基于名义应力法的焊接结构疲劳寿命评估概述
- 格式:pptx
- 大小:3.50 MB
- 文档页数:25
浅议焊接结构疲劳寿命预测及抗疲劳措施作者:王玉华缪卓君来源:《甘肃科技纵横》2022年第02期摘要:基于焊接结构疲劳破坏分析,从焊接接头形式与应力集中、焊接热影响区金属性能的变化及应力特征、焊接缺陷与环境介质等角度分析了焊接结构疲劳断裂的影响因素。
结合已有的研究,从疲劳裂纹萌生机理与疲劳断裂过程的主要阶段分析了焊接结构疲劳失效的机理与过程,焊接结构疲劳失效的主要阶段包括初始疲劳裂纹在应力集中初的萌生、疲劳裂纹的亚临界或稳定扩展、疲劳裂纹的失稳扩展直至结构断裂三个阶段。
基于断裂力学理论,介绍了焊接结构疲劳寿命评估方法,并从抗疲劳设计、控制焊接过程中产生的残余应力、焊接位置或母材的表面处理等角度介绍了常见的焊接结构抗疲劳措施。
本研究对于焊接结构疲劳寿命研究及抗疲劳设计,具有一定的参考与借鉴意义。
关键词:结构工程;焊接;疲劳寿命;抗疲劳措施中图分类号:TU391文献标志码:A0引言在现代钢结构的应用与连接中,焊接连接方式是最主要的连接方式之一[1,3],其具有构造简单、加工便捷、连接性能优异、用料节省、适合工业化生产等诸多优点,故被广泛应用于房建结构、航空航天、海洋平台等领域[2~5]。
然而,绝大多数的焊接结构都在交变应力作用下工作,长期的循环交变应力作用会导致结构出现疲劳破坏[1,2,5],加之焊接结构本身的特点,焊缝区与母材由于加工过程及本身的力学特点,在焊接接头位置出现二者的力学性能不匹配,疲劳作用下极易在接头位置产生裂纹及其他缺陷,极大地降低了焊接结构的抗疲劳性能及服役性能[3,5,6]。
大量统计表明,金属结构由于疲劳导致的失效,占总失效形式的70%以上。
钢结构在发生疲劳破坏之前,并不会出现明显的塑性变形,是一种突然发生断裂的破坏形式[5~9],一般的疲劳破坏断面成断口平直的形式,因此,疲劳破坏是一种反复应力或荷载作用下的脆性破坏形式。
焊接构件在加工过程中,会出现不同程度的焊渣侵入焊縫趾部、焊缝内存在气孔、焊接出现欠焊等现象,导致焊接结构焊缝存在咬边、未焊透等焊接缺陷及施工误差,加之焊接结构由于其自身会在整体几何形状不连续处引入焊接连接方式,进一步导致焊缝部位在荷载作用下出现严重的应力集中现象[7~13]。
FATIGUE ASSESSMENT METHODS FOR ARC WELDINGS对于电弧焊接的疲劳评估方法Dannbauer Helmut, Hofwimmer Klaus, Zhang WenxuanMagna Powertrain Engineering Center Steyr GmbH & Co KG, Austria麦格纳动力总成 – 斯太尔工程中心关键字 – 有限元,疲劳,焊缝,标准,S/N 曲线摘要 – 基于有限元分析的疲劳评估在汽车工业中被广泛的应用。
但是如何处理在车身和底盘等结构中的焊接问题任然是一个研究课题。
这篇论文将给出一个总揽并且对焊缝疲劳评估的不同方法进行对比。
∙基于标准的焊缝疲劳评估 (EUROCODE 3, BS 7608, DS1612):基于名义应力的细分类别将被用来与一条S/N曲线相关联;平均应力的影响将以不同的方法进行处理 (MKJ-图, 减少负载循环中的压缩受力部分)。
∙基于德国FKM标准的焊缝疲劳评估:针对S/N 曲线的细分类别;所有3个应力分量将被分别分析;不同的Haigh-图将应用在不同的残余应力等级上。
∙基于来自于有限元分析的结构应力的焊缝疲劳评估:简单板壳单元提供的结构应力将被用于与凹槽参数数据库相结合,以获得凹槽应力。
∙基于来自于有限元分析的凹槽应力的焊缝疲劳评估:带有1mm或5mm凹槽半径的实体模型将被用来进行凹槽应力分析;凹槽应力将应用主S/N曲线进行评估。
∙基于来自于有限元分析的节点受力的焊缝疲劳评估:从沿着焊缝走向的节点受力可以获得线载荷,它们将结合分析理论方程对结构应力进行计算。
凹槽应力将通过凹槽系数的分析评估被确定下来,一个主S/N 曲线将用于损伤值分析。
各种不同方法的规范将在理论上进行介绍并且提供一个应用案例用以说明它们在实践中的不同之处。
