反映了什么问题?6.梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方向及分布范围)有没有关系?7.为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出,而梁在复杂弯曲时,横荷重与轴向力的影响不可分开考虑?第三章杆件的扭转理论思考题1.何谓自由扭转,何谓约束扭转,各有什么特点?2.非圆断面的自由扭转有什么变形特征?3.刚周边假定的具体内容如何?它有什么作用?4.何谓剪流?何谓布雷特公式?何谓环流方程式?5.多闭室断面杆件的自由扭转惯性矩如何计算?6.杆件在约束扭转时有哪几种应力成份?为什么会出现翘曲正应力?7.薄壁圆管在自由扭转时,平行于管纵轴的截面上是否有剪应力存在?如果有,它会不会使薄壁圆管绕垂直于纵轴转动?第四章力法思考题1.什么叫力法?如何建立力法方程式?2.什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程式的物理意义是什么?3.用力法计算某些支座有限定位移的连续梁或平面刚架时应注意什么问题?4.刚架与板架的受力特征和变形特征有何区别?5.仅有肋骨组成的横骨架式船侧板架,为提高其强度,加设一根船侧纵桁。
目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (16)第4章力法 (18)第5章位移法 (29)第6章能量法 (42)第7章矩阵法 (57)第9章矩形板的弯曲理论 (70)第10章杆和板的稳定性 (76)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl plV EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292(0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EIEI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1 图、2.2 图和2.3 图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.3 2.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Mllq EI EI EIEIθ⎡⎤=-++-⎢⎥⎣⎦ =3311117131824360612080q l q l EI EI ⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图 3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl ql ql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql qlEI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+= ⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s s s d b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx ql v x xEI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++ ⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIaxbxv cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j iEI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例 2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kg q hs cmγ==⨯⨯=形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()322186101449.45.940.3660.988,()0.980Iw cm y u x u u ϕ======== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。
2010年上海交通大学船舶结构力学试题(回忆)一简答题(5*6)1.画出如下结构的初参数曲线并写出边界条件。
图 12.试写出刚性板弯曲解法的双三角级数法和单三角级数法的应用条件。
3.刚性板弯曲理论的基本假设是什么?4.矩阵位移法为什么需要进行约束处理?外力平衡力系下是否需要进行约束处理?5.总刚度矩阵有什么特点?矩阵带宽是否与单元编号和节点编号都有关?二用位移法解钢架(20)所有E,I,L都相同,求2,3,5处转角(不要求计算结果,只需要列出方程式)三 用李兹法解如下结构,确定挠曲线方程,级数取一项(25)四 用力法求解如下结构:P=q l ,m=ql 2,求3处挠度,杆1至杆4的弯矩图(所有E,I,L 都相同)。
(25)Pq2435图 21l /2l /4E,Iq ,E,2IE,IA= l 3/3EI图 3l /2l /4五 (1)已知K=30EI/l 3求T e ; (2)若k 0,求T e ; (3)如何提高板架的稳定性? (试卷提供3跨、5跨X j -图)(25)六 已知E=2x105MPa,q 0=0.2MPa,I=1000cm 4,t=2cm,a=320cm,b=80cm. q 0在全板均匀分布。
