求不定方程整数解的方法浅析
- 格式:doc
- 大小:353.00 KB
- 文档页数:9
不定方程整数解条件
不定方程整数解条件:
不定方程是指关于两个或多个未知数的整数解的方程。
当我们面对不定方程时,我们希望找到整数解。
然而,并不是所有的不定方程都有整数解。
根据不定方程的形式和特征,我们可以得出一些关于整数解存在的条件。
首先,对于一元一次不定方程 ax + by = c,其中 a、b、c 为给定的整数。
这种
类型的不定方程有解的充要条件是 c 是 a 和 b 的最大公约数的倍数。
另一方面,对于一元二次不定方程ax²+ by²= c,其中a、b、c 为给定的整数。
这种类型的不定方程有解的充要条件是 c 是 a 和 b 的最大公约数的倍数,同时 a 和
b 至少有一个是完全平方数。
对于一般的二元不定方程 ax + by = c,其中 a、b、c 为给定的整数。
不定方程
有解的充要条件是 c 是 a 和 b 的最大公约数的倍数。
此外,我们还可以通过使用模运算来判断一定程度上的整数解条件。
例如,对
于形如ax ≡ b (mod m) 的不定方程,其中 a、b、m 为给定的整数。
该不定方程有解的充要条件是 b 是 a 和 m 的最大公约数的倍数。
总结起来,不定方程的整数解条件取决于方程的形式和特征。
我们可以利用最
大公约数、完全平方数和模运算等方法来判断和求解不定方程的整数解。
不定方程的通解一、引言不定方程是数学中的一类基本问题,它的解决方法和通解对于数学研究以及应用领域都具有重要意义。
本文将对不定方程的通解进行详细探讨,介绍其定义、解决方法以及应用。
二、不定方程的定义不定方程是指形如ax + by = c的方程,其中a、b、c为已知整数,而x、y为未知整数。
不定方程的解是指满足这个方程的所有整数解的集合。
三、求解不定方程的方法1. 欧几里得算法欧几里得算法,也称为辗转相除法,是解决不定方程的常用方法之一。
它的基本思想是利用整数除法的性质,将一个大的数表示为另外两个数的线性组合。
通过迭代运算,最终可以得到不定方程的通解。
2. 扩展欧几里得算法扩展欧几里得算法是对欧几里得算法的扩展,它可以求解不定方程的特解。
通过扩展欧几里得算法求解得到的特解,再利用通解的性质,可以得到不定方程的通解。
3. 线性同余方程线性同余方程是不定方程的一种特殊形式,形如ax ≡ b (mod m)。
解决线性同余方程的方法可以应用于一般的不定方程。
通过求解线性同余方程,可以得到不定方程的特解,从而得到通解。
四、不定方程的应用不定方程在密码学、数论、组合数学等领域都有广泛的应用。
其中,密码学中的离散对数问题就是一个不定方程的应用。
离散对数问题是指求解形如a^x ≡ b (mod m)的方程,其中a、b、m为已知整数,x为未知整数。
通过求解离散对数问题,可以实现密码算法中的加密和解密操作。
五、结论不定方程的通解是数学研究和应用中的重要内容,它的求解方法和应用领域都非常广泛。
本文介绍了不定方程的定义、解决方法以及应用,并通过具体的例子进行了说明。
希望读者通过本文的阅读,对不定方程有更深入的了解,并能够在实际问题中灵活运用。
数学竞赛中方程整数解的实用求法(本讲适合初中)近年来,在各级各类数学竞赛中,方程整数解的问题备受关注,它将古老的整数理论与传统的初中数学知识相综合,涉及面宽、范围广,往往需要灵活地运用相关概念、性质、方法和技巧. 笔者根据自己的体会讲讲求解这类问题的方法和基本思考途径,供读者参考.1 不定方程的整数解一般地,不定方程有无数组解. 但是,若加上限制条件如整数解等,就可以求出确定的解. 由于含参数的方程的整数解多能转化为不定方程求解,所以先讲不定方程整数解的求法. 常用的有下述三种方法.1.1 因式分解法这是最常用的方法,它适用于一边可以分解因式,另一边为常数的方程. 根据是正整数的惟一分解定理:每一个大于1的正整数都可以惟一地分解成素数的乘积. 方法是分解常数后构造方程组求解.例1 求方程xy +x +y =6的整数解.(1996,湖北省黄冈市初中数学竞赛)解:方程两边加上1,得xy +x +y +1=7.左边=(x +1)(y +1),右边=1×7=(-1)×(-7).故原方程的整数解由下列方程组确定:⎩⎨⎧++;=,=7111y x ⎩⎨⎧++;=,=1171y x ⎩⎨⎧++;=-,=-7111y x ⎩⎨⎧++.1171=-,=-y x 解得⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧.2882066044332211=-,=-;=-,=-;=,=;=,=y x y x y x y x 1.2 选取主元法有些含有二次项的不定方程,可以选取其中的某一变量为主元,得到关于主元的二次方程,再用根的判别式△≥0定出另一变量的取值范围,在范围内选出整数值回代得解.例2 求方程7322=yxy x y x +-+的所有整数解. (第十二届全俄数学竞赛)解:以x 为主元,将方程整理为3x 2-(3y +7)x +(3y 2-7y)=0因x 是整数,则△=[-(3y +7) ]2-4×3(3y 2-7y )≥0 ⇒931421-≤y ≤931421+ ⇒整数y =0,1,2,3,4,5.将y 的值分别代入原方程中计算知:只有y =4或5时,方程才有整数解,即x 1=5,y 1=4;x 2=4,y 2=5. 1.3 整式分离法当分式中分子的次数不小于分母的次数时,可将分子除以分母,把整式(即所得商式)分离出来.若所得余式为常数,则用倍数约数分析法求解较容易;若余式不是常数,则可以根据实际情况构造二次方程,选取原先变量为主元求解. 例3 题目同例1.解:用含y 的式子表示x ,得x =16+-y y . 分离整式得x =-1+17+y . 因x 为整数,则17+y 为整数.故y +1为7的约数,y +1=±1,±7.(笔者注:这种思考方法就是倍数约数分析法)得y =0,-2,6,-8.进而x =6,-8,0,-2.2 含参数的二次方程的整数解这类整数根问题,近年考查最频繁.实用思考途径有下列四种.2.1 途径一:从判别式入手因为一元二次方程ax 2+bx +c =0在△=b 2-4ac ≥0时有根x =ab 2∆±-,所以要使方程有整数根,必须△=b 2-4ac 为完全平方数,并且-b ±∆为2a 的整数倍.这是基本思想.常用方法如下.1. 当△=b 2-4ac 为完全平方式时,直接求方程的解,然后解不定方程.例4 已知方程a 2x 2-(3a 2-8a )x +2a 2-13a +15=0(其中a 为非负整数)至少有一个整数根.那么,a =_________.(1998,全国初中数学竞赛)解:显然a ≠0.故原方程为关于x 的二次方程.△=[-(3a 2-8a )]2-4a 2(2a 2-13a +15)=[a (a +2)]2是完全平方式.故x =222)2()83(aa a a a +±- 即 x 1=a a 32-=2-a 3,x 2=a a 5-=1-a5. 从而,由倍数约数分析法知a =1,3或5.2. 当△=b 2-4ac ≥0且不是完全平方式时,一般有下列三种思考途径.(1)利用题设参数的范围,直接求解.例5 设m ∈Z ,且4<m <40,方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.解:因方程有整数根,则△=[-2(2m -3)]2-4(4m 2-14m +8)=4(2m +1)为完全平方数.从而,2m +1为完全平方数.又因m ∈Z 且4<m <40,故当m =12或24时,2m +1才为完全平方数.因为x =(2m -3)±12+m ,所以,当m =12时,x 1=16,x 2=26;当m =24时,x 3=38,x 4=52.(2)先用△≥0求出参数的范围.例6 已知方程x 2-(k +3)x +k 2=0的根都是整数.求整数k 的值及方程的根.解:△=[-(k +3)]2-4k 2=-3k 2+6k +9≥0⇒ k 2-2 k -3≤0⇒-1≤k ≤3⇒整数k =-1,0,1,2,3.由求根公式知x =2)3(∆±+k ,故 当k =-1时,△=0,x =1;当k =0时,△=9,x =0或3;当k =1时,△=12不是完全平方数,整根x 不存在;当k =2时,△=9,x =1或4;当k =3时,△=0,x =3.因此,k =-1,0,2,3,x =1,0,3,4.(3)设参数法,即设△=k 2.当△=k 2为关于原参数的一次式时,用代入法;当△=k 2为关于原参数的二次式时,用分解因式法.例7 当x 为何有理数时-代数式9x 2+23x -2的值恰为两个连续正偶数的乘积?(1998,山东省初中数学竞赛)解:设两个连续正偶数为k ﹑k +2.则9x 2+23-2=k (k +2),即 9x 2+23-( k 2+2k +2)=0.由于x 是有理数,所以判别式为完全平方数,即△=232+4×9(k 2+2 k +2)=565+[6(k +1)]2令△=p 2(p ≥0),有p 2-[6(k +1)]2=565=113×5=565×1.