DC-DC电路转换原理(含计算方式)
- 格式:ppt
- 大小:1.28 MB
- 文档页数:53
dc-dc变换器原理
DC-DC变换器是一种电力电子设备,它可以将直流电压转换为不同电压等级的直流电压输出。
其工作原理基于电感和电容的储能特性。
当输入电压施加在变换器的输入端口上时,输入电流开始流过电感。
由于电感的特性,电流变化率有限,电感中的电能会增加。
然后,输入电压被关闭,使电感的磁场崩溃,导致电感中的电流减小。
由于电感的自感特性,电压会增加,从而产生一个与输入电压不同的输出电压。
在DC-DC变换器中,电容被用于平滑输出电压。
当电感储能结束时,电容开始释放其储存的能量,以供应输出负载。
通过控制开关频率和占空比,可以实现对输出电压的调节。
DC-DC变换器还运用了反馈控制系统,通过监测输出电压与期望电压之间的差异来调整开关频率和占空比,从而实现对输出电压的稳定控制。
多种DC-DC变换器拓扑结构和控制策略被用于不同应用场景中,以满足不同的功率转换需求和效率要求。
总之,DC-DC变换器利用电感和电容的储能特性,通过控制开关操作,实现对直流电压的转换和稳定调节。
这使得它在许多电子设备中得到广泛应用,如电源适配器、电动汽车、太阳能系统等。
直流变交流逆变器的工作原理及电路分享直流变交流逆变器的工作原理利用震荡器的原理,先将直流电变为大小随时间变化的脉冲交流电,经隔直系统去掉直流分量,保留交变分量,再通过变换系统(升压或降压)变换,整形及稳压,就得到了符合我们需要的交流电。
利用振荡电路产生一定频率的脉动的直流电流,再用变压器将这个电流转换为需要的交流电压。
三相逆变器则同时产生互差120度相位角的三相交流电压。
逆变器有很多部分组成,其中最核心的部分就是振荡器了。
最早的振荡器是电磁型的,后来发展为电子型的,从分立元件到专用集成电路,再到微电脑控制,越来越完善,逆变器的功能也越来越强,在各个领域都得到了很广泛的应用。
简单直流变交流的逆变器电路该逆变器使用功率场效应晶体管作为逆变器装置。
用汽车电池供电。
因此,在输入电压为12伏直流电。
输出电压是100V的交流电。
但是,输入和输出电压不仅限于此。
您可以使用任何电压。
他们依赖于变压器使用。
波形输出为方波。
根据经验,这个电路约100W功率。
电路必须按装保险丝,因为过多的输入电流流动时,振荡器停止。
逆变器原理电路:将12V直流变成220V交流电将220V交流电转变为24V、36V、48V 都比较简单,只需要使用变压器的原理。
电磁互感,就可以获得不同的电压。
设闭合电路是一个n匝线圈,且穿过每匝线圈的磁通量变化率都相同,这时相当于n个单匝线圈串联而成,因此感应电动势变为根据公式可知,E就是电动势,也就是电压。
因为不变,只要铁块两端的线圈数量n不一样就可以达到变压的效果。
将交流电转变为直流电只要加上二极管就可以达到需要的效果,二极管是一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。
然后再利用变压器原理就可以将220V交流电转变成12V直流电,以及我们手机充电器的5V直流输出电压。
那么如何将12V直流转换成220V交流电呢?首先我们来了解一下逆变器,什么是逆变器?逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。
dc-dc变换原理
DC-DC变换器是一种电子设备,用于将直流(DC)电压转换为另一种直流电压。
这种转换器在许多电子设备中都有广泛的应用,例如在电源适配器、电动汽车、太阳能系统和通信设备中都可以看到它们的身影。
DC-DC变换器的工作原理基于电感和电容的原理,通过精确控制开关管的导通和截止来实现输入电压到输出电压的变换。
DC-DC变换器的基本工作原理是利用电感和电容储存和释放能量,从而实现电压的升降。
当输入电压施加到变换器上时,开关管周期性地开关,这导致电感和电容中的能量储存和释放。