(1)根据约束条件确定挠曲线的形式,仅取一项; (2) 该结构能否看成桶形弯曲?为什么?(3)画出该结构板条梁的计算图形,并求出最大弯曲应力和最大挠度。
q34561图 42qmPl,E,Il /2图 5编者:2010年船舶结构力学比较容易,这份试卷仅供复习参考,不要认为明年题目也会这么容易。
最终还是要弄懂课本上所有概念,会做大部分习题,这样才能保证专业课考试不败。
在此预祝大家2011年都能考出好成绩!。
目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b) 2'292(0)(1)3366Ml Ml Pl v EI EI EI-=+++=2220.157316206327Pl Pl Pl EI EI EI-+=⨯ 2291()(1)3366Ml Ml Pl l EI EI EIθ-=+-+=2220.1410716206327Pl Pl Pl EI EI EI---=⨯ ()()()2222133311121333363l l p l l v m m EIl EI ⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+ ⎪⎣⎦⎝⎭ =2372430pl EIc) ()44475321927682304ql ql ql l v EI EI EI =-=()23233'11116(0)962416683612lq l ql plqlql v EI EI EIEIEI ⎡⎤=--=--=⎢⎥⎣⎦d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图 3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EI θ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16Apab b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭ 2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hscmγ==⨯⨯=形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()322186101449.45.941740.3666100.988,()0.980Iw c m y u x u u ϕ======== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5q l M x u k g c m q lM u k g c m M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。
s目录第1章绪论1第2章单跨梁的弯曲理论2第3章杆件的扭转理论6第4章力法8第5章位移法10第6章能量法20第7章矩阵法28第9章矩形板的弯曲理论32第10章杆和板的稳定性35第1章绪论1.1题1〕承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件〔舷侧列板等〕2〕承受横弯曲构件:甲板强横梁,船底肋板,肋骨3〕承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4〕承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力〔总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用〕舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1〕图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2〕3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3〕333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEIb)2'292(0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯=2220.1410716206327Pl Pl PlEIEI EI---=⨯=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1〕2〕32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-如图2.4, ()()0v l v l '==由得3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭ 图2.42.5题2.5图:〔剪力弯矩图如2.5〕()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:〔剪力弯矩图如2.6〕图2.62.8图〔剪力弯矩图如2.7〕图2.72.6题.[]1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s s sd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EI qx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆= ⎪⎝⎭令 2.8题 :20375225,1.8,751050kgl cm t cm s cm cm σ=⨯====面积2cm 距参考轴cm面积距 3cm惯性矩 4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板1〕.