左边=[p +6(k +1)][ p -6(k +1)],p ≥0,k >0,得)(==1,5)1(6,113)1(6⎩⎨⎧+-++k p k p或 )2(,1)1(6,565)1(6⎩⎨⎧+-++==k p k p解(1)得k =8,于是,x =2或-941; 解(2)得k =46,于是,x =-17或9130. 总之,当x =2,-941或x =-17,9130时. 9x 2+23x -2恰为两正偶数8和10,或者46和48的乘积. 2.2 途径二:从韦达定理入手1. 从根与系数的关系式中消去参数,得到关于两根的不定方程.例8 a 是大于零的实数,已知存在惟一的实数k ,使得关于x 的二次方程x 2+(k 2+ak )x +1999+ k 2+ ak =0的两个根均为质数. 求a 的值.(1999,全国初中数学联赛)解:设方程的两个质数根为p ﹑q . 由根与系数的关系,有 p +q =-(k 2+ak ), ①pq =1 999+k 2+ak . ②①+②,得 p +q +pq =1 999则(p +1)(q +1)=24×53. ③由③知,p 、q 显然均不为2,所以必为奇数.故21+p 和21+q 均为整数,且2121+⋅+q p =22×53. 若21+p 为奇数,则必21+p =5r (r =1,2,3),从而,p =2×5r -1为合数,矛盾. 因此,21+p 必为偶数.同理,21+q 也为偶数.所以,21+p 和21+q 均为整数,且4141+⋅+q p =53.不妨设p ≤q ,则41+p =1或5. 当41+p =1时,41+q =53,得p =3,q =499,均为质数.当41+p =5时,41+q =52,得p =19,q =99,q 为合数,不合题意.综上可知,p =3,q =499.代入①得k 2+ak +502=0. ④依题意,方程④有惟一的实数解.故△=a 2-4×502=0.有a =25022.利用“两根为整数时,其和、积必为整数”.例9 求满足如下条件的整数k ,使关于x 的二次方程(k -1) x 2+( k -5) x +k =0的根都是整数.解:设方程的两根为x 1﹑x 2.则x 1+ x 2=-15--k k =-1+14-k , x 1 x 2=1-k k =1+11-k , 且 x 1+x 2和x 1 x 2都是整数.从而,14-k 和11-k 都是整数. 于是,k -1为4和1的约数.故k -1=±1⇒ k =0或2.检验知,k =0或2时,方程的两根均为整数.所以,k =0或2. 2.3 途径三:联想二次函数因为一元二次方程与二次函数联系密切,所以适时地借助二次函数知识解决方程问题,往往十分奏效.例10 已知b ,c 为整数,方程5x 2+bx +c =0的两根都大于-1且小于0.求b 和c 的值.(1999,全国初中数学联赛)解:根据二次函数y =5x 2+bx +c 的图像和题设条件知: 当x =0时,5x 2+bx +c >0,有c >0; ① 当x =-1时,5 x 2+bx +c >0,有b >5+c . ②因抛物线顶点的横坐标-52⨯b 满足1-<-52⨯b <0, 则0<b <10. ③ 又因△≥0,即b 2-20c ≥0,故b 2≥20c. ④ 由①、③、④得100>b 2≥20c ,c <5.若c =1,则由②、④得0<b <6且b 2≥20,得b =5; 若c =2,则0<b <7且b 2≥40,无整数解;若c =3,则0<b <8且b 2≥60,无整数解;若c =4,则0<b <9且b 2≥80,无整数解.故所求b 、c 的值为b =5,c =1.2.4 途径四:变更主元法当方程中参数的次数相同时,可考虑以参数为主元求解. 例11 试求所有这样的正整数a ,使方程ax 2+2(2a -1)x +4(a-3)=0至少有一个整数解.(第三届祖冲之杯数学竞赛)解: 因为方程中参数a 是一次,所以可将a 用x 表示,即a =2)2()6(2++x x . ① 又a 是正整数,则2)2()6(2++x x ≥1. 解得-4≤x ≤2且x ≠-2.故x =-4,-3,-1,0,1,2.分别人入①得a =1,3,6,10.3 其他类型3.1 分类讨论型当方程中最高次项的系数含有变参数时,应先分系数为0或不为0讨论.例12 求使关于x 的方程kx 2+(k +1)x +(k -1)=0的根都是整数的k 值.(第十三届江苏省初中数学竞赛)解:分k =0和k ≠0两种情况讨论.当k =0时,所给方程为x -1=0,有整数根x =1.当k ≠0时,所给方程为二次方程.设两个整数根为x 1和x 2,则有 ⎪⎪⎩⎪⎪⎨⎧-=-=--=+-=+②① .111,1112121k k k x x k k k x x由①-②得x 1+x 2-x 1x 2=-2⇒(x 1-1)(x 2-1)=3.=1×3=(-1)×(-3).有⎩⎨⎧=-=-;31,1121x x ⎩⎨⎧-=--=-;31,1121x x ⎩⎨⎧=-=-;11,3121x x ⎩⎨⎧-=--=-.11,3121x x 故x 1+x 2=6或x 1+x 2=-2,即 -1-k 1=6或-1-k1=-2. 解得k =-71或k =1. 又△=(k +1)2-4k (k -1)=-3k 2+6k +1,当k =-71或k =1时,都有△>0.所以,满足要求的k 值为k =0,k =-71,k =1. 3.2 数形结合型当问题是以几何形式出现,或容易联想到几何模型的时候,可考虑用数形结合法.这是一种极为重要的解题方法,它具有形 象直观的特点,可使许多问题获得巧解.例13 以关于m 的方程m 2+(k -4)m +k =0数根为直径作⊙O.P 为⊙O 外一点,过P 切线PA 和割线PBC ,如图1,A 为切点.这时发现PA 、PB 、PC 都是整数,且PB 、BC 都不是合数,求PA 、PB 、PC 的长. 解: 设方程两根为m 1、m 2则⎩⎨⎧=-=+②① .,42121k m m k m m 又设PA =x ,PB =y ,BC =z ,则x ﹑y ﹑z 都是正整数. 由切割线定知PA 2=PB •PC =PB (PC +BC ),即 x 2=y 2+yz ⇒(x +y )(x -y )=yz . ③消去①和②中的k ,得m 1m 2=4-m 1-m 2.整理分解,得(m 1+1)(m 2+1)=5.图1因为⊙O 的直径是方程的最大整数根,不难求得最大整根m =4.进而,z =BC ≤4.又正整数z 不是合数,故z =3,2,1.当z =3时,(x +y )(x -y )=3y ,有⎩⎨⎧=-=+;,3y y x y x ⎩⎨⎧=-=+;3,y x y y x ⎩⎨⎧=-=+.1,3y x y y x 可得适合题意的解为x =2,y =1.当z =1和z =2时,没有适合题意的解,所以,PA =x =2,PB =y =1,PC =y +z =4.3.3 综合探索型当已知方程不止一个或结论不明确时,常用综合分析、假设探索法求解.例14 已知关于x 的方程4x 2-8nx -3n =2和x 2-(n +3)x -2n 2+2=0.问是否存在这样的n 的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的n 值;若不存在,请说明理由.(2000,湖北省初中数学选拔赛)解: 由△1=(-8n )2-4×4×(-3n -2)=(8n +3)2+23>0,知n 为任意实数时,方程(1)都有实数根.设第一个方程的两根为βα、.则α+β=2n ,αβ=42n 3--. 于是,(βα-)2=(βα+)2-4αβ=4n 2+3n 2+2.由第二个方程得[x -(2n +2)][x +(n -1)]=0解得两根为x 1=2n +2,x 2=-n +1.若x 1为整数,则4n 2+3n +2=2n +2.于是n 1=0,n 2=-41. 当n =0时,x 1=2是整数;n =-41时,x =23不是整数,舍去.若x 2为整数,则4n 2+3n +2=1-n .有n 3=n 4=-21.此时x 2=23不是整数,舍去. 综合上述知,当n =0时,第一个方程的两个实数根的差的平方等于第二个方程的一个整数根.练 习 题1. 设a 为整数. 若存在整数b 和c ,使(x +a)(x -15)-25=(x +b )(x +c ),则a 可取的值为_________(1998,上海市鹏欣杯数学竞赛)(提示:变形后用因式分解法. a =9,-15,-39)2. 设关于x 的二次方程(k 2-6k +8)x 2+(2k 2-6k -4)x +k 2=4的两根都是整数. 求满足条件的所有实数k 的值.(2000,全国初中数学联赛)(提示:求出二根x 1=-1-42-k ,x 2=-1-24-k ,从中消去k 得x 1x 2+3x 1+2=0,分解得x 1(x 2+3)=-2.借助方程组得k =6,3,310) 3. 