通过调整开关管的占空比和频率,可以实现对输出电压的精确控制。
在一个典型的升压型DC-DC变换器中,当开关管导通时,电流会通过电感和负载,从而储存能量。
当开关管截止时,电感中的储能会释放,从而提供给负载。
通过控制开关管的导通和截止时间,可以实现输出电压的精确控制。
相比于线性稳压器,DC-DC变换器具有更高的效率和更小的体积。
这使得它们在需要高效能转换和对电源体积要求严格的场合中
得到广泛应用。
总之,DC-DC变换器是一种非常重要的电子设备,它通过精确控制电感和电容的能量储存和释放,实现了输入电压到输出电压的精确变换。
在现代电子设备中,它们的应用已经变得非常普遍,为我们的生活带来了诸多便利。
DC-DC升压(BOOST)电路原理BOOST升压电路中:电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成;肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。
输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。
将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。
电感值如何影响电感型升压转换器的性能?因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。
等效串联电阻值低的电感,其功率转换效率最佳。
要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。
电感型升压转换器IC电路输出二极管选择的原则是什么?升压转换器要选快速肖特基整流二极管。
与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。
肖特基二极管平均电流额定值应大于电路最大输出电压.怎样选择电感型升压转换器IC电路的输入电容?升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。
纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。
如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。
DC变DC的原理
DC变DC的原理就是通过电子器件将直流电压转换为不同的
直流电压。
在直流电路中,电流始终沿着一个方向流动,而在交流电路中,电流会时刻改变方向。
因此,当需要将一个直流电压转换为另一个直流电压时,就需要使用DC变DC转换器。
DC变DC转换器主要包括以下几个核心部分:开关器件、电
感器件、电容器件和控制电路。
其中,开关器件负责周期性地开闭电路,使得电能可以传输。
电感器件和电容器件则起到能量存储和平滑输出的作用。
具体来说,当输入的直流电压通过开关器件开启时,电能会存储在电感器件中。
而当开关器件关闭时,存储在电感器件中的电能会转移到输出端,通过电容器件进行输出过滤和平滑。
控制电路则负责监测输出电压,控制开关器件的开闭状态,以保持输出电压稳定。
DC变DC转换器有多种不同的拓扑结构,如升压、降压、升
降压等。
通过不同的拓扑结构和控制策略,可以实现不同输入输出电压之间的转换。
在实际应用中,DC变DC转换器广泛
应用于各种电子设备,如电源适配器、手机充电器、电子产品等。
dc dc电源原理图
根据您的要求,为避免文中有标题相同的文字,以下是一份简化的DC DC电源原理图解释:
电源原理图如下:
[图1]
该电源原理图展示了一个基本的DC DC电源电路。
在这个电路中,输入电源通过开关电源转换器(Switching Converter)被转换为所需的输出电压。
该电路由以下主要部分组成:
1. 输入电源(Vin):输入电源是电路的供电来源。
它可以是直流电源或其他类型的电源。
