原理图进阶绘制模数转换电路原理图
- 格式:ppt
- 大小:4.22 MB
- 文档页数:72
模-数转换原理ADC的转换原理根据ADC的电路形式有所不同。
ADC电路通常由两部分组成,它们是:采样、保持电路和量化、编码电路。
其中量化、编码电路是最核心的部件,任何ADC转换电路都必须包含这种电路。
ADC电路的形式很多,通常可以并为两类:间接法:它是将采样-保持的模拟信号先转换成与模拟量成正比的时间或频率,然后再把它转换为数字量。
这种通常是采用时钟脉冲计数器,它又被称为计数器式。
它的工作特点是:工作速度低,转换精度高,抗干扰能力强。
直接法:通过基准电压与采样-保持信号进行比较,从而转换为数字量。
它的工作特点是:工作速度高,转换精度容易保证。
模—数转换的过程有四个阶段,即采样、保持、量化和编码。
采样是将连续时间信号变成离散时间信号的过程。
经过采样,时间连续、数值连续的模拟信号就变成了时间离散、数值连续的信号,称为采样信号。
采样电路相当于一个模拟开关,模拟开关周期性地工作。
理论上,每个周期内,模拟开关的闭合时间趋近于0。
在模拟开关闭合的时刻(采样时刻),我们就“采”到模拟信号的一个“样本”。
量化是将连续数值信号变成离散数值信号的过程。
理论上,经过量化,我们就可以将时间离散、数值连续的采样信号变成时间离散、数值离散的数字信号。
我们知道,在电路中,数字量通常用二进制代码表示。
因此,量化电路的后面有一个编码电路,将数字信号的数值转换成二进制代码。
然而,量化和编码总是需要一定时间才能完成,所以,量化电路的前面还要有一个保持电路。
保持是将时间离散、数值连续的信号变成时间连续、数值离散信号的过程。
在量化和编码期间,保持电路相当于一个恒压源,它将采样时刻的信号电压“保持”在量化器的输入端。
虽然逻辑上保持器是一个独立的单元,但是,工程上保持器总是与采样器做在一起。
两者合称采样保持器。
八位串行A/D转换器ADC0832简介ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。
由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。
A/D目录名称表述基本概念分类A/D模块电路设计A/D转换过程发展历史发展趋势名称表述基本概念分类A/D模块电路设计A/D转换过程发展历史发展趋势展开编辑本段名称表述A/Dabbr.[军] Analog.Digital, 模拟/数字A/D[缩]单仪器模数转换编辑本段基本概念随着数字技术,特别是信息技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。
由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。
这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路--模数和数模转换器。
将模拟信号转换成数字信号的电路,称为模数转换器(简称A/D转换器或ADC,Analog to Digital Converter);将数字信号转换为模拟信号的电路称为数模转换器(简称D/A转换器或DAC,Digital to Analog Converter);A/D转换器和D/A转换器已成为信息系统中不可缺少的接口电路。
为确保系统处理结果的精确度,A/D转换器和D/A转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,A/D与D/A转换器还要求具有较高的转换速度。
转换精度与转换速度是衡量A/D与D/A转换器的重要技术指标。
随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的A/D和D/A转换器,它们具有愈来愈先进的技术指标。
编辑本段分类模数转换(ADC)ADC,Analog-to-Digital Converter的缩写,指模/数转换器或者模拟/数字转换器1. 模数转换的概念亦称模拟一数字转换,与数/模(D/A)转换相反,是将连续的模拟量(如象元的灰阶、电压、电流等)通过取样转换成离散的数字量。