求所有的正整数a 、b 、c ,使得关于x 的方程x 2-3ax +2b =0,x 2-3bx +2c =0,x 2-3cx +2a =0的所有的根都是正整数. (2000,全国初中数学联赛)(提示:从根与系数的关系入手,结合奇偶性分析,得a =b =c =1.)4. 已知方程:x 2+bx +c =0及x 2+cx +b =0分别各有二整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.(1)求证:x 1<0,x 2<0,x ’1<0,x ’2<0.(2)求证:b -1≤c ≤b +1.(3)求b 、c 的值.(1993,全国初中数学竞赛)(答案:b =5,c =6或b =6,c =5.)5.x 、y 为正整数,100111=-y x .则y 的最大值为_________. (1998,重庆市初中数学竞赛)(提示:用因式分解法,结果为9 900.)6.k 为什么整数时,方程(6-k )(9-k )x 2-(117-15k )x +54=0的解都是整数?(1995,山东省初中数学竞赛)(提示:对系数(6-k)(9-k)分为0与不为0讨论,得k值为3,6,7,9,15.)一元二次方程的整数根问题(本讲适合初中)迄今为止,尚未找到使得整系数一元二次方程有整数根的充分条件,通常的方法都是通过讨论其判别式,利用根与系数的关系进行分析和归纳,即使用必要条件解题,然后通过检验确定答案.下面举例说明常用的几种方法,并指出每种方法适合的范围.整系数一元二次方程有整数根的必要条件:(1)两个根都是整数;(2)判别式是整数;(3)判别式是整数的完全平方;(4)两根和是整数,两根积是整数.例1 设方程mx2-(m-2)x+m-3=0有整数解,试确定整数m的值,并求出这时方程的所有整数解.分析:若m=0,则2x-3=0,此时方程无整数解;当m≠0时,考察△=-3m2+8m+4,注意到二次项系数为负,方程有解,则-3m2+8m+4≥0.解得3724-≤m≤3724+.+因为m是整数,故只能取1,2,3.当m=1时,方程有解:-2和1;当m=2时,方程无整数解:当m=3时,方程有整数解:0.注:当判别式二次系数为负时,解不等式得关于参数的一个有限长区间,又因为参数为整数,可以讨论得解.例2 当x为何有理数时,代数式9x2+23x-2的值恰好为两个连续的偶数积.(1998,山东省初中数学竞赛)分析:设两个连续的偶数为n,n+2,问题转化为:当n为何值时,方程9x2+23x-2=n(n+2)有有理数根.有理根问题本质上也是整数根的问题,要求方程的根的判别式必须为一个整数或有理数的完全平方.考察判别式△=232+36(n2+2n+2)=36(n +1)2+565.由于n 是整数,所以判别式应为整数的完全平方.设 36(n +1)2+565=m 2(m 为大于565的自然数).移项因式分解,得(m +6n +6)(m -6n -6)=1×5×113.只有⎩⎨⎧=--=++566,11366n m n m 或 ⎩⎨⎧=--=++.166,56566n m n m 解得n =8,或n =46.分别代入原方程得方程有理数解为-941,2或9130,-17. 注:当判别式为关于某一参数的二次式,且二次项系数为正时,可采用配方法变形为:ƒ2(α) +常数(α是整数).然后采用例1的方法,通过分析得解.例3 求一实数p ,使用三次方程5x 3-5(p +1)x 2+(71p -1)x+1=66p 的三个根均为自然数.(1995,全国高中数学联赛)分析:观察可知,1是方程的解,方程可转化为(x -1)(5x 2-5px +66p -1)=0问题转化为:求一切实数p 使方程5x 2-5px +66p -1=0的解为自然数.由韦达定理知,p 为方程两根之和,即p 是自然数.仿例2得△=(5p -132)2-17 404.设(5p -132)2-17 404=n 2(n >0,n 为自然数).移项分解可得(5p -132+n)(5p -132-n)=22×19×229.又(5p -132+n),(5p -132-n)同奇偶,所以,⎩⎨⎧⨯=--⨯=+-.1921325,22921325n p n p 解得p =76.注:从表面上看,此题中的p 是一切实数,但由韦达定理判断它实际上是自然数,故可采用前法求得.例4设m 为整数,且4<m <40,又方程x 2-2(2m -3)x +4m 2-14m +8=0有两个整数根.求m 的值及方程的根.(1993,天津市初中数学竞赛)分析:考察判别式△=4(2m +1),因是关于m 的一次式,故例1,例2的方法均不可用.由已知4<m <40,可知9<2m +1<81.为使判别式为完全平方数,只有2m +1=25或2m +1=49.当2m +1=25时,m =12,方程两根分别为16,26; 当2m +1=49时,m =24,方程两根分别为38,52.注:当判别式不是二次式时,可结合已知条件通过讨论得出参数的范围,进而求解;当判别式较复杂时,则应改用其他办法,参见例5.例5 α是大于零的实数,已知存在惟一的实数k ,使得关于x的方程x 2+(k 2+αk )x +1 999+k 2+αk =0的两根为质数.求α的值.(1999,全国初中数学联赛)分析:因为α、k 均为实数,判别式法不能解决.设方程两根为x 1、x 2,且x 1≤x 2,x 1、x 2均为质数,则⎪⎩⎪⎨⎧++=--=+.9991,221221k k x x k k x x αα 消掉参数得x 1+x 2+x 1x 2=1 999,即 (x 1+1)(x 2+1)=2 000=24×53.显然,x 1≠2. 于是,x 1+1,x 2+1都是偶数且x 1+1≤x 2+1.故只有如下可能:⎪⎩⎪⎨⎧⨯=+=+;521,2132221x x ⎪⎩⎪⎨⎧⨯=+=+;521,213231x x ⎩⎨⎧⨯=+⨯=+;521,5212321x x ⎪⎩⎪⎨⎧⨯=+⨯=+;521,52122221x x ⎪⎩⎪⎨⎧⨯=+⨯=+22221521,521x x ⎪⎩⎪⎨⎧⨯=+⨯=+.521,5212231x x符合题意的只有⎩⎨⎧==.499,321x x 于是,3+499=-k 2-αk .因为存在惟一的k ,故方程k 2+αk +502=0有两等根. 判别式△=α2-4×502=0,解得α=2502.注:应用韦达定理的关键在于消去参数,首先求得方程的解,在消去参数之后,要注意因式分解的使用.例6 设关于x 的二次方程(k 2-6k +8)﹒x 2+(2k 2-6k -4)x +k 2=4的两根都是整数.求满足条件的所有实数k 的值.(2000,全国初中数学联赛)分析:方程的表达式比较复杂,判别式法和韦达定理均不可用.将原方程变形得(k -2)(k -4)x 2+(2k 2-6k -4)x +(k -2)(k +2)=0. 分解因式得[(k -2)x +k +2][(k -4)x +k -2]=0.显然,k ≠2,k ≠4.解得x 1=-42--k k , x 2=-22-+k k . 消去k 得x 1x 2+3x 2+2=0∴ x 2(x 1+3)=-2.讨论得⎩⎨⎧=+-=;13,212x x 或⎩⎨⎧-=+=;13,221x x 或⎩⎨⎧-=+=.23,121x x 解x 1、x 2,代入原式得k 值为6,3,310. 注:当判别式与韦达定理均难解决时,这时反而意味着可用因式分解法求出方程的根,然后再整理转化.例7 设α为整数,若存在整数b 和c ,使得(x +α)(x -15)-25=(x +b )(x +c )成立,求α可取的值.(1998,上海市初中数学竞赛)分析:此题可转化为:当α为何值时,方程(x +α)(x -15)-25=0有两个整数根.方程可化为x 2-(15-α)x -15α-25=0视其为关于α的一次方程,整理得α(x -15)=-x 2+15x +25.易知x ≠15,∴α=1525152-++-x x x =-x +1525-x .注:此解法为分离参数法,它适合于参数与方程的根均是整数,且参数较易于分离的情况.如此题变形为α=ƒ(x ),然后利用函数的性质求解,这是一种应用较广泛的方法.上面只介绍了处理整数根问题的常用解法,这些解法的基本依据是:方程有整数根的必要条件. 基本方法是:(1)判别式讨论法(主要讨论由判别式决定的参数范围,由判别式为完全平方数求参数);(2)韦达定理法;(3)判别式与韦达定理结合法;(4)分离参数法(通过分离参数,利用根为整数的条件讨论).需说明的是,每个题的解法都不是惟一的,本文所给的只是较简洁的一种.同学们在解题时,应因题而定方法,不断求新,才能领悟数学的美感.练习题1. 求满足如下条件的所有k 值,使关于x 的方程kx +(k +1)x +(k -1)=0的根都是整数.(第十三届江苏省初中数学竞赛)(k =0,k =-71,k =1) 2. 关于x 的方程(m 3-2m 2)x 2-(m 3-3m 2-4m +8)x +12-4m =0的根均为整数,求实数m 的值.(提示:应用求根消参法,得m =1,或m =2.)3. 求所有正实数α,使方程x 2-αx +4α=0仅有整数根. (1998,全国初中数学联赛)(提示:分离参数法. α=42-x x =x +4+416-x ,讨论得α=25,或18,或16).4. 已知方程x 2+bx +c =0及x 2+cx +b =0分别各有两个整数根x 1、x 2及x ’1、x ’2,且x 1x 2>0,x ’1x ’2>0.①求证:x 1<0,x 2<0,x ’1<0,x ’2<0;②求证:b -1≤c ≤b +1;③求b 、c 所有可能的值.(1993,全国初中数学联赛)(提示:应用韦达定理,得⎩⎨⎧==65c b ⎩⎨⎧==56c b ⎩⎨⎧==44c b )5.某顾客有钱10元,第一次在商店买x 件小商品花去y 元,第二次再去买该小商品时,发现每打(12件)降价0.8元,他比第一次多买了10件,花去2元.问他第一次买的小商品是多少件?(x 、y 为正整数)(提示:列方程128.0102=+-x x y 问题转化为:y 为何值时,方程x 2+(40-15y )x -150y =0有正整数解,利用判别式可求得x =5,或x =50.)。
