Gupta, Singh - 2010 - Array signal processing DOA estimation for missing sensors
- 格式:pdf
- 大小:216.21 KB
- 文档页数:4
基于短快拍的捷变频信号DOA估计算法陈涛;崔岳寒;黄湘松【摘要】传统的波达方向(DOA)估计算法依赖于多快拍数据得到的协方差矩阵,在实际应用中,可用的快拍数并不确定,而捷变频信号由于其频率的不固定导致短快拍下的DOA估计更加困难.针对这一问题,提出一种基于短快拍的捷变频信号DOA 算法,即ISSFAS (improved-short-snapshot-frequency-agile-signal)算法.该算法将伪协方差矩阵法与频域聚焦法相结合,用重新构成的伪协方差矩阵代替原有的协方差矩阵,并用频域聚焦的方法对可变频率的情况进行处理.研究结果表明:ISSFAS 算法具有良好的DOA估计性能,能够在短快拍下进行超分辨,且性能强于未与伪协方差法相结合的情况.【期刊名称】《天津大学学报》【年(卷),期】2018(051)008【总页数】5页(P832-836)【关键词】阵列信号处理;DOA估计;短快拍;捷变频信号【作者】陈涛;崔岳寒;黄湘松【作者单位】哈尔滨工程大学信息与通信工程学院,哈尔滨150001;哈尔滨工程大学信息与通信工程学院,哈尔滨150001;哈尔滨工程大学信息与通信工程学院,哈尔滨150001【正文语种】中文【中图分类】TN971.1阵列信号处理是信号处理的一个重要分支,目前已经广泛应用于很多不同的领域,如电磁、声呐、地震、雷达等[1-2].其中,波达方向(direction of arrival,DOA)估计问题是阵列信号处理的基本问题之一[3],基于阵列的 DOA估计在电磁、声呐和地震传感等应用中都起到了举足轻重的作用,DOA估计算法的主要目标是能够在噪声环境下有效地分辨密集分布的信号源.目前有很多先进的信源 DOA估计算法如多重信号分类(MUSIC)算法等都具有较好的分辨力[4-5].短快拍测向算法的研究主要针对军事和卫星通信,在阵列接收数据有限且目标高速运动的前提下,实现对目标进行实时处理,兼具较高的 DOA估计精度,并为高速运动目标的定位和跟踪提供技术支持[6-7].近年来很多专家学者将研究的目光锁向少快拍甚至单快拍下的阵列信号处理[8-9].频率捷变技术是在现代雷达对抗中广泛使用的一种新型手段.捷变频信号是相邻发射脉冲或脉冲组间的载波频率在一定范围内以很高的速度随机跳变,是一种非平稳信号[10].由于捷变频信号具有频率不固定的特点,因而对其 DOA估计的难度要大于固定频率的窄带信号,若加之快拍数较小的情况,其DOA估计就会变得更困难.针对以上问题,本文提出一种基于短快拍的捷变频信号DOA算法,即ISSFAS(improved-shortsnapshot-frequency-agile-signal)算法.该算法将伪协方差矩阵法与频域聚焦法相结合,用重新构成的伪协方差矩阵代替原有的协方差矩阵,并用频域聚焦的方法对可变频率的情况进行处理.ISSFAS算法的优点为具有良好的 DOA估计性能,能够在短快拍下进行超分辨.1 信号模型假设有K个信号入射到由M个全向阵元组成的均匀线阵上,信号数K已知或已估计得到,上标“*”表示共轭,上标“T”表示转置,上标“H”表示共轭转置.于是阵列输出矢量为[1]式中:信号矢量;噪声矢量;导向矢量,其中,θi为第i个信号的入射角度,λ为信号波长.假设入射信号为不相关的零均值平稳随机过程,第i个信号的功率为,噪声为高斯白噪声,每个阵元上的噪声功率为,信号与噪声不相关[11].2 算法实现2.1 伪协方差矩阵构造方法当捷变频信号的每个频点对应一个快拍时,传统的协方差矩阵构造方式会出现信息量不足的情况,本文通过构造伪协方差矩阵来解决这一问题.假设每个捷变频信号的基带信号频率均为f,频点数均为C个,对每个频点构造相应的伪协方差矩阵,其构造方法和原理如下.将每个频点下的伪协方差矩阵Y表示为的形式.其中D为K×K维的满秩矩阵为满足均匀线阵阵列流型的L×K维矩阵的第p个元素可表示为,其中.为保证伪协方差矩阵的秩为K,应有L>K,这样构造出来的伪协方差矩阵Y是L×L维的.这样,就可利用常规的空间谱估计算法来对其实现DOA估计[12].伪协方差矩阵Y中的元素Y(p,q)可表示为式中dnω为矩阵D的元素.当矩阵D为对角阵时,式(2)便可表示为此时,在对角线元素不为 0的情况下,矩阵D是满秩的.进而利用式(8)来构造新的伪协方差矩阵的每个数据.将信号的有用信息表示为这样构造伪协方差矩阵的方法相当于增加了可利用的信息量.由式(9)可知,M个阵列接收信号的相位是位于范围内的等差数列,可表示的相位范围为,固定相位φn的取值与相位参考点的选择有关.这就是构造伪协方差矩阵时可用的信息[12].当(信号为实信号)时,则有式(10)中对应的相位位于范围内的等差数列,进而增加了可利用信息的信息量.综上所述,令并代入式(8),此时伪协方差矩阵[13]可表示为进而C个频点的伪协方差矩阵分别为Y1、Y2、…、Yc.2.2 频域聚焦法2.2.1 聚焦频率的确定捷变频信号的频率不固定,如果不加任何处理会导致快拍数据样本误差过大,进而造成 DOA估计性能的下降,我们采用频域聚焦法来解决这一问题,此节介绍频域聚焦的中聚焦频率的确定.首先对伪协方差矩阵Y1、Y2、…、Yc进行二阶积累.对拓展的伪协方差矩阵进行二阶积累,公式为式中L为每个频点对应的快拍数.得到每个频点二阶积累后的矩阵R1、R2、…、Rc.对R1、R2、…、Rc进行奇异值分解并得到对应的奇异值S1、S2、…、Sc,以S1、S2、…、Sc为观测样本,计算对应与观测样本均值的差值δ1、δ2、…、δc,其中最小值对应的频率f0即为聚焦频率,其对应的导向矢量为a(θ0).2.2.2 聚焦矩阵的确定在确定聚焦频率 f0后,通过构造聚焦矩阵来达到所有频点向聚焦频率f0聚焦的目的,其构造方式如下.对R1、R2、…、Rc进行特征值分解得到对应的特征向量Q1、Q2、…、Qc,其中聚焦频率 f0对应的特征向量为Q0,则有聚焦矩阵Td为[1]进而,频域聚焦后的总体协方差矩阵R′可表示为2.3 ISSFAS算法的步骤综上所述,将第 2.1节与第2.2节提出的方法进行合并为ISSFAS算法,其步骤如下.步骤 1 构造每个频点的伪协方差矩阵Y1、步骤 2 算出每个频点的二阶积累矩阵R1、步骤3 确定聚焦频率f0,及其对应的导向矢量为a(θ0).步骤4 算出总体协方差矩阵R′.步骤5 对R′进行特征值分解,以得到噪声子空间U.步骤6 搜索谱函数极大值点确定信号入射方向.3 仿真实验与性能分析3.1 ISSFAS算法分辨能力此节对 ISSFAS算法分辨信号的能力进行分析,仿真条件如下.均匀线阵的阵元数为8,阵元间距为0.075,m,快拍数为8,信噪比为10,dB,频率为2到2.5,G,带宽为500,M,频点数为8个,入射角分别在-30°~-15°、-5°~5°和15°~30°随机产生 3 个入射角度.图1为ISSFAS算法的空间谱图,表1为真实入射角与入射角估计值的角度对比.由图1和表1可知,两个相邻估计入射角谱峰的均值分别为 112.98,dB和138.19,dB,均大于相邻入射信号角度均值的谱峰 0.97,dB和 1.03,dB,满足峰值的均值大于峰值对应角度均值的空间谱值的分辨力条件[1],即 ISSFAS算法可对仿真条件下的每个信号进行分辨,具有较好的超分辨能力.图1 ISSFAS算法空间谱图Fig.1 Space spectrum of ISSFAS algorithm表1 角度对比Tab.1 Comparison of angles入射角真实入射角度/(°) 估计入射角度/(°)入射角1 -22.1 -22.0入射角2 -20.1 -20.2入射角3 -21.3 -21.13.2 与M-TCT算法测向性能比较此节将 ISSFAS算法与未与伪协方差法相结合的情况(即直接用MUSIC与TCT算法进行信号处理的M-TCT算法)进行比较.仿真条件同上节,图2为未构造伪协方差矩阵情况下的空间谱图,表2为此情况下真实入射角与入射角估计值的角度对比.图2 未构造伪协方差矩阵的情况Fig.2 The case without pseudo-covariance matrix由图2和表2可知,同样的仿真条件下,未与伪协方差矩阵方法结合,而用传统的协方差矩阵进行DOA估计的情况(M-TCT算法)不能进行 3个信号的分辨,进而ISSFAS算法具有更好的测向性能.