1. 简介车辆必须能够承受动态应力,它的部件包含不同的焊缝、焊点和凹槽。
在加工过程中非常不同的工艺处理将被应用。
疲劳分析方法疲劳问题的研究可追溯到19世纪初,经过近二百年探索,目前已经取得了很大的发展。
工程上,对疲劳设计主要采用四种方法,即名义应力法、局部应力应变法、损伤容限设计、疲劳可靠性设计。
(1)名义应力法(Miner线性累计损伤理论)名义应力法又称常规疲劳设计法或影响系数法,用名义应力法来估算构件或结构的寿命的前提是:材料和构件、结构是理想连续体,且承受的载荷不大,断面的应力值小于材料的屈服极限,应力应变成线性关系,应力循环作用下的寿命较小。
因此,用该方法进行寿命估算的依据是应力谱、材料的抗力指标P—S—N 曲线和累积损伤理论。
(2)局部应力应变法零件的疲劳破坏都是从应变集中部位的最大局部应变处开始,并且在裂纹萌生以前,都要产生一定的塑性变形。
局部应力应变法以缺口根部的局部应力—应变历程为依据,再结合材料相应的疲劳特性曲线进行寿命估算。
该方法的合理性主要表现为考虑了金属的塑性应变和由此而引起的残余应力对疲劳性能的影响。
它所指的寿命就是缺口边上出现可见裂纹的寿命。
(3)损伤容限设计损伤容限设计是一项复杂的系统工程,它以断裂力学特别是线弹性断裂力学理论为基础,以保证结构安全为目标,以无损检测技术、断裂韧度和疲劳裂纹扩展速率的测定技术为手段,以有初始缺陷或裂纹的零件的剩余寿命估算为中心,以断裂控制为保证,目的是确保结构在给定使用寿命期内,不致因未发现的初始缺陷的扩展造成严重事故。
(4)疲劳可靠性设计疲劳可靠性设计即概率疲劳设计,它是根据构件工作应力和疲劳强度分布曲线,应用概率设计理论,在给定可靠性指标下,进行构件的可靠性设计。
疲劳可靠性设计不但需要知道构件的应力和疲劳强度的平均值,而且还要知道构件的应力和疲劳强度分布。
综上所述,名义应力法和局部应力应变法都是以材料内部没有缺陷和裂纹为前提条件的。
但是,实际构件在加工制造过程中,由于种种原因,往往已经存在着各种各样的缺陷或裂纹。
损伤容限设计考虑了结构的初始缺陷或裂纹,以断裂控制为保证,保证结构在给定使用寿命期内,不致因未发现的初始缺陷的扩展造成严重事故。
基于热点应力法的焊接结构疲劳评估引言焊接结构在工程和制造过程中广泛应用,但在长期使用中会面临疲劳失效的风险。
为了提高焊接结构的可靠性和安全性,进行疲劳评估是非常重要的。
基于热点应力法是一种常用的疲劳评估方法,本文将对该方法进行全面、详细、完整和深入的探讨,以期对焊接结构的疲劳评估提供有益的指导。
二级标题一三级标题一在进行焊接结构疲劳评估之前,我们需要首先了解热点应力法的基本原理。
热点应力法是一种通过考虑焊接热循环引起的残余应力和应力集中等因素,来评估焊接结构疲劳寿命的方法。
其基本思想是将焊接接头中的焊缝区域划分为若干个小区域(即热点),然后针对每一个热点进行应力分析,最终得到整个焊接接头的热点应力分布。
根据热点应力分布,可以进一步估计焊接接头在特定载荷下的疲劳寿命。
为了进行热点应力法的疲劳评估,我们需要进行以下几个步骤:1.确定焊接接头的几何形状和尺寸。
2.建立焊接接头的有限元模型,包括焊缝区域的几何形状和材料性质。
3.设置加载边界条件,包括载荷大小和加载方式。
4.运行有限元分析,计算焊接接头的应力分布。
5.根据应力分布,计算热点应力。
6.利用热点应力和疲劳标准曲线,估计焊接接头的疲劳寿命。
三级标题二热点应力法的核心是计算焊接接头的热点应力。
热点应力是指焊接接头中最大的应力值,通常出现在焊缝和母材交界处等处。
热点应力的计算可以利用有限元方法进行,其具体步骤如下:1.对焊接接头进行网格划分,将焊缝区域划分为若干个小区域。
2.在每个小区域中设置一个节点,并为每个节点指定适当的材料性质和分布载荷。
3.运行有限元分析,计算每个节点的应力分布。
4.在每个小区域中选取最大的应力值作为该区域的热点应力。
5.将所有小区域中的热点应力进行对比,得到整个焊接接头的热点应力分布。
通过以上步骤,我们可以得到焊接接头的热点应力分布,从而可以进一步评估焊接接头在不同载荷下的疲劳寿命。
