1第一章 随机过程基础
- 格式:ppt
- 大小:2.41 MB
- 文档页数:109
第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。
若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。
第一章 随机过程及其分类在概率论中,我们研究了随机变量,n 维随机向量。
在极限定理中我们研究了无穷多个随机变量,但只局限在它们之间相互独立的情形。
将上述情形加以推广,即研究一族无穷多个、相互有关的随机变量,这就是随机过程。
1. 随机过程的概念定义:设),,(P ∑Ω是一概率空间,对每一个参数T t ∈,),(ωt X 是一定义在概率空间),,(P ∑Ω上的随机变量,则称随机变量族});,({T t t X X T ∈=ω为该概率空间上的一随机过程。
其中R T ⊂是一实数集,称为指标集或参数集。
随机过程的两种描述方法: 用映射表示T X ,R T t X →Ω⨯:),(ω即),(⋅⋅X 是一定义在Ω⨯T 上的二元单值函数,固定T t ∈,),(⋅t X 是一定义在样本空间Ω上的函数,即为一随机变量;对于固定的Ω∈ω,),(ω⋅X 是一个关于参数T t ∈的函数,通常称为样本函数,或称随机过程的一次实现,所有样本函数的集合确定一随机过程。
记号),(ωt X 有时记为)(ωt X 或简记为)(t X 。
参数T 一般表示时间或空间。
常用的参数一般有:(1)},2,1,0{0 ==N T ;(2)},2,1,0{ ±±=T ;(3)],[b a T =,其中a 可以取0或∞-,b 可以取∞+。
当参数取可列集时,一般称随机过程为随机序列。
随机过程});({T t t X ∈可能取值的全体所构成的集合称为此随机过程的状态空间,记作S 。
S 中的元素称为状态。
状态空间可以由复数、实数或更一般的抽象空间构成。
实际应用中,随机过程的状态一般都具有特定的物理意义。
例1:抛掷一枚硬币,样本空间为},{T H =Ω,借此定义:⎩⎨⎧=时当出现,时当出现T 2H ,cos )(t t t X π ),(∞+-∞∈t 其中2/1}{}{==T P H P ,则)},(,)({∞+-∞∈t t X 是一随机过程。
第一章 随机过程1.1 引言对随机微分方程的研究所需要的随机过程的知识很多,因篇幅关系,只在本章中列出重要的、必备的相关知识和重要结论,这些知识主要包括:随机变量的概念及相关知识及条件期望;随机过程,特别是Markov 过程和Brown 运动的相关知识;随机微积分;Itô公式;一些重要不等式及随机比较定理。
本章的内容参考或转引自文献(Murry ,1998陈希孺,2003;林无烈2002;Mao ,1997;Mao ,2006胡适耕等,2007;王克,2010等),谨向相应的作者表示感谢。
1.2 随机变量概率用于度量随机事件的可能性,某个随机试验的所有可能的所有可能的基本结果或基本随机事件ω所构成的集合记为Ω,称为样本空间。
Ω的满足下面三个条件的子集族F 称为样本空间Ω的一个σ代数:(1)F ∅∈(2)若D F ∈,则其补集cD D F =Ω-∈; (3)若(i 1,2,)i D F ⊂=,则1i i D F ∞=∈。
F 中的元素称为Ω的F 可测集或随机事件。
若C 是样本空间Ω的一个子集族,则存在一个Ω的包含C 的最小的σ代数,记为(C)σ,称为由C 生成的σ代数。
由n的所有开集所生成的σ代数称为Borel σ代数,记为nB ,其中的元素称为n中的Borel 集。
定义在F 上的函数[]:0,1P F →称为可测空间(,F)Ω上的概率测度,如果它满足: (1)()1P Ω=;(2)若(i 1,2,)i A F ∈=且(i j)i j A A ⋂=∅≠,则()11i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑。
三元组(),F,P Ω称为概率空间。
若一个概率空间的F 包含Ω的所有P 零外测集,也就是说,如果()(){}*:inf ,0P G P F F F G F =∈⊂=,则G F ⊂,此概率空间称为完备的。
任何一个概率空间都可以通过把其所有P 零外测集加入F 中,并重新定义概率测度来完备化。
随机过程基础随机过程是概率论中一个重要的分支,用于描述随机现象的演化规律和统计特性。
本文将介绍随机过程的基础概念、性质和常见的模型类型。
一、随机过程的概念随机过程是指由一组随机变量组成的函数族 {X(t), t ∈ T},其中 T是一组时间指标。
随机过程可以看作是随机变量随时间的变化过程。
随机过程可以分为离散时间和连续时间两种类型。
离散时间随机过程:当时间指标集 T 为离散集合时,称为离散时间随机过程。
常见的离散时间随机过程有马尔可夫链和泊松过程。
连续时间随机过程:当时间指标集 T 为连续集合时,称为连续时间随机过程。
连续时间随机过程可以用随机微分方程进行描述,常见的连续时间随机过程有布朗运动和扩散过程。
二、随机过程的性质1. 状态空间:随机过程的状态空间是指随机变量 X(t) 可能取值的集合。
2. 轨道:对于固定的时间参数 t,随机过程的轨道是随机过程的一个实现,称为一个样本函数。
3. 随机过程的均值函数和自相关函数:对于随机过程 {X(t), t ∈ T},定义均值函数和自相关函数如下:均值函数:μ(t) = E[X(t)]自相关函数:R(t1, t2) = E[(X(t1) - μ(t1))(X(t2) - μ(t2))]均值函数描述了随机过程在不同时间点的平均值,自相关函数描述了不同时刻的随机变量之间的相关性。
4. 平稳性:如果对于任意的时刻 t1 和 t2,二者的联合分布仅仅依赖于时间差 t2 - t1,而不依赖于具体的时刻 t1 和 t2,那么称该随机过程是平稳的。
三、常见的随机过程模型1. 马尔可夫过程:马尔可夫过程是一类具有马尔可夫性质的随机过程。
在马尔可夫过程中,未来的状态只与当前的状态有关,与过去的状态无关。
2. 泊松过程:泊松过程是一类具有独立增量和平稳增量的随机过程。
泊松过程常用于描述具有随机到达时间和随机离去时间的事件。
3. 布朗运动:布朗运动是一类连续时间的随机过程,具有无记忆性和独立增量性质。