表2 角度对比Tab.2 Comparison of angle入射角真实入射角度/(°) 估计入射角度/(°)入射角1 -24.1 -87.0入射角2 0.6 -1.0入射角3 23.1 32.03.3 信噪比对ISSFAS算法的影响此节讨论信噪比对 ISSFAS算法的影响,仿真条件为:均匀线阵的阵元数为 8,阵元间距为 0.075,m,快拍数为8,频率为2~2.5,G,带宽为500,M,频点数为 8个,入射角在-30°~30°随机生成,搜索精度为0.1°,蒙特卡洛实验次数为100次.图3为不同信噪比下,ISSFAS算法的测角精度.由图 3可知,ISSFAS算法的测角精度随着信噪比的增大而提高.图3 不同信噪比下的测角精度Fig.3 Accuracy of DOA in different SNR3.4 快拍数对ISSFAS算法的影响此节讨论快拍数对 ISSFAS算法的影响,仿真条件如下所示.均匀线阵的阵元数为8,阵元间距为0.075,m,信噪比为 10,dB,频率为 2到 2.5,G,带宽为500,M,入射角在-30°~30°随机生成.图4 不同快拍数下的测角精度Fig.4 Accuracy of DOA in different snapshots图 4为不同快拍数下,ISSFAS算法的测角精度.由图 4可知,ISSFAS算法的测角精度随着快拍数的增大而提高.3.5 ISSFAS算法计算复杂度探究ISSFAS算法具有可在短快拍下进行超分辨且可处理捷变频信号的优点,但其在取得一定性能提高的同时,也在算法复杂度和运算时间上付出一定的代价.与传统的运用 MUSIC算法进行信号处理相比,ISSFAS算法采用的伪协方差矩阵法在将原有的1×M维的信号矢量x拓展成M×M维的伪协方差矩阵Y,并加入共轭信息,因而算法复杂度增加.表3为ISSFAS算法与M-TCT算法的运算时间对比.由表3可知,ISSFAS算法的运算时间大于MTCT算法.如何在保证提高性能的同时减小算法复杂度是今后需要研究的方向.表3 运算时间Tab.3 Time of operation频点数 ISSFAS算法 M-TCT算法运算时间/s 04 0.72 0.47 08 1.38 0.51 12 2.48 0.534 结语本文提出了一种基于短快拍的捷变频信号 DOA算法,该算法将伪协方差矩阵法与频域聚焦法相结合,仿真实验结果表明:ISSFAS算法在短快拍下能够进行超分辨,且性能强于未与伪协方差法相结合的情况.【相关文献】[1]王永良,陈辉,彭应宁,等. 空间谱估计理论与算法[M]. 北京:清华大学出版社,2005.Wang Yongliang,Chen Hui,Peng Yingning,et al.Theory and Algorithm of Spatial Spectrum Estimation[M]. Beijing:Tsinghua Press,2005(in Chinese).[2]张小飞. 阵列信号处理的理论和应用[M]. 北京:国防工业出版社,2010.Zhang Xiaofei. The Theory and Application of Array Signal Processing[M]. Beijing:National Defence Industry Press,2010(in Chinese).[3]Zeng Hao,Ahmad Z,Zhou Jianwen. DOA estimation algorithm based on adaptive filtering in spatial domain[J]. China Communication,2016,12(13):49-58.[4]Forster P,Ginolhac G,Boizard M. Derivation of the theoretical performance of a tensor MUSIC algorithm[J]. Signal Processing,2016,129:97-105.[5]Kintz A L,Gupta I J. A modified MUSIC algorithm for direction of arrival estimationin the presence of antenna array manifold mismatch[J]. IEEE Transactions on Antennasand Propagation,2016,64(11):4836-4847.[6]Ioannopoulos G A,Anagnostou D E,Chryssomallis M T. Evaluating the effect of small number of snapshots and signal-to-noise-ratio on the efficiency of MUSIC estimations[J]. IET Microwaves,Antennas & Propagation,2017,11(5):755-762.[7]Elias A,Aboulnasr H,Moeness G,et al. Fast iterative interpolated beamformingfor accurate single-snapshot DOA estimation[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(4):574-578.[8]Chen Chunhui,Zhang Qun,Gu Fufei. 2D single snapshot imaging using MIMO radar based on SR[J]. Electronics Letters,2016,52(23):1946-1948.[9]Sakari T. Single snapshot detection and estimation of reflections from room impulse responses in the spherical harmonic domain[J]. JIEEE/ACM Transactions on Audio,Speech,and Language Processing,2016,24(12):2466-2480.[10]苍岩. 捷变频参量技术提取研究[D]. 哈尔滨:哈尔滨工程大学水声工程学院,2006.Cang Yan. Fundamental Studies on Extracting Parameters of Frequency Agile Signal[D]. Harbin:School of Underwater Acoustic Engineering,Harbin Engineering University,2006(in Chinese).[11]Stoica P,Nehorai A. MUSIC maximum likelihood,and Cramer-Rao bound[J]. IEEE Transactions on Acoustics Speech Signal Process,1989,37(5):720-741.[12]蒋柏峰,吕晓德,向茂生. 一种基于阵列接收信号重排的单快拍 DOA估计方法[J]. 电子与信息学报,2014,36(6):1334-1339.Jiang Baifeng,Lü Xiaode,Xiang Maosheng. Single snapshot DOA estimation method based on rearrangement of array receiving signal[J]. Journal of Electronics& Information Technology,2014,36(6):1334-1339(in Chinese). [13]谢鑫,李国林,刘华文. 采用单次快拍数据实现相干信号 DOA 估计[J]. 电子与信息学报,2010,32(3):604-608.Xie Xin,Li Guolin,Liu Huawen. DOA estimation of coherent signals using one snapshots[J]. Journal of Electronics & Information Technology,2010,32(3):604-608(in Chinese).。
二茂铁类化合物的应用研究进展1.陕西国际商贸学院陕西西安712046摘要:二茂铁作为一种结构特殊的金属有机化合物,具有特殊的理化性质及生物活性。