与数列有关的不定方程的整数解问题初探一、引言数列是我们在数学学科中常见的概念,而不定方程则是我们在初等数论和高等代数中学习的一个重要概念。
在实际应用中,数列和不定方程经常出现在一起,这篇文章将重点探讨与数列有关的不定方程的整数解问题。
二、数列与不定方程数列是按一定规律排列的数,也可称为序列。
数列在数学中的基本概念是不同的,它们可能是线性、比例、等差、等比数列等各种类型,但无论哪种类型,数列都可以用递推公式进行表达。
而不定方程则是一种带有未知数的方程,它通常的形式是$f(x,y)=0$,其中 $x$ 和 $y$ 都是未知数,每个 $x$ 和 $y$ 的取值都可以使该方程成立。
不定方程的解通常被称为整数解(或非负整数解、正整数解等)。
三、与数列有关的不定方程的整数解问题在实际应用中,我们有时需要求解与数列有关的不定方程的整数解问题,例如下面这个经典问题:【问题】求解正整数 $a$ 和 $b$,使得 $a^2-b^2=100$。
我们可以通过枚举发现 $a=11$,$b=9$ 或者 $a=50$,$b=48$ 都是方程的解。
但这种方法并不是很高效,特别是当方程的解特别多时,我们很难通过枚举的方式来找到所有的解。
对于这种问题,我们可以采用分析的方法。
对于上面的问题,我们不妨设$a+b=p$,$a-b=q$,其中$p$ 和$q$ 都是正整数。
不难发现,由于 $a$ 和 $b$ 都是正整数,所以 $p$ 和 $q$ 都大于 $1$。
将上面的式子代入原方程得:$$(\frac{p+q}{2})^2-(\frac{p-q}{2})^2=100$$这是一个关于 $p$ 和 $q$ 的不定方程,我们可以将它化简为:$$pq=50$$这时,我们可以列举 $50$ 的各个因数来确定 $p$ 和 $q$ 的值,从而得到 $a$ 和 $b$ 的值。
例如,当 $p=25$,$q=2$ 时,我们有:$$a=\frac{p+q}{2}=13,b=\frac{p-q}{2}=12$$当 $p=10$,$q=5$ 时,我们有:$$a=\frac{p+q}{2}=7,b=\frac{p-q}{2}=3$$通过这种方法,我们可以找到所有的解,而不必进行枚举。
例谈“不定方程整数解个数”模型应用浙江省绍兴县柯桥中学(312030)陈冬良在排列组合中,我们利用挡板法可以得到方程x 1+x 2+x 3+…+x k =n (n 为正整数)的正整数解个数为11--k n C ;这一知识点在各类联赛或各省市的预赛中正频繁的出现,的确此模型的应用较广泛、灵活,特别是从一般试题中挖掘出此类命题的“庐山真面目”需有较强的功底。
下面选取几例典型的试题供参考。
一.模型的直接应用例1.(2010全国联赛) 方程x + y + z = 2010满足x ≤ y ≤ z 的正整数解(x ,y ,z )的个数是 _______ .解:首先易知x + y + z = 2010的正整数解的个数为 1004200922009⨯=C把x + y + z = 2010满足x ≤ y ≤ z 的正整数解分为三类:(1)x , y , z 均相等的正整数解的个数显然为1;(2)x , y , z 中有且仅有2个相等的正整数解的个数,易知为1003;(3)设x , y , z 两两均不相等的正整数解为k .易知 1+ 3⋅1003 + 6k = 2009×1004, 6k = 2009×1004 - 3×1003 -1解得k = 335671. 从而满足x ≤ y ≤ z 的正整数解的个数为1+1003 + 335671 = 336675例2. (04全国联赛)一项“过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于n 2,则算过关。
问:(Ⅰ)某人在这项游戏中最多能过几关?(Ⅱ)他连过前三关的概率是多少?(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体。
抛掷骰子落地静止后,向上一面的点数为出现点数。
)解:由于骰子是均匀的正方体,所以抛掷后各点数出现的可能性是相等的。
(Ⅰ)因骰子出现的点数最大为6,而45642,652⨯>⨯<,因此,当5n ≥时,n 次出现的点数之和大于2n 已不可能。
求不定方程整数解的常用方法一、分情形讨论法分情形讨论法根据不同的系数情况进行分类,找出整数解的条件。
1.一次齐次不定方程Ax+By=C的整数解求法当A和B不互质时,可通过A和B的最大公约数(gcd(A,B))来判断是否存在整数解。
如果C是gcd(A,B)的倍数,则有整数解,否则无整数解。
当A和B互质时,可通过贝祖等式(Bézout's identity)来求解。
贝祖等式表示为gcd(A,B) = Ax + By,其中x和y是整数解。
由贝祖等式可得到一组整数解。
然后根据一组特殊解,得到通解(general solution)。
2. 二次齐次不定方程Ax^2 + Bxy + Cy^2 = 0的整数解求法当A、B和C不全为0时,可通过判别式(discriminant)来判断是否存在整数解。
当判别式为完全平方数时,存在整数解;否则不存在整数解。
3.一次非齐次不定方程Ax+By=C的整数解求法当A和B不互质时,可通过A和B的最大公约数(gcd(A,B))来判断是否存在整数解。
如果C是gcd(A,B)的倍数,则有整数解,否则无整数解。
当A和B互质时,可通过扩展的欧几里得算法(extended Euclidean algorithm)求解。
首先利用一次齐次方程的解法得到一组特殊解,然后根据一组特殊解,得到通解。
二、裴蜀定理裴蜀定理是数论中的一个重要定理,也是求不定方程整数解的常用方法。
裴蜀定理的全称是裴蜀等式(Bézout's identity),它表明对任意两个整数a和b,存在整数x和y,使得ax + by = gcd(a,b)。
1.判断是否存在整数解的条件当C是gcd(A,B)的倍数时,一次齐次不定方程Ax + By = C存在整数解;否则不存在整数解。
2.求解整数解的方法通过扩展的欧几里得算法(extended Euclidean algorithm),可以求出一组特殊解x0和y0。
不定方程论文整数解论文摘要:本文用初等方法,对不定方程+2=3的整数解进行探究,得到了方程++=3的若干整数解。
关键词:不定方程;整数解;整除;初等方法一、引言文[1]对许多不定方程作过探讨,其中不定方程++=3 (1)的整数解问题是遗留问题之一。
显然,若不定方程+2=3(2)有整数解,则(1)一定有整数解。
因此我们先对不定方程(2)的整数解进行探究,然后导出不定方程(1)的若干整数解。
二、关于不定方程 +2=3的整数解将方程(2)变形为-1=-2(-1)(3)即(-1)[(-1)2+3 (-1)+3]=-2(-1)[(-1)2+3 (-1)+3]则(+3+3)=-2(+3+3)易知,=0当且仅当=0。
此时方程(2)的一组整数解为()=(1,1)。
下面我们考虑≠0的情形。
可设=+3+3=-2(+3+3)这里为非负有理数。
于是有(23+1)+3(22+1)+6+3=0 (5)考虑到方程的判别式?hu=9(22+1)2-4(23+1)(6+3)=-3(44+83-122+8+1)≥0得44+83-122+8+1≤0(6)记=44+83-122+8+1,有=163+242-24+8=2(83+1)+6(2-1)2当≥时,>0,故在[,+∞)上递增。
但=1>0,因此,若(6)成立,必须1,>1及当≤0,≤0时,方程均无整数解。
(一)设>1且≤0,当=-2,3,4…20时,方程(2)均无整数解,故>20。
由(4)中=,即=-+1,得=-1>0,这说明关于递增。
当≤-1时,≤|=-+23-2(-0.9)3,即0.458+31,由(4)中=,即=-+1,得=-13-2(-)3,即+3>0。
这与为负整数矛盾。
综上,若方程(2)有整数解,则有理数必须满足-1<<0。
如取=-,代入(5)解得=-6。
这时方程(2)的又一组整数解为()=(-5,4) 。