计算组合剖面要素:形心至球心外表1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维假设不计轴向力影响,那么令u=0重复上述计算: 2.9.题 解得: 2.10题 2.11题 图2.120 2.12题1〕先计算剖面参数:图2.8a2422u u P P l δδδ⎛⎫⋅⎛⎫ ⎪⋅+= ⎪⎝⎭ ⎪⎝⎭p M图2.8b2.13补充题剪切对弯曲影响补充题,求图示构造剪切影响下的v(x)解:可直接利用 2.14. 补充题试用静力法及破坏机构法求右图示机构的极限载荷p ,梁的极限弯矩为p M 〔20分〕 〔1983年华中研究生入学试题〕 解: 1〕用静力法:〔如图2.9〕由对称性知首先固端和中间支座到达塑性铰,再加力u p p →,当p 作用点处也形成塑性铰时构造到达极限状态。
错误!未指定书签。
第 1 页 共 6 页扬州大学试题纸( 2010- 2011学年第 一 学期)水利 学院 水工08 班(年)级课程 结 构 力 学 ( A )卷题目 一 二 三 四 五 六 七 总分 得分一、填空题(本大题共12分,每小题3分)1、图1.1所示对称桁架中杆件BC 的轴力是 3/4f 。
图1.12、图1.2(a )与图1.2(b )两个带拉杆三铰拱的拉杆轴力之比F Na :F Nb = 。
图1.2(a ) 图1.2(b )3、用矩阵位移法解图1.3所示刚架,结构原始刚度矩阵中的子块K 22用单元刚度矩阵的子块表示有K 22= 。
4、用力矩分配法计算图 1.4所示连续梁,A 结点的不平衡力矩为 。
A FFll2ll /2 l /2EIEI EI 10kN/m4m 2m 2mA图1.4A FFll2ll学院 系 班级 学号 姓名---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------A BCDE FF F 3m3m3m3m4m1234○1 ○2 ○3 图1.3第 2 页 共 6 页二、判断题(正确打√,错误打×。
本大题共12分,每小题3分)1、力矩分配法中的分配系数与结构刚度、远端约束和外荷载有关。
( )2、图2.1中两个内力图图乘的结果为零(其中A 点为中点)。
( )3、静定结构在温度改变时只产生变形和位移,不产生内力。
( )4、图2.2所示结构中,去掉其中任意两根支座链杆后余下的部分都可以作为力法计算的基本结构。
( )三、选择题(本大题共12分,每小题3分) 1、图3.1所示体系是 :( ) A .几何不变无多余约束体系 ; B .几何常变体系 ;C .几何瞬变体系;D .几何不变有多余约束体系 。
船舶结构力学复习习题第一章绪论思考题:1.什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构其计算图形不是固定的、一成不变的3.船舶在航行时为什么会发生扭转现象?船体结构中还有哪些构件在受载后会发生扭转。
4.连续梁、桁架、刚架、板架的区别与联系。
第二章单跨梁的弯曲理论主要内容及解题要点1.本章叙述等断面单跨粱(包括普通梁、复杂弯曲梁及弹性基础梁)的弯曲理论,要求在己知梁的尺度、材料、荷重及边界条件下能够求出梁的弯曲要好-—梁的挠度、转角、弯矩及剪力,从而可计算出梁的应力与变形。
求解单跨梁弯曲的基本方法是弯曲微分方程式的积分法,即初参数法,实用方法是利用己知的梁的弯曲要素表和叠加法。
2.应用初参数法求解梁的弯曲问题时,可利用已导出的梁在一般荷重作用下的任意边界条件下的挠曲线方程式,再利用梁端的边界条件求出方程式中的未知常数(初参数),因此正确写出梁的边界条件是重要的。
解题时应注意梁的坐标、荷重的位置与方向,还要能正确写出分布荷重的表达式。
对于静定梁或具有对称性的梁,可利用静力平衡方程或对称条件求出某些未知初参数,常可使求解得到简化。
3.在应用梁的弯曲要素表解题时,应注意以下几点:(1)充分了解弯曲要索表的种类、应用范围、坐标及符号法则.(2)不同荷重作用下的弯曲要素可由各个荷重作用下的弯曲要素叠加得到.【但对于复杂弯曲的梁,只有在轴向力不变时才用叠加法,对于弹性基础梁,只有在弹性基础刚度为常数时才可用叠加法。
】(3)在画梁的弯矩图与剪力图时,尽可能将梁化为购端自由支持的情形来做。
叠加弯短图,注意图形及符号,并尽量使得最终的弯矩图与剪力图祷矩、醒目。
(4) 因要求出梁的应力,还必须掌握梁的正应力与剪应力的计算。
思考题:1.粱弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样.2.单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3.为什么当单跨梁两端为自由支持与单跨梁两路为弹性支座支持时,在同样外荷重作用下两梁断面的弯矩和剪力都相等;而当梁两端是刚性因定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4.梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么?5.叠加法的适用条件.5.当梁的边界点上作用有集中外力P或集中外弯矩M时,一种处理是把该外力放在梁端,写进边界条件中去。
s目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292 (0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EI EI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。