二茂铁类化合物以其特殊的性质而被广泛的应用于生物医药、功能材料、电化学分析及有机手性催化剂的制备方面,并显示出了优异的应用前景。
本文根据二茂铁类化合物的应用领域不同,对其应用进行综述,期望对二茂铁类化合物的研究及开发提供一定的参考。
关键词:二茂铁;二茂铁衍生物;应用;进展二茂铁作为一种金属有机化合物,具有芳香族化合物所特有的化学性质,其结构式见图1,分子式是C10H10Fe。
二茂铁在正常的环境下颜色是橙黄色的,于此同时二茂铁为粉末状的固体,含有樟脑的气味儿。
二茂铁和二茂铁的衍生物具有较好的生物活性,同时其化学特点也比较清晰,因此在生物医药方面、功能材料方面、电化学分析方面和催化剂方面得到了广泛的应用。
图1 二茂铁结构1 生物医药方面的应用二茂铁有一定的疏水性特点,且可以跟细胞里面含有的各类酶以及DNA等物质之间发生相互作用,进而达到治疗疾病的作用。
除此以外,二茂铁的结构呈现三明治的特点,具有较大的厚度。
于此同时,二茂铁的稳定性较强,具有较低的毒性,同时还可以在微生物以及医学界发挥作用。
在1976年,Edwards等[1]在青霉素以及头孢菌素里面引入了二茂铁,这样一来,它就具有了更强的特点,不仅可以保证物质的杀菌性能,还能够修饰内部的三维空间,进一步将药物的性能加以完善。
1984年Kopf-Amier小组报道了二茂铁鎓离子具有抗癌的作用。
Huang等[2]使用了MTT法对二茂铁衍生物进行了测定,在此基础上,研究了位于肺腺癌细胞的活性。
研究结果可以发现,上述化合物抗肿瘤活性相对较高。
Ning等[3]研制出了环钯二茂铁物质,这种物质属于一种不对应的异构体。
值得一提的是,上述配合物具有较强的药性。
Paitandi等[4]研制出了相应的络合物,于此同时,该物质还能够和DNA以及蛋白质展开对接。
g_signal 相关函数-回复GSignal是GLib库中的一个机制,用于在对象之间进行信号和事件的传递。
它是一个基于观察者模式的实现,允许对象在特定事件发生时向其他对象发送信号。
在这篇文章中,我们将一步一步回答与GSignal相关的内容。
第一步:介绍GSignal首先,我们需要了解GSignal是什么以及它的作用。
GSignal是GLib库中一个用于信号和事件传递的机制。
在传统的观察者模式中,对象与对象之间通过回调函数进行通信。
但是,使用GSignal,对象能够在特定的事件发生时发送信号,其他对象可以选择连接到这些信号,并在该事件发生时执行某些操作。
第二步:使用GSignal在使用GSignal之前,我们需要了解如何定义和使用信号。
首先,我们可以使用宏`G_SIGNAL_NEW`来定义一个新的信号。
例如,我们可以定义一个名为"button_clicked"的信号,该信号在按钮被点击时触发。
然后,我们可以使用`g_signal_new`函数来注册这个信号,指定信号的名称、返回类型、参数类型等。
注册信号后,我们可以在对象的适当位置发出信号,例如,在按钮被点击时。
第三步:连接信号一旦我们定义和注册了信号,我们可以连接到这个信号。
连接信号意味着我们告诉对象在信号发生时执行特定的操作。
例如,我们可以编写一个函数来处理"button_clicked"信号,并在按钮被点击时执行一些操作。
然后,我们可以使用`g_signal_connect`函数将这个函数连接到按钮的"button_clicked"信号上。
这样,当按钮被点击时,我们的函数将被调用。
第四步:信号的参数有时,我们可能需要在信号发生时传递一些额外的参数。
GSignal允许我们在信号的定义中指定参数的类型和参数的个数。
当信号发生时,我们可以通过信号连接函数提供参数的值。
例如,我们可以定义一个名为"file_saved"的信号,并指定参数的类型为文件名。
[摘要]作为肿瘤发生过程中的枢纽物质,DNA加合物已成为环境与生物监测领域的研究热点。
为了对极微量的DNA做出精确的定量分析,数十年来人们已发展出许多种检测方法,目前常用的就包括免疫学方法、荧光测定法、色谱-质谱法、32P后标记法等等。
这些方法都有各自的优势和不足,本文拟对最常用的几类检测方法进行评述。
[关键词] DNA加合物;检测方法Advance in Detecting Methods of DNA AdductsAbstract: As an essential ingredient in the process of cancer, DNA adduct has drawn toxicologists' great attention and becom e one of the hottest focuses in the field of environmental and biological m onitoring. In order to m ake accurate quantitative analysis of DNA in microgram-level, an array of detecting methods has been developed by recent several decades. Now generally used m ethods include: immunoassays, fluorescence assays, chrom atography-m ass spectrom etry,32P-postlabeling technique, etc. Each of them has specific strengths and limitations respectively and the m ost popular methods will be introduced in this review.Key Words: DNA adduct; detecting m ethods肿瘤是DNA损伤后修复失败或修复出错的结果,无论是内源性还是外源性的致癌物,几乎都需要经过这一共同的关键步骤才能起致癌作用[1]。
慢性阻塞性肺疾病发病机制最新研究进展丁宁;王胜【期刊名称】《临床肺科杂志》【年(卷),期】2016(000)001【总页数】4页(P133-135,136)【作者】丁宁;王胜【作者单位】230038 安徽合肥,安徽中医药大学;230031 安徽合肥,安徽中医药大学第一附属医院【正文语种】中文作者单位:1. 230038 安徽合肥,安徽中医药大学2. 230031 安徽合肥,安徽中医药大学第一附属医院慢性阻塞性肺疾病(简称慢阻肺)是一种以持续气流受限为主要临床特征、异常的气道炎症为主要病理特征的慢性气道炎症性疾病。
目前慢阻肺居全球死亡原因的第4位,发病率和死亡率逐年攀高,防治形势日益严峻。
在我国年龄大于40岁的人群中,慢阻肺的总体发生率约为8.2%。
因肺功能进行性减退,严重危害人民身体健康,并造成巨大的社会和经济负担。
慢阻肺的特点是慢性炎症,肺泡破坏,以及气道和血管重塑。
发病机制至今未明,炎症细胞、细胞因子、蛋白酶-抗蛋白酶失衡、氧化应激和烟草烟雾等与慢阻肺发病密切相关,研究慢阻肺的发病机制对其预防和治疗至关重要。
慢阻肺以气道、肺实质和肺血管的慢性炎症为特征,肺内中性粒细胞、巨噬细胞、T淋巴细胞(尤其是)等增加。
激活的炎症细胞可释放多种介质,例如转化生长因子-β(TGF-β)、白介素8(IL-8)和白三烯B4(LTB4)等。
这些介质可以破坏肺的结构和(或)促进中性粒细胞炎症反应。
一、炎症细胞中性粒细胞的活化和聚集在慢阻肺炎症过程中发挥重要作用,中性粒细胞可释放多种生物活性物质(如中性粒细胞组织蛋白酶G、蛋白酶3、MMPs、CXCL-8和CCL-3等)引起慢性黏液高分泌状态并破坏肺实质。
大量研究表明慢阻肺患者痰液和支气管肺泡灌洗液的中性粒细胞数增加。
有研究发现痰中性粒细胞的水平可以用来衡量抗炎药物对慢阻肺的治疗效果[1]。
巨噬细胞分泌的弹性蛋白酶和胶原酶对肺组织也有致损伤作用。
动物实验研究提示,抑制T淋巴细胞应答,可能是治疗慢阻肺的有效方法[2]。
第34卷第6期物 探 与 化 探V o.l 34,N o .6 2010年12月G E O PHY SICAL &GEO C HE M I CA L EXPLORAT I OND ec .,2010汉克尔变换的数值计算与精度的对比张伟,王绪本,覃庆炎(成都理工大学地球探测与信息技术教育部重点实验室,四川成都 610059)摘要:汉克尔变换的数值解法是计算电磁测深正演理论曲线的有效工具。