因此,由不定方程(2)的整数解()=(1,1),(-5,4)可导出不定方程(1)的四组整数解为(,)=(1,1,1) ,(4,4,-5) ,(4,-5,4),(-5,4,4)参考文献:[1]柯召,孙琦.谈谈不定方程[m].上海:上海教育出版社,1980.[2]王卫华,马文波.对不定方程++=3的研究[j].湖北:武汉科技大学学报(自然科学版),2006,(2):210-211.。
求不定方程整数解的方法浅析摘要:第一章:引言所谓不定方程,是指未知数的个数多于独立方程式的个数的方程或方程组.因此,要求一个不定方程的全部的解抑或是其全部整数解都是相当困难的,有时甚至是不可能的或不现实的.然而,在现实生活中,特别是一些具体的生活实例中,它的应用又是非常的广泛的;另外,不定方程的重要性在数学竞赛中也得到了充分体现,每年世界各地的数学竞赛中,不定方程问题都占有一席之地;它也是培养和考查学生数学思维的好材料,数学竞赛中的不定方程问题,不仅要求选手对初等数论的一般理论、方法要有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决相关问题.数千年来,不定方程问题一直是一些数学家甚至草根阶级的数学爱好者研究的热点问题,仿佛它是一块资源丰富的土地,每个人都能有希望在这占有自己的一席之地.也正是由于它具有这样一个特点,不定方程的类型,以及解各类不定方程的各种方法层出不穷,求解各类不定方程也几乎毫无固定章法可循,而本文,只针对于不定方程整数解问题做一个初步的探索,归纳提炼出一些解这类题的常规方法和技巧,对解不定方程具有一定的指导意义;并且着重针对中学数学竞赛中的不定方程整数解问题进行分析,研究其方法,思想,具有一定的教学意义;另外,还根据自己的积累,总结,发掘出一些新的方法,技巧,具有创新和学习的意义.第二章:解决某些不规则类不定方程的常规思想方法1、不等式分析法其一般操作步骤:①想办法通过构造不等式求出其中某个(某些)变量的范围; ②根据该变量的范围求出该变量的整数解;③分情况讨论该变量分别取某个整数解时其他变量的取值. 常见的构造不等式的技巧:①注意题中的隐含条件,常见的如:1)若给出的是对称形式的不定方程,解题是可增加一个 “不妨设 ≤≤≤z y x ”的条件.2)若题目要求是正整数解,则有“ ,1,1,1≥≥≥z y x ” 若要求是相异的正整数,则有“ ,3,2,1≥≥≥z y x ” ②利用基本不等式求变元范围,常见的如“()xy y x 42≥+”③分离变量:可将某个变量分离出来,并通过该变量的范围求 其他变量的范围.④可利用二次方程有整数解的条件,即“0≥∆”,或更强点的 “∆ 为完全平方数”.常规应用:①一般在某些对称式中能用到此方法进行放缩估值;②在具体的限制某个(或某些)变量的范围时,可分离变量利 用此方法对其他变量进行估值;③对于方程“02=++w vx ux (其中u,v,w 是常数或者是含其他变量的式子)”可利用关于x 的方程有整数根的条件,即“0≥∆”, 或更强点的“∆ 为完全平方数”对其他变量进行估值; ④具体能通过变形转化为关于某些整体的表达式,再利用常规 不等式进行估值,比如”转化为关于x+y 与xy 的表达式, 用()xy y x 42≥+等“例1:求不定方程()332y x y x +=+的正整数解.解: 方法1:由于此不定方程是对称的,这里不妨设1≥≥y x ,则 ()()22332x y x y x ≤+=+32)4( y x x ≥-∴04 23>≥-∴xy x . 3, 2, 1 =∴x 1)当x=1时,1)4(12=-≤≤x x y1 =∴y经检验:()()1,1,=y x 不满足方程;2)当x=2时,2)4(12=-≤≤x x y . 2 1 ,=∴y经检验:()() 1,2,=y x 满足方程,()() 2,2,=y x 满足方程;3)当x=3时,3)4(12=-≤≤x x y. 3 2 1 ,,=∴y经检验:()()1,3,=y x 不满足方程,()()2,3,=y x 不满足方程,()()3,3,=y x 不满足方程;∴综上所述:取消不妨设,由对称性知:不定方程的正整数解为()()()(). 2,2 2,1 1,2,,,=y x 方法2:已知方程化为 ()()()222y xy x y x y x +-+=+22,0,0y xy x y x y x +-=+∴>>令 t y x =+, 则())3 32222t xy t xy y x y xy x t =--+=+-=(即 .32t t xy -=∴ 即 t y x =+且为整数)(2≥t()1313 2-=-=t t t t xy 利用不等式:()xy y x 42≥+ 则: ()13142-⋅≥t t t .2 ,4 的正整数为又≥≤∴t t . 4, 3, 2 =∴t 1)当t=2时,2=+yx32=xy此方程无正整数解;2)当t=3时,3=+yx2=xy1=x2=x2=y,1=y3)当t=4时,4=+yx4=xy2=x2=y.∴综上所述:不定方程的正整数解为()()()().2,22,11,2,,,=yx例2:求不定方程019262=-++-yxyxyx的整数解.解:方法1:已知方程可化为:019)1322=-+--yxyyx(,则此方程可看成关于x的一元二次方程有整数解的情况∴)19(4)1342---=∆yyy(=4(1-5y)则∆必是一个完全平方数,这里不妨设:)且(令(+∈≥=N m m m k 2)5-12∴512m k -= 由求根公式:1531+-=m x 1-532m x += 故方程要有整数根,当且仅当5, 11 51=-=+m m 或 经检验:64==m m 或符合题意当4=m 时,21=x ,3142=x ,3-=y 当6=m 时,7161=x ,42=x ,7-=y ∴综上所述:原方程的整数解为)7,4(),3,2(),--=y x (方法2:已知方程化为:x x y 21)3(2-=-分离y: 2)321--=x x y ( 事实上当y=0时,x=21 ,不合题意,则有:1≥y ,即 1)3212≥--x x ( ∴2)321-≥-x x ( (*)i )若,0≤x 则有:962-12+-≥x x x0)2(2≤+-x 无解ii )若,0>x 由x 为整数则有1≥x , 则(*)式化为: 961-22+-≥x x x∴ 6)4(2≤-x∴. 6, 5, 4, 2=x当 2=x 时,y=-3;当4=x 时,y=-7;当5=x 时,25-=y 不合题意舍去;当6=x 时,911-=y 不合题意舍去; ∴综上所述:原方程的整数解为)7,4(),3,2(),--=y x (2、同余分析法其一般操作步骤:①方程两边同时取特殊数的模,消去部分未知数,将等式化为 同余式;②由同余式来估计剩下未知数的取值范围(或特征),从而达 到解不定方程的目的.注意:实现这一过程的关键在于取什么数作为模,这需要较强 的观察力!常规的取模原则:①能消去某些未知数时,取它的系数(或底数)作模; ②由费马小定理有“)3(mod 3x x ≡”③频率较高者有模3,模4,模8.常规应用:①事实上,同余理论在证明一个不定方程无整数解时有广泛 而方便的应用;②一般对于某些指数不定方程,或某些系数较大的方程应用 同余理论能起到一个很好的简化作用;③具体的:它能解决“Ax+By=C"型整数解问题.例1:求不定方程7x+19y=213的正整数解.解:方程两边同时7mod 得:)7(mod 32-≡y两边同时乘以3:)7(mod 26-≡y)7(mod 2 ≡∴y ,27 +=∴k y 代入原方程得: 213)27(197=++k x∴ k x 1925-= ,27 +=k yk x 1925-= (其中k 为整数)令x>0,y>0, 得 ,027 >+k01925>-k ,∴ 192572-<<k ∴k=0 ,1.∴方程的正整数解为()()().9,6, 2,25,=y x例2:证明:15994144241=+++x x x 无整数解.证明: )16mod 151-1-16001599(≡≡= (*)设x x x x 14321,,,, 是方程的整数解,1)若n x i 2=,则)16(mod 01644≡≡n x i ,2)若12+=n x i ,则)8(mod 12≡x i ,故182+=k x i ,从而)16(mod 111664)18224≡++=+=k k k x i (,)16mod 144144241 (≤+++∴x x x 与(*)式矛盾 ∴该方程无整数解.例3:求不定方程75-12=y x 的全部正整数解.解:i )若75-12=y x ,则方程两边模4得:)4mod 31(≡,矛盾; ii )若75-12=y x ,则方程两边模3,得:)3mod 11--()(≡y , ∴y 为奇数若x>1,方程两边模8得:)8mod 15-(-≡y 即)8mod 15(≡y ,又 )8mod 152(≡ ∴y 2,这与y 为奇数矛盾∴ 1=x ,从而1=y综上所述:原方程有唯一的整数解()() 1,1,=y x .3、约数倍数分析法:此方法经常结合整除理论,是解决不定方程整数解十分有效的 方法,在数学竞赛中也是出现频率高,实用性强的一类方法.