输入电源的电压通常会经过滤波电路进行滤波以去除电源中的噪声和杂波。
2. 整流电路(Rectifier Circuit):整流电路将输入电源转换为脉冲电流。
它通常由一组二极管组成,可以将输入电源的交流部分转换为直流电压。
3. 滤波电路(Filter Circuit):滤波电路通过使用电容器和电感器来进行滤波,以去除电源中的纹波和噪声。
滤波电路的作用是确保输出电压平稳且不受干扰。
4. 开关电源转换器(Switching Converter):开关电源转换器是DC DC电源的核心部分。
它通过周期性调整开关管的通断
状态来将输入电压转换为所需的输出电压。
开关电源转换器通常由开关管、电感器和电容器组成。
5. 输出电压(Vout):输出电压是经过开关电源转换器变换后得到的电压。
输出电压的大小和稳定性是根据设计要求和控制开关电源转换器的参数来确定的。
请注意,由于没有具体的标题,上述描述涵盖了整个DC DC 电源原理图的主要内容,以便更好地理解电路的工作原理。
DC-DC原理及指标介绍1、开关电源:是一种高频化电能转换装置,其主要利用电子开关器件(如晶体管、MOS管、可控晶闸管等),通过控制电路,使电子开关器件周期性地"接通"和"关断",让电子开关器件对输入电压进行脉冲调制,从而实现电压变换以及输出电压可调和自动稳压的功能。
开关电源的优势:①功耗低,效率高。
②体积小,重量轻。
③稳压范围宽。
开关电源的损耗来源:①开关管损耗。
②电感电容损耗。
③二级管损耗。
开关电源的损耗分析:开关电源的效率可以达到90%以上,如果精心优化与设计,甚至可以达到95%以上,这在以电池作为电力来源的场合非常重要,例如手机、小型无人机等。
因此开关电源设计的优劣程度将直接影响设备的续航能力。
(1)开关管损耗:这是开关电源的主要损耗,主要包括开关损耗、导通损耗。
因此应该尽量选择导通电阻比较小的开关管作为开关电源的核心元器件。
(2)电感电容损耗:电感损耗主要包括直流电阻损耗,电容损耗主要包括漏电流损耗。
因此应该尽量选择直流电阻较小的电感和漏电流较小的电容元器件。
(3)二极管损耗:主要包括导通损耗和开关损耗。
因此应该尽量选择导通压降较小,反向恢复时间较短的二极管,例如肖特基二极管或快恢复二极管等。
2、开关电源的分类:按照调制方式的不同可分为脉宽调制(PWM)和脉频调制(PFM)两种,目前脉宽调制(PWM)在开关电源中占据主导地位。
按照管子的连接方式可分为串联式开关电源、并联式开关电源和变压器式开关电源三大类。
按照输出电压的不同可分为降压式开关电源和升压式开关电源两种。
按照输入输出类型可分为:AC-AC、DC-AC、AC-DC、DC-DC四种,这里以DC-DC为主进行介绍。
按照是否有电气隔离可分为隔离型开关电源和非隔离型开关电源两种。
3、开关电源的三种基本拓扑结构(以非隔离型为主):DC/DC变换器一般都包括两种基本工作模式:电感电流连续模式(CCM)、电感电流断续模式(DCM)。
常用DC /DC电源电路设计方案分析1、DC/DC电源电路简介DC/DC电源电路又称为DC/DC转换电路,其主要功能就是进行输入输出电压转换。
一般我们把输入电源电压在72V以内的电压变换过程称为DC/DC转换。
常见的电源主要分为车载与通讯系列和通用工业与消费系列,前者的使用的电压一般为48V、36V、24V 等,后者使用的电源电压一般在24V以下。
不同应用领域规律不同,如PC中常用的是12V、5V、3.3V,模拟电路电源常用5V 15V,数字电路常用3.3V等。
结合到本公司产品,这里主要总结24V以下的DC/DC电源电路常用的设计方案。
2、DC/DC转换电路分类DC/DC转换电路主要分为以下三大类:(1)稳压管稳压电路。
(2)线性(模拟)稳压电路。
(3)开关型稳压电路3、稳压管稳压电路设计方案稳压管稳压电路电路结构简单,但是带负载能力差,输出功率小,一般只为芯片提供基准电压,不做电源使用。