对基于数字滤波法的快速汉克尔变换算法进行了公式推导,并用Guptasa m a 和S i ngh 给出的线性滤波系数进行了计算,对比分析了该数值算法与理论解析式的误差分布特点。
结果表明,该数值算法的计算结果连续一致逼近其理论值,且不存在振荡现象,计算精度高,在数值模拟研究中具有较大的实用价值。
关键词:汉克尔变换;快速汉克尔变换;滤波系数中图分类号:P631 文献标识码:A 文章编号:1000-8918(2010)06-0753-03在水平层状介质地表的电磁测深数值计算中,除平面波和偶极场源波区的电磁场可用具有递推性质的频率特性函数R (X )表示,有限发-收距电磁测深正演解析式均用含零阶或一阶贝塞尔函数的积分形式表示出来,这些积分形式是汉克尔变换式,汉克尔变换的数值解法是电磁测深数值正演计算的基础问题,因此具有重要的研究意义。
基于数字滤波法的快速汉克尔变换具有编程简单、运算速度快、执行效率高等优点,该方法广泛地应用在电磁法(TE M 、CAS MT 、FIP 等)正演数值计算中。
笔者采用Guptasa m a 和S i n gh 给出的J 0和J 1变换线性滤波系数进行计算[2],将计算结果与理论解析式进行对比,分析该算法的计算精度与误差分布特点,并验证该算法的可行性。
1 快速汉克尔变换[2-3]定义v 阶汉克尔变换为g(C )=Q]f(K )K J M(K C )d K ,v >-1,(1)其中,J v (x )为v 阶第一类贝塞尔函数,g (C )为输入函数f (K )的汉克尔变换,逆汉克尔变换与正汉克尔变换完全对称。
`g_signal` 是 GObject Introspection (GI) 中的一个模块,它允许在 C 和其他语言之间进行信号和回调的互操作。
当你想从 Python 调用一个 C 函数并希望它与 Python 的回调机制兼容时,这是非常有用的。
以下是一些与 `g_signal` 相关的基本函数和概念:1. **g_signal_connect**: 用于连接一个 C 对象的方法到一个 Python 对象的方法。
```cvoid g_signal_connect (gpointer instance,const gchar *name,GCallback func,gpointer data);```2. **g_signal_connect_data**: 与`g_signal_connect` 类似,但允许传递额外的数据。
3. **g_signal_emit**: 用于触发一个信号。
```cvoid g_signal_emit (gpointer instance,const gchar *name,...);```4. **g_signal_emit_by_name**: 通过名称触发一个信号。
5. **g_signal_handlers_block_by_func**: 阻止特定函数的信号处理。
6. **g_signal_handlers_unblock_by_func**: 取消阻止特定函数的信号处理。
7. **g_signal_handlers_disconnect_by_func**: 断开特定函数的信号处理连接。
8. **g_signal_parse_name**: 从信号名称解析信号 ID。
9. **g_signal_stop**: 停止信号传播。
10. **g_signal_chain_from_overridden**: 当一个对象重写了其基类的信号处理函数时,这个函数用于调用基类的处理函数。
126《当代医药论丛》Contemporary Medical Symposium2021年第19卷第7期•药物与临床*活性。
该药可在被HIV感染的细胞内被胸苷激酶磷酸化成三磷酸齐多夫定。
三磷酸齐多夫定可选择性地抑制HIV逆转录酶的活性,终止HIV-DNA链的合成,从而阻止HIV 复制。
拉米夫定是核苷类抗病毒药物,可在正常细胞和被HIV感染的细胞内转化成拉米夫定三磷酸盐。
拉米夫定三磷酸盐可有效地抑制HIV-DNA链的合成和延长,从而起到抗病毒的作用。
依非韦伦是目前临床上治疗HIV感染的一线抗病毒药物。
该药是一种HIV-1反转录酶非竞争性抑制剂,可有效地抑制HIV-1逆转录酶的活性,作用于引物、模版或三磷酸核苷,从而有效地阻止病毒的转录和复制[5]。
本次研究中,我们为研究组患者使用的高效抗反转录病毒疗法中包括替诺福韦、拉米夫定联合依非韦伦三种药物。
替诺福韦是一种新型的核苷酸类逆转录酶抑制剂。
该药可抑制HIV-1逆转录酶的活性,从而起到抗病毒的作用。
替诺福韦还能在细胞内发生磷酸化反应,生成替诺福韦双磷酸盐。
替诺福韦双磷酸盐可竞争性地与天然脱氧核糖底物相结合,抑制HIV聚合酶的活性,从而有效地抑制HIV-DNA的复制。
替诺福韦双磷酸盐还能通过插入HIV-DNA 来终止HIV-DNA链,从而抑制HIV的增殖。
使用替诺福韦治疗H IV感染起效的速度快,生物利用度高[6]。
本次研究的结果证实,使用替诺福韦、拉米夫定联合依非韦伦治疗HIV感染的疗效显著,安全性高。
参考文献[1]李兰娟,任红.传染病学[M].第9版.人民卫生出版社,2018.[2]王京晶.拉米夫定联合替诺福韦与依非韦伦治疗艾滋病的临床效果[J].中国医药指南,2019,17(5):116-117.[3]邵杰,张文雯.拉米夫定、替诺福韦、依非韦伦联合治疗艾滋病的疗效分析[J].心理月刊,2019,14(14):199.[4]虞三乔.HIV感染者/AIDS患者进行抗病毒治疗生命质量及临床效果分析[J].International Infections Diseases(Electronic Edition),2020,9(1):76-77.[5]踞俊科,刘朝阳,李威,等.替诺福韦酯与拉米夫定联合依非韦伦治疗HIV感染47例[J].医药论坛杂志,2018,39(7):137-139.[6]胡云兴.拉米夫定、替诺福韦、依非韦伦联合治疗艾滋病效果观察及价值评价[J].中外医学研究,2019,17(4):163—164.奥拉西坦联合脑苷肌肽治疗脑梗死后血管性痴呆对患者神经功能及生活质量的影响王依宁S牛朋彦2,程利萍1(邯郸市第一医院1.神内二科2.骨二科,河北邯郸056000)[摘要]目的:探讨使用奥拉西坦联合脑苷肌肽治疗脑梗死后血管性痴呆对患者神经功能及生活质量的影响。
signalprocessinglib库的寻峰函数-回复如何使用signalprocessinglib库的寻峰函数进行信号处理。
第一步:理解信号的峰值和寻峰处理的概念在信号处理中,峰值是指信号中的局部最大值。
寻峰是指在信号中找出这些局部峰值的过程。
峰值可以包含很重要的信息,比如在光谱分析中,峰值可以表示物质的波长或频率。
因此,寻峰处理在许多领域中都非常重要。
第二步:了解signalprocessinglib库的概述和功能signalprocessinglib是一个Python库,专门用于信号处理。
它提供了各种实用函数和工具,包括滤波、傅里叶变换、频谱分析和寻峰处理等。
在本文中,我们将重点介绍signalprocessinglib库的寻峰函数。
第三步:安装signalprocessinglib库要使用signalprocessinglib库,首先需要将其安装在您的Python环境中。
在命令行中运行以下命令即可安装:pip install signalprocessinglib第四步:导入signalprocessinglib库和其他必要的库在Python脚本中,首先需要导入signalprocessinglib库,以及其他可能需要的库,例如numpy用于进行数值计算和matplotlib用于可视化数据。
导入库的代码如下:import signalprocessinglib as splimport numpy as npimport matplotlib.pyplot as plt第五步:生成示例信号在进行寻峰处理之前,我们需要生成一个示例信号。
这可以通过numpy 库的函数来完成。
例如,我们可以生成一个包含两个峰值的正弦波信号,代码如下:t = np.linspace(0, 1, 1000)signal = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)第六步:使用signalprocessinglib库的寻峰函数现在我们可以开始使用signalprocessinglib库的寻峰函数了。