二级标题二三级标题一在进行热点应力法的焊接结构疲劳评估时,还需要注意一些关键问题。
基于虚拟疲劳试验的铁路车辆焊接结构疲劳寿命预测一、本文概述随着铁路行业的快速发展,车辆的安全性和可靠性越来越受到人们的关注。
焊接结构作为铁路车辆的重要组成部分,其疲劳寿命的预测和评估对于确保车辆运行安全具有重要意义。
传统的疲劳试验方法由于周期长、成本高、对试验条件要求严格等限制,已无法满足现代铁路车辆研发的需求。
基于虚拟疲劳试验的铁路车辆焊接结构疲劳寿命预测方法应运而生,成为了当前研究的热点。
本文旨在探讨基于虚拟疲劳试验的铁路车辆焊接结构疲劳寿命预测方法。
文章将介绍虚拟疲劳试验的基本原理和关键技术,包括有限元分析、疲劳损伤累积理论等。
将详细阐述如何利用虚拟疲劳试验对铁路车辆焊接结构进行疲劳寿命预测,包括模型的建立、加载条件的设定、疲劳寿命的计算等步骤。
文章还将对虚拟疲劳试验的准确性和可靠性进行评估,并与传统疲劳试验结果进行对比分析。
文章将总结虚拟疲劳试验在铁路车辆焊接结构疲劳寿命预测中的应用前景,并提出相应的建议和改进措施。
通过本文的研究,旨在为铁路车辆焊接结构的疲劳寿命预测提供一种新的、高效的方法,为铁路车辆的安全性和可靠性提供有力保障。
也为相关领域的研究提供参考和借鉴。
二、虚拟疲劳试验技术概述虚拟疲劳试验技术是一种基于计算机模拟和数值分析的方法,旨在预测和评估铁路车辆焊接结构的疲劳寿命。
该技术结合了有限元分析(FEA)、多体动力学仿真、疲劳损伤累积理论和数据处理技术等手段,通过构建高度逼真的虚拟模型来模拟实际工作环境中的载荷条件和应力分布。
在虚拟疲劳试验中,首先需要根据实际车辆的结构特点、材料属性和焊接工艺等建立精确的有限元模型。
通过多体动力学仿真模拟车辆在不同运行条件下的动力学行为,获取各关键部位的动态载荷历程。
利用疲劳分析软件对这些载荷历程进行处理,计算各部位的应力响应和疲劳损伤累积情况。
基于疲劳损伤累积理论,预测结构的疲劳寿命,并找出潜在的疲劳薄弱环节。
虚拟疲劳试验技术具有成本低、周期短、可重复性好等优点,能够在产品设计阶段就进行疲劳性能的预测和优化,从而有效提高铁路车辆焊接结构的安全性和可靠性。
Fe-safe Verity焊缝疲劳分析一. Verity焊缝疲劳分析的必要性焊接连接是工业领域上非常常见的结构连接方式,在结构设计中具有非常重要的地位,因此焊接的结构强度和疲劳强度都非常重要。
一般情况下,平板焊接钢结构焊缝的屈服强度和抗拉强度都不低于其母材,但是焊缝的疲劳强度却远远低于母材的疲劳强度,焊缝失效的主要形式为疲劳,所以焊缝疲劳强度分析十分必要。
焊缝的抗疲劳性能很大程度上取决于焊缝的宏观和微观几何形状,影响焊缝疲劳强度得因素很多,比如动态应力,平均应力,焊接残余应力等。
传统的焊接疲劳分析方法是通过有限元分析软件来计算焊缝处的应力,然后根据焊接结构的不同类型定义应力寿命S-N曲线来计算焊缝的疲劳寿命。
一般来说,有限元网格的大小直接影响仿真分析的结构应力结果,特别在应力集中位置(焊接位置通常有应力集中),其影响更大,因此传统焊接疲劳分析方法无法准确预测焊缝处的疲劳寿命。
2006年最新版本的Fe-safe引入了一个全新的“Verity”模块,可以很好地解决上述问题。
该模块的核心技术来源于美国著名的科技研发公司Battelle的JIP(Joint Industry Project)项目研究成果,该研究成果“Mesh-insensitive Structural Stress Method”是在通用有限元分析程序计算结果基础上,针对板壳、实体等结构连接形式,专门开发计算等效Structural Stress的程序,使得最后的应力计算结果不具有网格敏感性,即在不同网格尺寸下都能获得精确一致的疲劳仿真结果。
二. Verity焊缝分析介绍Verity的等效结构应力法是一种新型焊接结构疲劳寿命预测技术, 可广泛应用于不同工业领域的各类形式焊接承载部件的焊趾疲劳分析, 如压力容器、管道、海上平台、船舶、地面车辆等结构的管件及平板焊接接头。