比较常用的是并联型稳压电路,其电路简图如图(1)所示,选择稳压管时一般可按下述式子估算:(1) Uz=Vout; (2)Izmax=(1.5-3)I Lmax (3)Vin=(2-3)Vout这种电路结构简单,可以抑制输入电压的扰动,但由于受到稳压管最大工作电流限制,同时输出电压又不能任意调节,因此该电路适应于输出电压不需调节,负载电流小,要求不高的场合,该电路常用作对供电电压要求不高的芯片供电。
有些芯片对供电电压要求比较高,例如AD DA芯片的基准电压等,这时候可以采用常用的一些电压基准芯片如MC1403 ,REF02,TL431等。
这里主要介绍TL431、REF02的应用方案。
3.1 TL431常用电路设计方案TL431是一个有良好的热稳定性能的三端可调分流基准电压源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,参考电压源误差1%,输出电流为1.0-100mA。
双向全桥dc-dc变换器建模与调制方法的研究-概述说明以及解释1.引言1.1 概述双向全桥DC-DC变换器是一种较为常见的电力电子转换器,广泛应用于电力系统、电动汽车、可再生能源等领域。
它具有高效能、高可靠性和灵活性等特点,可以实现双向能量传输和电压变换。
因此,对双向全桥DC-DC变换器的建模与调制方法进行研究具有重要意义。
概括地说,双向全桥DC-DC变换器由两个单相桥连接而成,其输入和输出可以分别是直流电压或交流电压。
通过控制开关器件的开关状态和占空比,可以实现能量的双向流动和电压的升降。
其基本结构包括四个功率开关器件、两个变压器和一组电容滤波器。
通过适当设计变压器和电容参数,可以实现不同电压转换比的变换功能。
为了更好地理解双向全桥DC-DC变换器的工作原理和性能特点,需要进行准确的建模和分析。
建模方法是研究的关键一步,可以基于功率平衡原理和电磁场方程建立数学模型,描述其动态特性和稳态行为。
同时,调制方法则是控制变换器工作状态的关键技术,可以利用不同的调制策略来实现对输出电压的精确控制。
本文旨在对双向全桥DC-DC变换器的建模与调制方法进行深入研究。
首先,我们将介绍双向全桥DC-DC变换器的基本原理和结构,包括其工作原理、拓扑结构和特点。
接着,我们将详细探讨双向全桥DC-DC变换器的建模方法,包括基于电压平衡方程和状态空间方程的建模方式。
同时,还将介绍常用的建模工具和仿真方法,以及模型参数的确定方法。
在建立准确的数学模型基础上,我们将重点研究双向全桥DC-DC变换器的调制方法。
我们将介绍常见的调制策略,如PWM调制、多谐波调制和频率调制等,并比较它们的优缺点。
同时,还将探讨调制参数的选择和调制器件的设计原则,以及调制方法与输出性能指标之间的关系。
在研究的结论部分,我们将总结本文的研究结果,归纳出双向全桥DC-DC变换器建模与调制方法的主要贡献和应用价值。
同时,我们也将讨论研究的局限性和未来的研究方向,以期进一步完善和拓展相关领域的研究。
dcdc工作原理
DC/DC转换器是一种电子器件,用于将一种直流电压转换为
另一种不同电压水平的直流电压。
它包含输入端、输出端、控制电路和功率开关电路。
工作原理是这样的:转换器首先将输入电压与控制电路中的参考电压进行比较,然后根据比较结果来控制功率开关的导通和截止。
当功率开关导通时,输入电压经过电感和滤波电容传递到输出端,输出端得到所期望的输出电压。
当功率开关截止时,电感中的电流由于无法瞬间改变而继续流动,此时使用电容储存能量,维持输入电压到输出电压的平滑转换。
此外,DC/DC转换器通常会使用PWM(脉宽调制)技术来控制功率开关的导通和截止时间,以实现输出电压的精确稳定调节。
PWM技术通过调整开关的导通时间和截止时间来控制输
出电压的大小,以使输出电压能够根据输入电压和负载变化进行调节。
总之,DC/DC转换器通过控制功率开关的导通和截止来实现
输入电压到输出电压的转换,并采用PWM技术来稳定调节输
出电压。
它在现代电子设备中广泛应用,如电源适配器、电动车充电器、通信系统等。