Abstract-- Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.Index Term: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC.I. I NTRODUCTIONrray processing can be applied to many applications ranging from radar and sonar to mobile communications. The most common applications of array signal processing involve detecting acoustic signals. In various applications, the objective might be to determine the number of sources and direction of arrival. Array signal processing has received much attention in the last two decades [1]. Research in this area has been applied in many fields, such as seismology, acoustics, sonar, radar, and mobile communication systems [2]. Beamforming techniques try to separate super-positions of source signals from the outputs of a sensor array [3]. Direction-of-arrival (DOA) estimation of multiple narrowband signals is an important problem in array signal processing. Many high-resolution DOA estimation methods [4]–[7] have been developed over the years. However, these methods generally need a prior knowledge of the array manifold [8]. Their performance will be inevitably corrupted by the Lalita Gupta is with the Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462051 India (e-mail: lita@).R. P. Singh is with the Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462051 India (e-mail: prof.rpsingh@). unknown manifold errors, such as the mutual coupling between neighboring array elements [9]-[10]. Many calibration methods have then been proposed. With the help of the calibration sources at known locations, the literature [10] presents a maximal likelihood calibration method to compensate the mutual coupling as well as gain, phase and position errors. The methods in [7]–[9] are auto-calibration methods and do not require the calibration sources at known locations. The literature [7] presents an iterative alternate method to estimate DOA, the mutual coupling matrix, gain and phase. In [8], a modified noise subspace fitting method is utilized to eliminate the influence of the mutual coupling, but it needs a multidimensional searching to get the DOAs. The method in [9] sacrifices the array aperture but avoids the compensation for the mutual coupling effect. The coherency problem is also one that can not be ignored in DOA estimation. During the course of signal propagation, the signals may suffer the reflections from various surfaces, such as buildings, hills, etc. The resulting multipath propagation will make the received signals highly correlated or coherent. Since those high-resolution DOA estimation methods generally require the signals to be uncorrelated or lowly correlated, they will fail in such multipath environments and need some extra techniques to resolve this problem. The most famous technique is the spatial smoothing technique [11], [12], which segments the array into several overlapped sub arrays and then utilizes the average of the covariance matrices of sub arrays to decorrelate the coherency of signals.II. DOA E STIMATIONThe purpose of Direction of Arrival (DOA) estimation is to use the data received by the array to estimate the direction of arrival of a signal [18]. The results of DOA estimation are then used by the array to design the adaptive beamformer, which is used to maximize the power radiated towards users, and to suppress interference [19]. DOA estimation of multiple signals impinging on an antenna array is a well-studied problem in signal processing.DOA estimation methods exploit either parametric structure of the array manifold or properties of the signals such as being non-Gaussian, or cyclo-stationary. In these kinds of methods, the estimation of the signals’ waveform is done