常规的次方法分为两类:①因式分解法:1)将含未知数的代数式置于方程一边作因式分解;2)将方程另一边化为常数,并对其做质因数分解;3)考虑各因数的取值,分解成若干方程(组)来求解.②分离未知量法:1)将方程的某个(或某些)未知量分离出来,目的是将其他未知量转化到某个常数的分母位置;2)将处于分子位置的常数作质因数分解;3)考虑分母的取值,分解成若干方程(组)来求解部分未知量.常规应用:①多半是解决某些能进行因式分解(或部分因式分解)的整数不定方程问题,并且,有时要求学生因式分解功底十分扎实;②具体的:它能解决“0Axy)0=A(”型不定方Bx≠+++DCy程.例1:一队旅客乘坐汽车,要求每辆汽车的旅客人数相等,起初每辆汽车乘了22人,结果剩下1人未上车;如果有一辆汽车空着开走,那么所有旅客正好能平均分乘到其他各车上,已知每辆汽车最多只能容纳32人,求起初有多少俩汽车?有多少个旅客?解:设起初有m俩汽车;开走一辆后,平均每辆汽车的人数为n根据人数相等可列方程:)32,2( )1(122≤≥⋅-=+n m n m m ; 整理为:)32,2( 0122≤≥=---n m m n mn ; 分析: 属于类型“0=+++D Cy Bx Axy )0≠A (” 思路一(部分因式分解):0=+++D Cy Bx Axy )0≠A ( 0=+++A Dy A Cx A BxyA DA BC AB y AC x -=++2))((AD BC B Ay C Ax -=++))((这就化成了例1:求不定方程()72+=+xy y x 的整数解 解:分离变量:232272--=--=y y y xx,y 为整数∴ 3)2-y (∴ 3 12±±=-,y∴此方程的解为 (-1,3),(5,1),(1,5),(3,-1)。
解不定方程和同余方程的基本方法总结不定方程和同余方程是数论中的两个重要问题。
解不定方程的目标是找到使方程成立的整数解,而同余方程则是计算模运算下的解集。
本文将总结解不定方程和同余方程的基本方法和技巧。
一、解不定方程的基本方法解不定方程的一般形式为ax + by = c,其中a、b、c为给定的整数,x和y为未知数,求整数解。
以下是解不定方程的基本方法:1. 辗转相除法:如果a和b互素,即它们的最大公约数为1,那么可以使用辗转相除法求解不定方程。
首先,利用辗转相除法找到一个整数解(x0, y0),然后这个方程的所有整数解可以表示为:x = x0 + bt,y = y0 - at,其中t为整数。
2. 扩展欧几里得算法:如果a和b不互素,即它们的最大公约数不为1,可以使用扩展欧几里得算法求解。
通过该算法计算出方程的一个特解(x0, y0),然后方程的所有整数解可以表示为:x = x0 + b/d * t,y = y0 - a/d * t,其中t为整数,d为a和b的最大公约数。
3. 循环:对于一些形式特殊的不定方程,可以通过循环枚举的方法来解决。
例如对于方程3x + 7y = 100,由于3和7不互素,不能直接使用辗转相除法或扩展欧几里得算法。
可以通过循环枚举x和y的取值范围,判断是否满足方程条件,从而得到所有解。
二、同余方程的基本方法同余方程的一般形式为ax ≡ b (mod m),其中a、b、m为给定的整数,x为未知数,求模m下的整数解。
以下是同余方程的基本方法:1. 同余定理:如果a和m互素,即它们的最大公约数为1,那么同余方程有唯一解。
可以使用扩展欧几里得算法求解逆元的方式得到解x。
2. 中国剩余定理:如果给定一系列同余方程,形如:x ≡ a1 (mod m1)x ≡ a2 (mod m2)...x ≡ an (mod mn)其中m1、m2、...、mn两两互素,那么可以使用中国剩余定理求解该同余方程组。
不定方程求解题技巧不定方程是指在未知数为整数的条件下,求满足方程的整数解的问题。
解不定方程的方法有很多种,下面将介绍一些常见的技巧和方法。
1. 分类讨论法这种方法适用于一元不定方程,即方程只有一个未知数。
根据方程中未知数的系数,可以将不定方程分为以下几类:A. 当方程中未知数系数为1时,通常可以考虑逐个尝试法,即从0开始尝试,逐渐增加或减少,直到找到满足方程的整数解为止。
B. 当方程中未知数系数为负数时,可以将方程两边同时乘以-1,转化为系数为正数的方程,然后按照分类A的方法求解。
C. 当方程中未知数系数为其他整数时,可以将方程两边同时乘以适当的倍数,转化为系数为1或负数的方程,然后按照分类A或B的方法求解。
2. 辗转相除法辗转相除法是求解线性不定方程(即方程的最高次数为1)的有效方法。
假设要解形如ax + by = c的方程(a、b、c为整数),首先通过欧几里得算法求得a和b的最大公约数d。
然后,如果c不是d的倍数,那么方程无整数解。
如果c是d的倍数,可以将方程两边同除以d,得到形如(a/d)x + (b/d)y = c/d的新方程。
由于a/d和b/d互质,可以通过扩展欧几里得算法求得一个整数解x0和y0。
然后,通解可以表示为x = x0 + (b/d)t和y = y0 - (a/d)t (t为整数),对所有整数t都满足原方程。
3. 特殊解与通解对于一些特殊的不定方程,可以通过观察得到一个或多个特殊解,并通过特殊解推导出通解。
例如,对于二次不定方程x^2 + y^2 = z^2(其中x、y、z为整数),可以取特殊解x = 3,y = 4,z = 5,然后可以推导出通解x = 3(m^2 - n^2),y = 4mn,z = 5(m^2 + n^2)(m、n 为整数)。
通过这个通解,可以找到无穷多个满足方程的整数解。
4. 数论方法数论是研究整数性质的一门学科,其中有许多定理和技巧可以应用于解不定方程。
不定方程组求解技巧不定方程组指的是未知量个数大于方程个数的方程组。
由于未知量个数大于方程个数,所以不定方程组在一般情况下存在无穷多解。
求解不定方程组需要采用一定的技巧和方法,下面介绍几种常见的求解技巧。
1. 参数法:参数法是求解不定方程组的常用方法之一。
首先,找出方程组中的一个方程,通过变量的代换,使得方程中的一个未知量等于一个参数(通常用字母表示),然后解出其他未知量。
最后,将参数取遍所有可能的值,得到方程组的全部解。
例如,考虑不定方程组:x + 2y = 32x + 3y = 5取方程组第一个方程中的x 作为参数t ,则可以将x 表示为 x = t,代入第二个方程中,得到:2t + 3y = 5解这个方程得到:y = (5 - 2t) / 3因此,不定方程组的解为:(x, y) = (t, (5 - 2t) / 3),其中 t 可以取任意实数。
2. 等式法:等式法是另一种常用的不定方程组求解方法。
在等式法中,通过将其中一个方程两边同时乘以某个常数,使得方程中的一个未知量的系数和另一个方程中该未知量的系数相等,然后将两个方程相加或相减,得到一个只含有一个未知量的方程,进而求解该未知量。
最后,将求得的未知量代入其中一个方程,解出其他未知量。
例如,考虑不定方程组:2x - 3y = 14x + 6y = 8将第一个方程两边同时乘以2,得到:4x - 6y = 2将该式与第二个方程相加,得到:8x + 0y = 10解得 x = 10 / 8 = 5 / 4将求得的 x 值代入第一个方程,解得 y = (2 - 2x) / -3 = (2 - 2 * 5 / 4) / -3 = -1 / 2因此,不定方程组的解为:(x, y) = (5 / 4, -1 / 2)3. 消元法:消元法也是求解不定方程组的一种常用方法。
通过对方程组进行加减运算,将其中一个未知量的系数化为零,从而得到一个新的方程组,可以继续消元,直到最后只剩下一个只含有一个未知量的方程,然后解此方程。
数列中不定方程问题的几种解题策略王海东(江苏省丹阳市第五中学,212300)数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有极其重要的地位.数列中不定方程的整数解问题逐渐成为一个新的热点,在近年来的高考模拟卷中,这类问题屡见不鲜,本文中的例题也都是近年来大市模考题的改编.本文试图对与数列有关的不定方程的整数解问题的解法作初步的探讨,以期给同学们的学习带来帮助。
题型一:二元不定方程 双变量的不定方程,在高中阶段主要是求出此类不定方程的整数解,方法较灵活,下面介绍3种常用的方法。
方法 1.因式分解法:先将不定方程两边的数分解为质因数的乘积,多项式分解为若干个因式的乘积,再由题意分类讨论求解。
题1(2014·浙江卷)已知等差数列{}n a 的公差d >0。
设{}n a 的前n 项和为n S ,11=a ,3632=⋅S S 。