qE,IE,Iml l lAE,2I 图 1试题名称::船舶构造力学(杆系与板的弯曲及稳定性)一.解释以下名词(15 分) (1) 梁弯曲的极限弯矩 (2) 约束扭转 (3) 柔性系数(4)切线模数(5)虚位移原理二.图 1 中的连续梁假设用力法求解,有几个未知数,它们是列出必需的方程式,不需求解.(15 分)三.图 2 中的不行动节点刚架,用位移法求解,有几个未知数,它们是假设已求得此刚架2 节点的转角为θ = -ql 3 ,计算出此刚架中杆1-2 的端点弯矩M 及M ,并画出此杆的弯矩图.(15 分)2120EI12 213 1E,I 2E,I图 2E,I4AEILa E,i图 3 l四.一根穿插构件之板架(图3),在A 点受集中力P 作用,画出此板架的穿插构件作为弹性根底梁的计算图形.求出弹性根底梁的弹性根底刚度及梁上的荷重.(12 分)五.图4 中压杆左端刚性固定,右端的边界状况是:x方向无约束,y方向能移动,但不能发生转动. 试选取适当的基函数后,用里兹法计算此杆的拉力.(12 分)qmO2zxP1b3ay4 EI图 5六.图 5 中之矩形平板,三边自由支持在刚性支座上,第四边支持在一根刚度为 EI 的梁上,板边2 受分布外力矩 m,板厚为 t,材料弹性模数为 E,板中点受一集中力 P 作用,试选择一个满足此板四边位移边界条件的基函数,并写出此板的力函数式子.(11 分)七.图 6 之穿插梁系,l 21= l 23= l 24 = l 25= l ,材料刚度均为 EI,2 处受一集中力 P 作用,且梁1-3 上作用一力矩m=0.1P l ,用位移法求出 2 点挠度,并画出 1-3 弯矩.(4-5 扭转不计)(10 分)T E, Ixl 2ly图 4xaay图 7八.用双三角级数解图 7 中四周自由支持在刚性支座上受均布荷重q 作用的正方形板的中点挠度.板的边长为 a,厚度为 t,材料的弹性模数为 E,板的弯曲微分方程式为 D ▽2▽2ω =q.(D 为弯曲刚度)(10 分)5P13m24图 6试题名称::船舶构造力学(杆系与板的弯曲及稳定性)一. 问答题(15 分)1. 何谓力法,何谓位移法,各有何优劣?2. 何谓应变能,何谓余能,有何区分?3. 表达板弯曲时的根本假定.4. 何谓刚性板,柔性板,正交异性板?5. 为什么在压杆失稳时只能求出失稳时的临界力,而不能确定失稳时的变形值? 二. 画出下面两个单跨梁的弯矩图及剪力图.(16 分) 图 2 中的梁在仅受三角形分布荷重时的最大弯矩值为0.0642q l 2 ,发生在距梁左端0.577 l 处.三.在图 2 中梁的截面为工字钢,尺寸如图 3,试指出此梁的最大正应力和最大剪应力所在截面,并分别算出该截面上的正应力及剪应力分布及数值.(14 分)Al 2Pl 2P = 2kN , q = 1kN / m l = 2m , A = 1cm / kN图 1图 2lMM21qM = 0.8kN ⋅ m , M 12= 0.5kN ⋅ mq = 3kN / m , l = 1.6mq四.试用位移法解图 4 中的简单刚架,列出必需的方程式,不必求解算出结果.:刚架中杆 1-2,2-3,2-4 的长度均为l ,截面惯性矩均为I.(12 分)注(1)两端刚性固定梁,受均布荷重q 时的固端弯矩值为ql 212 .Pl (2)两端刚性固定梁,在跨中受集中力P 时的固端弯矩值为 8.( l 为梁长)五.试用 Ritz 法求解四周自由支持的刚性板的弯曲(图 5),板厚为 t,板的弯曲刚度为 D,板在 C 点处作用一集中力矩m,,计算时级数取一项.(15 分)3qP1l 224图 4图 3100161220016100x六.四周自由支持的刚性板,单向受压(图 6),板厚为t,板的弯曲刚度为D,边长比a/b=3,试求: (1)板失稳时的临界应力.(2)板失稳时的外形,沿x 方向及y 方向的半波数.(15 分)七.图7 中之桁架构造,受集中力P 作用而变形,设材料的应力-应变关系为σ=β ,试求出此构造的应变能及余能.两杆长度均为l,断面积均为A.(13 分)σxbσxa图 6yzOξxηmC by az图 5ε4545P图7θ1θ2EIx1∆2yL 图 1上海交通大学一九九二年争论生入学考试试题试题名称: 船舶构造力学(杆系与板的弯曲及稳定性) 留意:本试卷共有六大题。
第一章 绪论计算骨架断面惯性矩时的表格算法断面形式构件 名称 构件面积a (cm 2)构件形心距参考轴距离(cm ) ay ay 2构件对其形心的惯性矩i (cm 4) 带板 腹板 面板 … … … … … … … … … … … … / … /ABC水平构件对其形心的惯性矩可以不计。
断面中和轴离参考轴距离 ε=B/A(cm)断面对中和轴的惯性矩 I=C-εB(cm 4)最小断面模数 W min =I/y*max (cm 3)第二章单跨梁的弯曲理论一.初参数法1.用初参数法求两端自由支持在刚性支座上,受均布载荷的梁的挠曲线。
2.用初参数法图2所示受集中力作用的单跨梁的挠曲线方程式。
梁的左端为弹性固定,柔性系数为α=l/(3EI)。
梁的右端为弹性支座,柔性系数为A=l3/(48EI)。
3.两端刚性固定的梁,不受外荷重,当其右支座发生位移△时,求其挠曲线与断面弯矩与剪力。
4用初参数法求图中单跨梁的挠曲线方程式。
5. 图中的双跨梁,试用初参数法解之,求出挠曲线方程式,设弹性支座的柔性系数为A=l3/(3EI)。
6.考虑剪切影响,试导出图中梁的挠曲线方程式及两端的弯矩及剪力,并将结果推广到梁左端与右端分别有位移△i,θi及△j,θj时的情况。
梁的长度为l,断面惯性矩为I,有效抗剪面积为A s。