by multiplying a weight matrix by the received data matrix [17]. Parameters that affects the DOA [15], [16]•Spacing between the array elements•Angular separation between the incident signals•Number of samples taken for the incident signalsArray Signal Processing: DOA Estimation forMissing SensorsLalita Gupta, R. P. Singh, Member, IEEEA978-1-4244-8542-0/10/$26.00 ©2010 IEEE• Signal-to-Noise Ratio • Number of array elements• Mutual Coupling between the sensor arraysFig 1. Block Diagram of DOAMUSIC algorithm is a high resolution MU ltiple SI gnal C lassification (MUSIC) technique based on exploiting the eigenstructure of the input covariance matrix. It provides information about the number of incident signals, DOA of each signal, strengths and cross correlations between incident signals, noise power, etc.The central interest is estimating the Direction-Of-Arrivals (DOAs), the angles of the signal sources impinging on the receiving array, given a finite sampled data set. The signals can be either narrowband or wideband. The focus is on the estimation methods based on the second-order statistics. Among them, the methods with high-resolution (HR) property are of primary concern. Most of the HR methods are subspace-based techniques such as MUSIC [9], Root-MUSIC and ESPRIT. Other methods use the subspace fitting concept to achieve maximum likelihood statistical performance with lower computational cost.Many practical arrays contain sensors [21],[22] with uncertain or unknown characteristics (such as gain, phase shifts and locations), which leads to performance degradation [23]. One way to alleviate the problem is to apply array calibration methods to estimate the unknown array parameters. Another way is to utilize whatever known and correct array parameters available (partly-calibrated array) in order to estimate the DOAs.III. T HE BASICS OF MUSICIf there are D signals incident on the array, the receivedinput data vector at an M-element array can be expressed as alinear combination of the D incident waveforms and noise n As n s a u i D i i +=+=∑=)(1φ (1)where A is the matrix of steering vectors)](,),........(),([21D f a f a f a A = (2) s=[s 1, ... , s D ]' is the signal vector, and n=[n 1, ... ,n M ] is a noise vector with components of variance s n 2. The received vectors and the steering vectors can be visualized as vectors in an M-dimensional vector space. The input covariance matrix is I s A AR uu E R n H ss H uu2][+== (3)here R ss is the signal correlation matrix.The eigenvectors of the covariance matrix R uu belong to either of the two orthogonal subspaces, the principal eigen subspace (signal subspace) and the non-principal eigen subspace [20]. The dimension of the signal subspace is D, while the dimension of the noise subspace is M-D. The M-D smallest eigenvalues of R uu are equal to sn 2, and the eigenvectors q i , i=D+1…M, corresponding to these eigenvalues span the noise subspace. The D steering vectors that make up A lie in the signal subspace and are hence orthogonal to the noise subspace [8].By searching through all possible array steering vectors to find those which are orthogonal to the space spanned by the noise eigenvectors q i , i=D+1,..,M, the DOAs f 1,f 2, ... ,f D , can be determined. To form the noise subspace, we form a matrix Vn containing the noise eigenvectors q i , i=D+1, ... ,M.The DOAs of the multiple incident signals can be estimated by locating the peaks of a MUSIC spatial spectrum [10])()(1)(φφφa V V a P n Hn H MUSIC =(4) The resolution of MUSIC is very high even in low SNR. The algorithm fails if impinging signals are highly correlated. When the