该方法主要基于以下2项关键技术:1.考虑焊趾部位的结构应力集中效应, 应用改进线性化法或节点力法分析其结构应力(即热点应力) , 确保计算结果对有限单元类型、网格形状及尺寸均不敏感, 从而有效区分不同接头类型的焊趾结构应力集中情形。
基于结构应力法的车体结构疲劳裂纹扩展与剩余寿命评估杨海宾;朱涛;肖守讷;阳光武;杨冰【摘要】为了弥补名义应力法不能针对具有初始裂纹的焊接结构进行评估的不足,采用结构应力法,在断裂力学的基础上推导了考虑裂纹扩展增量的焊缝裂纹扩展计算方法.以复铰式100%0低地板有轨电车为研究对象,采用名义应力法确定了典型工况下车体疲劳强度薄弱焊缝的位置,并基于结构应力法提取了该位置的膜应力和弯曲应力,并应用焊缝裂纹扩展计算方法对车体薄弱位置的焊缝进行了剩余寿命评估.研究结果表明:初始裂纹的存在导致车体寿命远低于设计寿命(1E7),但仍然具有一定的服役空间,可以利用焊缝裂纹扩展计算方法对含有缺陷的结构进行剩余寿命评估,并根据计算结果制定相应的维修策略.【期刊名称】《铁道机车车辆》【年(卷),期】2019(039)001【总页数】7页(P15-20,77)【关键词】名义应力;结构应力;裂纹扩展计算;车体结构;剩余寿命【作者】杨海宾;朱涛;肖守讷;阳光武;杨冰【作者单位】西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031;西南交通大学牵引动力国家重点实验室,成都610031【正文语种】中文【中图分类】U270.1+2目前,针对轨道交通车辆车体焊接结构疲劳评估,普遍采用基于疲劳强度值和P-S-N曲线的名义应力法,这种方法往往依赖于接头类型和载荷形式,当面对复杂结构时,精确度便会降低[1]。
密西根大学的董平沙教授提出了基于结构应力的主S-N曲线法,很好的解决了这个问题[2-3]。
对于焊接结构,不可避免的会存在缺陷,这些缺陷很可能成为裂纹的源头,导致结构的使用寿命和承载能力降低,对于服役多年的结构往往也会出现许多疲劳裂纹[4]。
如果能模拟这些裂纹的扩展行为,便能对具有裂纹缺陷的焊接结构的服役能力进行计算并指导车辆的阶段性维修。
结构件的疲劳寿命分析方法摘要:本文简单介绍了在结构件疲劳寿命分析方法方面国内外的发展状况,重点讲解了结构件寿命疲劳分析方法中的名义应力法、局部应力应变法、应力应变场强度法四大方法的估算原理。
疲劳是一个既古老又年轻的研究分支,自Wohler将疲劳纳入科学研究的范畴至今,疲劳研究仍有方兴未艾之势,材料疲劳的真正机理与对其的科学描述尚未得到很好的解决。
疲劳寿命分析方法是疲分研究的主要内容之一,从疲劳研究史可以看到疲劳寿命分析方法的研究伴随着整个历史。
金属疲劳的最初研究是一位德国矿业工程帅风W.A.J.A1bert在1829年前后完成的。
他对用铁制作的矿山升降机链条进行了反复加载试验,以校验其可靠性。
1843年,英国铁路工程师W.J.M.Rankine对疲劳断裂的不同特征有了认识,并注意到机器部件存在应力集中的危险性。
1852年-1869年期间,Wohler对疲劳破坏进行了系统的研究。
他发现由钢制作的车轴在循环载荷作用下,其强度人大低于它们的静载强度,提出利用S-N 曲线来描述疲劳行为的方法,并是提出了疲劳“耐久极限”这个概念。
1874年,德国工程师H.Gerber开始研究疲劳设计方法,提出了考虑平均应力影响的疲劳寿命计算方法。
Goodman讨论了类似的问题。
1910年,O.H.Basquin提出了描述金属S-N曲线的经验规律,指出:应力对疲劳循环数的双对数图在很大的应力范围内表现为线性关系。
Bairstow通过多级循环试验和测量滞后回线,给出了有关形变滞后的研究结果,并指出形变滞后与疲劳破坏的关系。
1929年B.P.Haigh研究缺口敏感性。
1937年H.Neuber指出缺口根部区域内的平均应力比峰值应力更能代表受载的严重程度。
1945年M.A.Miner 在J.V.Palmgren工作的基础上提出疲劳线性累积损伤理论。
L.F.Coffin和S.S.Manson各自独立提出了塑性应变幅和疲劳寿命之间的经验关系,即Coffin—Manson公式,随后形成了局部应力应变法。