统计学第五章概率分布
- 格式:ppt
- 大小:883.50 KB
- 文档页数:62
概率分布是描述随机事件发生的可能性大小的数学工具。
在现实生活中,许多事件的发生都是随机的,而概率分布就是用来描述这种随机性的数学模型。
本文将从经验的角度出发,探讨概率分布的相关知识。
首先,我们要明确什么是概率分布。
简单来说,概率分布描述了一个随机试验所有可能结果及其对应的概率。
例如,投掷一枚硬币有正面和反面两种可能的结果,每面出现的概率是0.5。
这就是一个简单的概率分布。
其次,概率分布有多种类型。
最常见的有离散概率分布和连续概率分布。
离散概率分布描述的是可数的事件,如抛硬币、抽奖等。
连续概率分布则描述的是连续的事件,如人的身高、体重等。
在实践中,我们常常使用经验概率分布来描述随机试验的结果。
经验概率分布是基于大量重复试验的结果来估计的。
例如,我们可以多次抛硬币,记录正面和反面的出现次数,然后根据这些数据估计硬币正面和反面的真实概率。
此外,概率分布还有着广泛的应用。
在统计学中,概率分布是描述数据分布特性的重要工具。
在决策分析中,概率分布可以帮助我们评估不同方案的风险和不确定性。
在经济学中,概率分布用于描述市场行为、供需关系等经济现象的不确定性。
总之,概率分布作为数学中的一个概念,在描述随机事件、分析不确定性等方面具有广泛的应用价值。
通过深入了解概率分布的相关知识,我们可以更好地理解和分析现实生活中的各种现象,为我们的决策提供有力的支持。
数据的概率分布概率分布是统计学中的一个重要概念,用于描述随机变量不同取值的可能性。
在数据分析和推断领域,概率分布被广泛应用于研究和解释数据的性质和规律。
本文将探讨数据的概率分布及其统计学应用。
一、概率分布的基本概念1. 随机变量随机变量是一个数值函数,它的取值依赖于随机事件的结果。
可以是离散的,也可以是连续的。
离散随机变量的取值为有限或可数个数,例如掷骰子的结果;而连续随机变量的取值可以是任意的,例如测量某人身高的结果。
2. 概率质量函数(PMF)对于离散随机变量,概率质量函数(Probability Mass Function,PMF)描述了随机变量取每个可能值的概率。
通常用P(X=x)表示随机变量X等于x的概率。
概率质量函数满足以下两个条件:非负性(P(X=x) ≥ 0)和概率和为1(∑P(X=x) = 1)。
3. 概率密度函数(PDF)对于连续随机变量,概率密度函数(Probability Density Function,PDF)描述了随机变量取某个具体值的概率。
与概率质量函数类似,概率密度函数也要满足非负性和积分为1的条件。
二、常见的概率分布1. 二项分布二项分布是概率论中最常见的离散概率分布之一,用于描述重复n次独立实验中成功次数的概率分布。
其中,每次实验结果只有两种可能,通常称其中一种为“成功”,概率为p,另一种为“失败”,概率为q=1-p。
二项分布可以用于模拟硬币投掷、产品合格率等情况。
2. 正态分布正态分布是连续概率分布中应用最广泛的一种,也被称为高斯分布。
它的概率密度函数呈现钟形曲线,均值μ和标准差σ是决定分布形态的两个参数。
正态分布在自然界和社会科学中的广泛应用表明了其重要性,例如身高、体重、考试成绩等符合正态分布。
3. 泊松分布泊松分布是一种用于描述事件在固定时间或空间内的发生次数的离散概率分布。
该分布假设事件发生的概率在任何固定时间段内都是相等且独立的。
泊松分布适用于预测单位时间或单位空间内事件发生的频率,例如电话呼叫数、交通事故数等。
第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。
2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。
3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。
4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。