(1)求d 及S n ; (2)求m ,k (m ,k ∈N *)的值,使得65...21=+++++++k m m m m a a a a .解析(1)略(2)由(1)得2,12n S n a n n =-=(n ∈N *)=+++++++k m m m m a a a a ...21()2122121-++-+k m m k )()1)(12(+-+=k k m 所以65)1)(12(=+-+k k m ,由m ,k ∈N *知1112>+≥-+k k m65151365⨯=⨯=,故⎩⎨⎧=+=-+511312k k m 所以⎩⎨⎧==45k m 点评 本题中将不定方程变形为()()135112⨯=+⋅-+k k m ,因为分解方式是唯一的,所以可以得到关于k m ,的二元一次方程组求解。
方法 2.利用整除性质 在二元不定方程中,当其中一个变量很好分离时,可分离变量后利用整除性质解决.题2。
设数列{}n b 的通项公式为2121n n b n t-=-+,问:是否存在正整数t ,使得12m b b b ,,(3)m m ≥∈N ,成等差数列?若存在,求出t 和m 的值;若不存在,请说明理由.解析:要使得12,,m b b b 成等差数列,则212m b b b =+即:312123121m t t m t -=+++-+ 即:431m t =+- ∵,m t N *∈,∴t 只能取2,3,5 当2t =时,7m =;当3t =时,5m =;当5t =时,4m =.点评 本题利用t 表示 m 从而由431m t =+-得到14-t 是整数,于是1-t 是4的约数,从而估计出可能的所有取值,再逐一检验即可,当然,本题也可以利用m 表示t 来处理。
与数列有关的不定方程的整数解问题初探引言不定方程是指包含有未知数的方程,其系数可以是任意实数或整数。
不定方程中未知数个数可以是一个或多个,解可能是一个或多个整数或分数。
在处理不定方程的时候,我们往往需要考虑其解的整数性质,以及与数列之间的联系。
本文将就数列与不定方程之间的联系进行探讨。
整数解的含义对于一个不定方程,我们说其具有整数解,当且仅当其方程的所有未知数都能以整数的形式表示出来。
以下是一组整数解的例子:2x+3y−5z−2=0其中,当x=1,y=1,z=1时,等式成立,因此(1,1,1)是不定方程的一个整数解。
数列与不定方程当不定方程中涉及到数列时,我们需要先研究数列本身的性质。
下面将以斐波那契数列为例,探讨数列与不定方程之间的联系。
斐波那契数列斐波那契数列是指数列 $\\{F_n\\}$,其满足以下条件: - F0=0 - F1=1 - F n= F n−1+F n−2数列的前几项为:0,1,1,2,3,5,8,13,21,34,55,...斐波那契数列与黄金分割率斐波那契数列与黄金分割率有着密切的关系。
黄金分割率 $\\varphi$ 的定义为:$\\varphi = \\frac{1+\\sqrt{5}}{2}$,它是一个无理数,约等于1.618。
与黄金分割率有关的性质包括: - $\\varphi^2 = \\varphi + 1$ -$\\frac{1}{\\varphi}=\\varphi - 1$ - $\\varphi^n = F_{n+1}\\varphi + F_{n}$ - …斐波那契数列与不定方程我们考虑以下不定方程:F n+1x−F n y=1该式的一组整数解为:(x,y)=(F n−1,F n)。
我们不妨验证一下,当n=5时,F6x−F5y=1的解为(x,y)=(5,8),而F4=3,F5=5,因此(x,y)=(3,5)确实是该式的一个整数解。
此外,还有另一个不定方程与斐波那契数列有关:$$F_{n+1}x - F_ny = \\pm 1$$对于该式,它的一组整数解为:$(x,y)=(\\pm F_{n-k},\\pm F_{n-k-1})$,其中k为一个任意整数。
求不定方程整数解的常用方法摘要:不定方程,是指未知数的个数多于方程的个数,且未知数受到某些限制的方程或方程组.因此,要求一个不定方程的全部的解,是相当困难的,有时甚至是不可能或不现实的.本文利用变量替换、未知数之间的关系、韦达定理、整除性、求根公式、判别式、因式分解等有关理论,求得一类不定方程的正整数解.通过一些具体的例子,给出了常用的不定方程的解法,分别为分离整数法、辗转相除法、不等式估值法、逐渐减小系数法、分离常数项的方法、奇偶性分析法、换元法、构造法、配方法、韦达定理、整除性分析法、利用求根公式、判别式、因式分解法等等.关键字:不定方程;整数解;整除性1引言不定方程是数论的一个分支,有悠久的历史与丰富的内容,与其他数学领域有密切联系,是数论中的重要的、活跃的研究课题之一,我国对不定方程的研究以延续了数千年,“百钱百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理,学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学的解题技能.中学阶段是学生的思维能力迅猛发展的关键阶段.在此阶段要注重培养学生的思维能力,开发学生智力,因此对于初等数论的一般方法、理论有一定的了解是必不可少的.让学生做题讲究思想、方法与技巧、创造性的解决问题,就要有一定的方法与技巧的积累与总结.不定方程的重要性在中学中得到了充分的体现,无论在中高考还是在每年世界各地的数学竞赛中,不定方程都占有一席之地,而且它还是培养学生思维能力、观察能力、运算能力、解决问题能力的好材料.2不定方程的定义所谓不定方程是指未知数的个数多于方程的个数,且未知数受到某些(如要求是有理数,整数或正整数等等)限制的方程或方程组.不定方程也称丢番图方程,是数论的重要分支学科,也是数学上最活跃的数学领域之一,不定方程的内容十分丰富,与代数数论、几何数论、集合数论都有较为密切的联系.下面对中学阶段常用的求不定方程整数解的方法做以总结:3一般常用的求不定方程整数解的方法(1)分离整数法此法主要是通过解未知数的系数中绝对值较小的未知数,将其结果中整数部分分离出来,则剩下部分仍为整数,则令其为一个新的整数变量,以此类推,直到能直接观察出特解的不定方程为止,再追根溯源,求出原方程的特解.例1 求不定方程025=-++y x x 的整数解 解 已知方程可化为 231232223225++=++++=+++=++=x x x x x x x x y 因为y 是整数,所以23+x 也是整数. 由此5,1,3,1,3,3,1,12---=--=+x x 即相应的.0,2,0,4=y所以方程的整数解为(-1,4),(-3,0),(1,2),(-5,0).(2)辗转相除法此法主要借助辗转相除式逆推求特解,具体步骤如下:第一步,化简方程,尽量化简为简洁形式(便于利用同余、奇偶分析的形式); 第二步,缩小未知数的范围,就是利用限定条件将未知数限定在某一范围内,便于下一步讨论;第三步,用辗转相除法解不定方程.例2 求不定方程2510737=+y x 的整数解.解 因为251)107,37(=,所以原方程有整数解.用辗转相除法求特解:18433,413337,33237107+⨯=+⨯=+⨯=从最后一个式子向上逆推得到19107)26(37=⨯+-⨯所以25)259(107)2526(37=⨯⨯+⨯-⨯则特解为⎩⎨⎧=⨯=-=⨯-=225259650252600y x 通解为Z t t t y t t x ∈⎩⎨⎧++=+=+--=--=,)6(37337225)6(1078107650或改写为.,3731078Z t t y t x ∈⎩⎨⎧+=--= (3)不等式估值法先通过对所考查的量的放缩得到未知数取值条件的不等式,再解这些不等式得到未知数的取值范围.例3 求方程1111=++zy x 适合z y x ≥≥的正整数解. 解 因为z y x ≥≥所以zy x 111≤≤ 所以zz z z y x z 1111111++≤++〈 即 zz 311≤〈 所以31≤〈z所以.32==z z 或当2=z 时有2111=+y x 所以y y y x y 11111+≤+〈 所以y y 2211≤〈 所以42≤〈y所以;46,43或相应地或===x y y当3=z 时有3211=+y x 所以yy y x y 11111+≤+〈 所以 y y 2321≤〈 所以.3;3,3==≤x y y 相应地所以).3,3,3(),2,4,4(),2,3,6(),,(=z y x(4)逐渐减小系数法此法主要是利用变量替换,使不定方程未知数的系数逐渐减小,直到出现一个未知量的系数为1±的不定方程为止,直接解出这样的不定方程(或可以直接能用观察法得到特解的不定方程为止,再依次反推上去)得到原方程的通解.例4 求不定方程2510737=+y x 的整数解.解 因为251)107,37(=,所以原方程有整数解.有10737〈,用y 来表示x ,得 37412313710725y y y x +-+-=-=则令 12374,37412=-∈=+-m y Z m y 即 由4<37,用m 来表示y ,得 49343712m m m y ++=+=令.4,4t m Z t m =∈=得将上述结果一一带回,得原方程的通解为 Z t t y t x ∈⎩⎨⎧=+--=,3731078 注①解一元二次不定方程通常先判定方程有无解.若有解,可先求c by ax =+的一个特解,从而写出通解.