ensemble average of the array input covariance matrix is known and the noise can be considered uncorrelated and identically distributed between the elements, the peaks of the MUSIC spectrum are guaranteed to correspond to the true angle of arrival of the signals incident on the array.Fig. 2. Pseudo MUSIC SpectrumIV. R ESULT AND D ISCUSSION The estimation of Direction of Arrival for an Adaptive antenna system is one of the significant parameters. A one-dimensional projection of each array response estimate onto the known array response gives the estimation of the DOA forthe corresponding signal [24],[25]. The presented method for Normalized Frequency (×π rad/sample)P o w e r (d B )P seudospectrum Estim ate via M USICDOA estimation is applicable to other sub-space techniques as well namely, Estimation of Signal Parameter using Rotational Invariance Technique (ESPIRIT), Root MUSIC etc.It is difficult to find Direction of Arrival estimation using Multiple Signal Classification Algorithm, in particular when one or more sensors are missing. This problem associated with DOA estimation in a Uniform Linear Array is presented here. To analyze the performance of the MUSIC algorithm, a Uniform Linear Array of length 5 is considered. Signal directions are taken from 300, 600, 800, 1350, and 1500.The output is a quadratic measure of signal presence in different directions. The output can be either a power spectrum or a pseudo spectrum. Peaks of the DOA-spectrum give the DOA estimate.Fig. 3. Direction of Arrival estimation with all sensors and no noise .Fig. 4. Direction of Arrival estimation with all sensors and SNR=0dB.Fig. 5. Direction of Arrival estimation with 3rd sensor missing and SNR=100dB.Fig. 6. Direction of Arrival estimation with 3rd sensor missing, signal is from 3 directions and no noise.We observed MUSIC spectrum by changing the Number of missing sensor array elements. Fig. 3 shows the MUSIC spectrum generated with all sensor array elements, where as Fig.4 shows the MUSIC spectrum generated with all sensor array elements in presence of noise, from Fig. 3 and Fig. 4 using more array elements improves the resolution of the MUSIC spectrum. Fig. 5 and Fig. 6 shows the DOA MUSIC spectrum when 3rd sensor is missing. V. C ONCLUSIONThe MUSIC estimation produced a high angular resolution for signals arriving from any azimuth when the elevation was zero degrees. The DOA estimation for missing sensor array is useful in calibration of Uniform Linear Array when the DOAs of calibration sources were not known. The estimation errors of missing sensor matrix elements and DOAs are large, which can be estimated by LS Method. We consider the problem ofAngleM a g n i t u d eDOA with 3rd sensor missing, signals from 3 directions, no NoiseAngleM a g n i t u d eDOA with 3rd sensor missing, signals from 4 direction,SNR=100dBAngleM a g n i t u d eDOA with all elementsSNR=0dB27AngleM a g n i t u d eDOA with all sensors and no Noiseestimating the direction-of-arrival (DOA) of one or more signals using an array of sensors, where one or more sensors are missing before the measurement is completed.VI. R EFERENCES[1]H. Krim, M.Viberg, “ Two Decades of Array Signal ProcessingResearch”. IEEE Signal Processing Magzine, July 1996.[2]R. Schmidt “Multiple emitter location and signal parameter estimation”,IEEE Trans. on Antennas and propagation, vol 34, No 3, pp. 276-280, March 1986.[3] B.D.Van Veen, K.M.Buckley, “ Beamformin: A Versatile Approach toSpatial Filtering”, IEEE ASSP Magazine April 1988.