耦合器工作原理 带图片
- 格式:docx
- 大小:588.89 KB
- 文档页数:4
耦合器原理
耦合器又称耦合元件,是一种常用的电子器件,用于将多个电路之间的能量传递。
其原理是通过一定的物理、电学、磁学等性质,使两个电路之间产生电磁耦合,从而将一个电路中的能量无线传递到另一个电路中。
根据不同的耦合方式,耦合器可分为电容耦合器、电感耦合器、互感耦合器等不同类型。
电容耦合器的原理是利用两个电容的电场作用来实现电路间的耦合,通常用于高频电路中。
电感耦合器则是通过电磁感应原理,利用两个电感线圈的磁场作用来实现耦合,主要用于低频电路中。
互感耦合器则是利用两个电缆之间的电磁耦合来实现耦合。
在工业生产中,耦合器广泛应用于通信、测量和控制等领域,具有很高的实用价值和广泛的应用前景。
耦合器工作原理带图片-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
耦合器工作原理带图片(总5
页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
电动给水泵液力偶合器结构及工作原理
1、液力偶合器的结构:轴、轴密封装置、壳体、泵轮、涡轮、勺管;
2、工作原理:以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
液力耦合器的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
由勺管控制排油量来控制转速。
最后液体经工作油泵返回泵轮,形成周而复始的流动。
3、液力耦合器的特点是:
1)能消除冲击和振动;
2)输出转速低於输入转速,两轴的转速差随载荷的增大而增加;
3)过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。
4)液力耦合器的传动效率等於输出轴转速与输入轴转速之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
5)液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。
它一般靠壳体自然散热,不需要外部冷却的供油系统。
如将液力耦合器的油放空,耦合器就处於脱开状态,能起离合器的作用。
耦合器通俗解释(内容来自互联网)在微波系统中,往往需将一路微波功率按比例分成几路,这就是功率分配问题。
实现这一功能的元件称为功率分配元器件即耦合器,主要包括:定向耦合器、功率分配器以及各种微波分支器件。
光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。
它由发光源和受光器两部分组成。
把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。
发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。
光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。
如下图1(外形有金属圆壳封装,塑封双列直插等)。
中文名耦合器外文名Coupler主要包括定向耦合器、功率分配器组成发光源和受光器技术规范耦合器技术规范目录1 工作原理2 光电测试3 应用4 区分种类? 定向种类? 波导种类? 双分种类? 平行种类5 耦合器技术规范(室内分布)6 隔离器? 谐振式隔离器? 场移式隔离器工作原理原理类比:老张的南北两侧的白菜地各分了3份,老张希望通过一次性水道改动,每份地从主干水道上获得一小部分水流,水流速度和其他的地尽量相同,如图1所示。
图1 水流均分图这样老张就可以在树荫下歇一段时间,不用再做任何的水道改动,所有的地同时浇完。
图2 耦合器实物图耦合器是从无线信号主干通道中提取出一小部分信号的射频器件,如图2所示,与功分器一样都属于功率分配器件,不同的是耦合器是不等功率的分配器件。
耦合器与功分器搭配使用,主要为了达到一个目标—使信号源的发射功率能够尽量平均分配到室内分布系统的各个天线口,使每个天线口的发射功率基本相同。
理想耦合器的输入端口功率等于耦合端口功率与输出端口功率之和,以瓦特(W)为单位,即如图3所示。
图3 耦合器原理图耦合器的重要指标是耦合度和插损。
耦合度是耦合端口与输入端口的功率之比,以dB表示的话,一般是负值。
光电耦合器的管脚图及工作原理光电耦合器的作用及工作原理光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装图二光电耦合器之内部结构图三极管接收型6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装图四光电耦合器之内部结构图可控硅接收型6脚封装图五光电耦合器之内部结构图双二极管接收型6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。
因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
光电耦合器的管脚图及工作原理光电耦合器的作用及工作原理光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装图二光电耦合器之内部结构图三极管接收型6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装图四光电耦合器之内部结构图可控硅接收型6脚封装图五光电耦合器之内部结构图双二极管接收型6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。
因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。
它由发光源和受光器两部分组成。
把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。