数的概率分布概率分布是概率论中重要的概念之一,用于描述一个随机变量取值的可能性。
在数学和统计学领域里,数的概率分布研究了在特定情况下数值出现的概率。
本文将介绍数的概率分布的基本含义、常见的概率分布类型以及其在实际应用中的重要性。
一、概率分布的基本定义概率分布是随机变量的可能取值及其对应概率的描述。
随机变量可以是离散型变量或连续型变量。
离散型变量的取值有限且可数,如掷骰子的点数;连续型变量的取值为无限个且不可数,如人的身高。
概率分布描述了随机变量每个取值的概率。
二、常见的概率分布类型1. 离散型概率分布离散型概率分布用于描述随机变量为离散型的情况。
以下是几种常见的离散型概率分布:(1)伯努利分布伯努利分布是一种简单的离散型分布,常用于描述试验只有两个可能结果的情况,如硬币的正反面。
(2)二项分布二项分布是描述n次成功失败试验的离散型分布,例如n次掷硬币中正面朝上的次数。
(3)泊松分布泊松分布用于描述单位时间内随机事件发生的次数,如单位时间内电话呼叫次数、交通事故发生次数等。
2. 连续型概率分布连续型概率分布用于描述随机变量为连续型的情况。
以下是几种常见的连续型概率分布:(1)均匀分布均匀分布描述了在一个区间内随机取值时,每个取值的概率相等,如抛硬币的落点在一个平面上的坐标。
(2)正态分布正态分布是最常见的连续型概率分布之一,也称为高斯分布。
它以钟形曲线为特征,广泛应用于自然和社会科学领域,如身高、体重等。
(3)指数分布指数分布用于描述事件发生的时间间隔或等待时间,如设备故障发生的时间间隔、用户等待的响应时间等。
三、概率分布在实际应用中的重要性概率分布在实际应用中具有重要的作用,主要体现在以下几个方面:1. 预测和决策通过分析和建模某个事件或现象的概率分布,可以对未来可能的结果进行预测。
例如,在金融领域中,通过对股票收益率的概率分析,可以帮助投资者做出决策。
2. 风险评估概率分布可以用于评估风险。
在保险行业中,通过对保险索赔次数或大小的概率分析,可以估算保险公司的风险,并确定合理的保费。
统计学中的概率分布统计学是一门研究收集、整理、分析和解释数据的学科。
它在各个领域都有广泛的应用,从市场调查到医学研究,从金融分析到环境科学。
而概率分布则是统计学中的重要概念之一,它描述了随机变量的取值可能性。
一、概率分布的基本概念概率分布是指随机变量的所有可能取值及其相应的概率。
随机变量是一个变量,其取值由随机事件决定。
例如,掷硬币的结果可以是正面或反面,这就是一个二元随机变量。
在概率分布中,有两种基本类型:离散概率分布和连续概率分布。
离散概率分布用于描述离散随机变量,即取有限或可数个数值的随机变量。
常见的离散概率分布包括伯努利分布、二项分布和泊松分布。
伯努利分布用于描述只有两个可能结果的随机试验,如抛硬币的结果。
二项分布则用于描述多次独立重复的伯努利试验的结果。
泊松分布则用于描述在给定时间或空间单位内发生的事件的次数。
连续概率分布则用于描述连续随机变量,即可以取任意实数值的随机变量。
最常见的连续概率分布是正态分布,也称为高斯分布。
正态分布在自然界和人类行为中广泛存在,例如身高、体重等。
除了正态分布,还有指数分布、均匀分布和伽马分布等。
二、概率分布的特征概率分布有一些重要的特征,包括期望值、方差和标准差。
期望值是随机变量的平均值,它描述了随机变量的中心位置。
方差衡量了随机变量取值的离散程度,而标准差是方差的平方根。
概率分布还有一个重要的特征是分位数。
分位数是指将概率分布分成几个部分的点。
最常见的分位数是中位数,它将概率分布分成两个相等的部分。
其他常见的分位数包括四分位数和百分位数。
三、概率分布的应用概率分布在统计学中有广泛的应用。
首先,它可以用于描述和分析数据。
通过将数据与适当的概率分布进行比较,可以确定数据是否符合某种分布模型。
这对于数据的进一步分析和解释至关重要。
其次,概率分布可以用于进行推断统计学。
通过样本数据,可以估计总体参数的值,并进行假设检验。
例如,可以使用正态分布来进行总体均值的推断。