[4]Amr El-Keyi, T. Kirubarajan, “Adaptive beam space focusing fordirection of arrival estimation of wideband signals”, ELSEVIER, Signal Processing 88 (2008) 2063–2077[5]Jung-Tae Kim, Sung-Hoon Moon, Dong Seog Han, and Myeong-JeCho, ‘‘Fast DOA Estimation Algorithm Using Pseudocovariance Matrix”, IEEE Transactions on Antenna and Propagation, Vol.53, No.4,Nov 2005.[6]M. A. Al-Nuaimi, R. M. Shubair, and K. O. Al-Midfa, “Direction ofArrival Estimation In Wireless Mobile Communication Using Minimum Veriance Distortion less Responses”, The Second International Conference on Innovations in Information Technology (IIT’05).[7] D.R.Farrier, “Direction of Arrival Estimation by Subspace Methods”,CH2847-2/90/0000-2651, IEEE 1990.[8]T. Murakami, Y. Ishida, “Fundamental frequency estimation of spreechsignals using MUSIC algorithm”, Acoustic Science & Technology, 22, 4(2001).[9] A. Randazzo, M.A.Abou-Khousa, “Direction of Arrival EstimationBased on Support Vector Regression: experimental Validation and Comparison with MUSIC”, IEEE Antenna and Wireless Propagation Letters, Vol.6, 2007.[10]Gupta, I.J., and Ksienski, A.A.: ‘Effect of mutual coupling on theperformance of adaptive arrays’, IEEE Trans. Antennas Propag., 1983, 31, pp. 785–791.[11] B. Friedlander, “A sensitivity analysis of the MUSIC algorithm,” IEEETrans. Acoust., Speech, Signal Processing, Vol. 38, pp.1740-1751, Oct.1990. [12]Dimitris G. Manolakis, Vinay K. Ingle, Stephen M. Kogon, Statisticaland Adaptive Signal Processing, ARTECH HOUSE, INC.[13]S.Haykin, array signal processing, New Jersey: Prentice-Hall.[14]H. T. Hui, “A practical approch to compensate for the mutual couplingeffect of an adaptive dipole array,”IEEE Trans. Antennas Propagat., Vol. 52, pp.1262-1269, May 2004.[15]H. Rogier, E. Bonek, “ Analytical spherical-mode-based compensationof mutual coupling in uniform circular arrays for direction –of-arrival estimation”, ELSEVIER, (AEU) 60 (2006) 179–189.[16]Xu Xu, Z. Ye, Y. Zhang, “ DOA Estimation for Mixed signals in thePresence of Mutual Coupling”, IEEE Transactions on Signal Processing,Vol.57, No.9,Nov 2009.[17]Jung-Tae Kim, Sung-Hoon Moon, Dong Seog Han, and Myeong-Je Cho,“Fast DOA Estimation Algorithm Using Pseudocovariance Matrix”, IEEE Transactions on Antenna and Propagation, Vol.53, No.4,Nov 2005.[18]Amr El-Keyi, T. Kirubarajan, “Adaptive beam space focusing fordirection of arrival estimation of wideband signals”, ELSEVIER, Signal Processing 88 (2008) 2063–2077.[19]M. L. McCloud and L. L. Scharf, “A new subspace identificationalgorithm for high resolution DOA estimation”, IEEE Transactions on Antenna and Propagation, Vol.50, pp. 1382-1390, Oct 2002.[20]Lee, C. C. and J. H. Lee, “Design and analysis of a 2-D eigenspacebasedinterference canceller,” IEEE Trans. Antennas Propagat.,Vol. 47, No.4, 733–743, Apr. 1999.[21]Farhang-Boroujeny, B., Adaptives Filters: Theory & Applications, JohnWiley & Sons, UK, 1998.[22]T. T. Zhang, H. T. Hui, Y.L. Lu, “Compensation for the mutualcoupling effect in the ESPRIT direction finding algorithm by using a more effective method,” IEEE Trans. Antennas Propagat., Vol. 53, pp.1552-1555, Apr. 2005.[23]Nuri Yilmazer, Arijit Deb, Tapan K. Sarkar “Error associated with thedirection of arrival estimation in the presence of material bodies”, ELSEVIER, Digital Signal Processing 18 (2008) 919–939.[24] A. L. Swindlehurst, “Robust Algorithm for Direction Finding in thePresence of Model Errors,” Proc. 5th ASSP Workshop on Spectrum Estimation and Modelling. Rochester, New York, Oct 1990.[25] F. Li and R. Vaccaro, “Statistical Comparision of Subspace Based DOAEstimation Algorithms in the presence of Sensor Errors,” Proc. 5th ASSP Workshop on Spectrum Estimation and Modelling. Rochester, New York,Oct,1990.。