发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。
光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。
如下图1(外形有金属圆壳封装,塑封双列直插等)。
光电耦合器原理及应用光电耦合器工作原理时间:2009-01-05 18:56:50 来源:作者:飞人光电耦合器件简介光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装图二光电耦合器之内部结构图三极管接收型 6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装图四光电耦合器之内部结构图可控硅接收型 6脚封装图五光电耦合器之内部结构图双二极管接收型 6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
光电耦合器的管脚图及工作原理光电耦合器的作用及工作原理光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装图二光电耦合器之内部结构图三极管接收型6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装图四光电耦合器之内部结构图可控硅接收型6脚封装图五光电耦合器之内部结构图双二极管接收型6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。
因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
光电耦合器工作原理时间:2009-01-05 18:56:50 来源:作者:飞人光电耦合器件简介光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。
光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。
当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。
对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。
若基极有引出线则可满足温度补偿、检测调制要求。
这种光耦合器性能较好,价格便宜,因而应用广泛。
图一最常用的光电耦合器之内部结构图三极管接收型4脚封装图二光电耦合器之内部结构图三极管接收型6脚封装图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装图四光电耦合器之内部结构图可控硅接收型6脚封装图五光电耦合器之内部结构图双二极管接收型6脚封装光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。
据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。
(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。
(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。
因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。
耦合器的工作原理
耦合器是一种常用的信号转换器,它能够将信号从一个低压电路
转换到另一个高压电路。
耦合器通常由两个线圈(铁心线圈以及外接
线圈)和一个可变的铁芯组成,用于将信号从低压线路传递到高压线路。
铁芯两端被铁心线圈和外接线圈所共同包裹,形成一个完整的强
磁体结构体,内层铁心线圈通常接在低压电路上,外层外接线圈则接
在高压电路上。
当接入电源时,铁心线圈内流电,而铁芯会受到磁场场引力而产
生磁力趋势,扭转耦合器中心轴。
磁力场的交互作用,耦合器中心轴
又被外接线圈所电磁感应,交替发生旋转动作,来引起外接线圈的电
流产生,于是将低压信号转换为高压信号,从而达到信号转化的目的。
耦合器在直流和频率非常低的信号转换中被广泛使用,有着安装
方便,便于调试,可靠性好,结构简单,成本低廉等特点,在信号转
换放大仪表、通信设备和电力设备中起着重要的作用。
总的来说,耦合器是一种非常重要的信号转换器,它能够将信号
从低压电路转换到高压电路,它具有安装简单,易于调试,可靠性强,价格便宜等众多优点,这使得它成为电子行业和其它行业中的一个重
要的信号转换器。
电动给水泵液力偶合器结构及工作原理
1、液力偶合器的结构:轴、轴密封装置、壳体、泵轮、涡轮、
勺管;
2、工作原理:以液体为工作介质的一种非刚性联轴器,又称液
力联轴器。
液力耦合器的泵轮和涡轮组成一个可使液体循环流动的
密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高
速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
由勺管控制排油量来控制转速。
最后液体经工作油泵返回泵轮,形成周而复始的流动。
3、液力耦合器的特点是:
1)能消除冲击和振动;
2)输出转速低於输入转速,两轴的转速差随载荷的增大而增加;
3)过载保护性能和起动性能好,载荷过大而停转时输入轴仍可
转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近於输入轴的转速,使传递扭矩趋於零。
4)液力耦合器的传动效率等於输出轴转速与输入轴转速之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
5)液力耦合器的特性因工作腔与泵轮、涡轮的形状不同而有差异。
它一般靠壳体自然散热,不需要外部冷却的供油系统。
如将液力耦合器的油放空,耦合器就处於脱开状态,能起离合器的作用。