7. 如图所示变断面梁,用初参数法解之。
图中P=q l,求出挠曲线方程式及P力作用点处的挠度和转角。
8.用初参数法求图所示单跨梁的挠曲线方程式,转角方程式,弯矩方程式,剪力方程式。
推导中可令a=αEI/l (1)求出当α→∞时梁两瑞的转角,进行分析讨论。
(2)求出当α→0时梁左端的转角、弯矩及梁右端的转角,进行分析讨论。
a二.利用弯曲要素表进行计算1.利用弯曲要素表进行计算(1)计算图a中两端刚性固定梁的弯曲要素/(3EI)(2)求图b所示悬臂梁自由端点的挠度和转角。
α=l(3)求图c所示梁的左端弯矩和右端支反力。
船舶结构力学习题答案【篇一:船舶结构力学各章思考题】>(摘自习题)(一)绪论1 什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧生稳定性后,会大大减低船体抵抗总弯曲的能力?3.何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。
4.什么叫做船体结构的计算图形,它是用什么原则来确定的?它与真实结构有什么差别?5.一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构构件,计算图形不是固定的、一成不变的?(二)单跨梁的弯曲理论1 梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?2 单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3 为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下梁梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4 梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么? 5 当梁的边界点上作用有集中外力p或几种外弯矩m时,一种处理是把该项外力放在梁端,写进边界条件中去。
另一种处理时把该项外力放在梁上,不写进边界条件。
在求解梁的弯曲要素时,两种处理方法的具体过程有哪些不同?最后结果有没有差别?6 梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方向及分布范围)有没有关系?为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出?(三)力法1 什么叫力法?如何建立力法方程式?2 什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程式的物理意义是什么?3 当连续梁两端为弹性固定时,如何按变形连续条件建立该处的方程?4 力法可否用来计算不可动节点的复杂钢架?如可以,应如何做?5 用力法计算某些支座有限位移的连续梁或平面刚架时应注意什么问题?6 刚架与板架的受力特征和变形特征有何区别?7 何谓梁的固定系数?它与梁端弹性固定端的柔性系数有何不同?(四)位移法1 试举例说明位移法的基本原理。
一、简述题(本大题共3小题,每题10分,共30分)
1、什么是静定梁?什么是超静定梁?如何求解超静定梁?
2、什么是梁的弯曲四要素,查弯曲要素表要注意哪些事项?
3、根据载荷的作用性质可将载荷分哪几类?各有什么特点?
二、计算分析题(22+22+26,共70分)
1.图1所示矩形板,边界1为弹性固定边界,其单位宽度的柔性系数为α;边界2为简支边界;边界3全自由;边界4为弹性支座边界,其单位宽度的柔性系数为A,试(1)写出该板四边的边界条件;(2)写一个能满足四边位移边界条件的函数;(3)写出该板弯曲时的应变能表达式。
2.图2所示弹性支座单跨杆,跨长为l,抗弯刚度为EI,弹性支座的柔性系
数
3
9
l
A
EI
=试求该杆的临界压力?
3.用位移法求解下图连续梁的静不定问题。
已知:
, , , ,
画出弯矩图。
P ql =1223l l l ==1223I I I ==/(6)l EI α=。
s目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292 (0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EI EI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。
2010年上海交通大学船舶结构力学试题(回忆
一简答题(5*6
1.画出如下结构的初参数曲线并写出边界条件。
2.试写出刚性板弯曲解法的双三角级数法和单三角级数法的应用条件。
3.刚性板弯曲理论的基本假设是什么?
4.矩阵位移法为什么需要进行约束处理?外力平衡力系下是否需要进行约束处理?
5.总刚度矩阵有什么特点?矩阵带宽是否与单元编号和节点编号都有关?
二用位移法解钢架(20
所有E,I,L都相同,求2,3,5处转角(不要求计算结果,只需要列出方程式
三用李兹法解如下结构,确定挠曲线方程,级数取一项(25
四用力法求解如下结构:P=ql,m=ql2,求3处挠度,杆1至杆4的弯矩图(所有E,I,L都相同。
(25
五(1已知K=30EI/l3求Te;
(2若k→0,求Te;
(3如何提高板架的稳定性?
(试卷提供3跨、5跨Xj-λ图(25
六已知E=2x105MPa,q0=0.2MPa,I=1000cm4,t=2cm,a=320cm,
b=80cm. q0在全板均匀分布。
(1根据约束条件确定挠曲线的形式,仅取一项;
(2该结构能否看成桶形弯曲?为什么?
(3画出该结构板条梁的计算图形,并求出最大弯曲应力和最大挠度。