当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易求得其特解为止.②对于二元一次不定方程c by ax =+来说有整数解的充要条件是c b a ),(.⎩⎨⎧⎩⎨⎧∈-=+=∈+=-=)(,)(,0000Z t at y y bt x x Z t at y y bt x x 或 (5)分离常数项的方法对于未知数的系数和常数项之间有某些特殊关系的不定方程,如常数项可以拆成两未知数的系数的倍数的和或差的不定方程,可采用分解常数项的方法去求解方程.例5 求不定方程14353=+y x 的整数解.解 原方程等价于0)28(5)1(331405314353=-+-⇔+=+⇔=+y x y x y x因为()15,3=所以⎩⎨⎧∈=-=-Z t t y t x ,32851 所以原方程的通解为.,32851Z t t y t x ∈⎩⎨⎧+=-= (6)奇偶性分析法从讨论未知数的奇偶性入手,一方面可缩小未知数的取值范围,另一方面又可用n 2或)(12Z n n ∈+代入方程,使方程变形为便于讨论的等价形式.例6 求方程32822=+y x 的正整数解.解 显然y x ≠,不妨设0〉〉y x因为328是偶数,所以x 、y 的奇偶性相同,从而y x ±是偶数.令112,2v y x u y x =-=+则1u 、.0,111〉〉∈v u Z v 且所以1111,v u y v u x -=+=代入原方程得1642121=+v u同理,令2211211(2,2u v v u u v u =-=+、)0,222〉〉∈v u Z v 且于是,有822222=+v u 再令3223222,2v v u u v u =-=+得412323=+v u此时,3u 、3v 必有一奇一偶,且 []641033=≤〈〈u v取,5,4,3,2,13=v 得相应的16,25,32,37,4023=u所以,只能是.4,533==v u从而2,18==y x结合方程的对称性知方程有两组解()().18,2,2,18(7)换元法利用不定方程未知数之间的关系(如常见的倍数关系),通过代换消去未知数或倍数,使方程简化,从而达到求解的目的.例7 求方程7111=+y x 的正整数解. 解 显见,.7,7〉〉y x 为此,可设,7,7n y m x +=+=其中m 、n 为正整数. 所以原方程7111=+y x 可化为717171=+++n m 整理得 ()()()().49,777777=++=+++mn n m n m 即所以49,1;7,7;1,49332211======n m n m n m相应地56,8;14,14;8,56332211======y x y x y x所以方程正整数解为()()().56,8,14,14,8,56(8)构造法构造法是一种有效的解题方法,并且构造法对学生的创造性思维的培养有很重要的意义,成功的构造是学生心智活动的一种探求过程,是综合思维能力的一种体现,也是对整个解题过程的一种洞察力、预感力的一种反映.构造体现的是一种转化策略,在处理不定方程问题时可根据题设的特点,构造出符合要求的特解或者构造一个求解的递推式等.例8 已知三整数a 、b 、c 之和为13且bc a b =,求a 的最大值和最小值,并求出此时相应的b 与c 的值.解 由题意得⎩⎨⎧==++acb c b a 213,消去b 得()ac c a =--213 整理得到关于c 的一元二次方程()().0132622=-+-+a c a c 因为()().3520,01342622≤≤≥---=∆a a a 解得因,0≠a若,916,014425,12===+-=c c c c a 或解得则有符合题意,此时;9311641⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧=-==c b a c b a 或若17=a 时,则有,01692=+-c c 无实数解,故;17≠a若16=a 时,则有,09102=+-c c 解得,91==c c 或符合题意,此时;912161416⎪⎩⎪⎨⎧=-==⎪⎩⎪⎨⎧=-==c b a c b a 或综上所述,a 的最大值和最小值分别为16和1,相应的b 与c 的值分别为.9316491214⎩⎨⎧==⎩⎨⎧=-=⎩⎨⎧=-=⎩⎨⎧=-=c b c b c b c b 或和或 (9)配方法把一个式子写成完全平方或完全平方之和的形式,这种方法叫做配方法.配方法是式子恒等变形的重要手段之一,是解决不少数学问题的一个重要方法.在初中阶段,我们已经学过用配方法解一元二次方程,用配方法推到一元二次方程的求根公式,用配方法把二次函数化为标准形式等等,是数学中很常用的方法.例9 若.,24522的值求x y y x y x y x ++=++ 解 由题意 045222=+-+-y y x x 即()021122=⎪⎭⎫ ⎝⎛-+-y x 所以21,1==y x 所以23211=+=+x y y x (10)韦达定理韦达定理是反映一元二次方程根与系数关系的重要定理,广泛应用于初等代数、三角函数及解析几何中,应用此法解题时,先根据已知条件或结论,再通过恒等变形或换元等方法,构造出形如b a +、b a ⋅形式的式子,最后用韦达定理.例10 已知p 、q 都是质数,且使得关于x 的二次方程()051082=+--pq x q p x 至少有一个正整数根,求所有的质数对().,q p解 设方程的两根分别为1x 、(),212x x x ≤由根与系数关系得⎩⎨⎧=⋅-=+pq x x q p x x 51082121 因为p 、q 都是质数,且方程的一根为正整数,可知方程的另一根也是正整数. 所以⎩⎨⎧==p q p q pq pq x q p q p x ,,5,5,,55,5,,,5,121 所以.5,5,5,1521q p p q pq pq x x ++++=+①当1521+=+pq x x 时,即,10815q p pq -=+因为p 、q 均是质数,所以,1081015q p p pq -〉〉+故此时无解.②当5521+=+pq x x 时,即,1085q p pq -=+所以()(),85810-=-⋅+q p 因为p 、q 都是质数,且,810-〉+q p 所以,1,5885,1710⎩⎨⎧--=-=+q p 解得符合条件的质数对为()().3,7,=q p③当p q x x +=+521时,即,1085q p p q -=+所以,157q p =满足条件的质数对. ④当q p x x +=+521时,即,1085q p q p -=+所以,113q p =于是()()()().3,11,3,7,==q p q p 或综上所述,满足条件的质数对为()()()().3,11,3,7,==q p q p 或(11)整除性分析法用整除性解决问题,要求学生对数的整除性有比较到位的把握.例11 在直角坐标系中,坐标都是整数的点称为整点,设k 为整数,当直线k kx y x y +=-=或3的交点为整数时,k 的值可以取()A.2个B.4个C.6个D.8个解 当1=k 时,直线13+=-=x y x y 与平行,所以两直线没有交点;当0=k 时,直线()轴即与x y x y 03=-=交点为整数;当1≠k 、0≠k 时,直线k kx y x y +=-=与3的交点为方程组⎩⎨⎧+=-=kkx y x y 3的解,解得 ⎪⎩⎪⎨⎧--=---=1413k k y k k x 因为x 、y 均为整数,所以1-k 只能取4,2,1±±±解得.3,5,1,3,0,2-=k综上,答案为C.(12)利用求根公式在解不定方程时,若因数分解法、约数分析均不能奏效,我们不妨将其中一个未知数看成参数,然后利用一元二次方程的求根公式去讨论.例12 已知k 为整数,若关于x 的二次方程()01322=+++x k kx 有有理根,求k 值. 解 因为0≠k ,所以()01322=+++x k kx 的根为()()(),25223229843222k k k k k k k x ++±+-=++±+-= 由原方程的根是有理根,所以()5222++k 必是完全平方式. 可设(),52222m k =++则(),52222=+-k m 即 ()(),512222⨯=--++k m k m因为m 、k 均是整数,所以⎩⎨⎧=--=++522122k m k m , ⎩⎨⎧=--=++122522k m k m ⎩⎨⎧-=---=++112522k m k m , ⎩⎨⎧-=---=++522122k m k m 解得,02或-=k 因为,0≠k 所以k 的值是-2.(13)判别式法一元二次方程根的判别式是中学阶段重要的基础知识,也是一种广泛应用的数学解题方法.该法根据一元二次方程的判别式ac b 42-=∆的值来判定方程是否有实数根,再结合根与系数的关系判定根的正负.熟练掌握该法,不仅可以巩固基础知识,还可以提高解题能力和基础知识的综合运用能力.例13 求方程431112=++xy y x 的整数解. 解 已知方程可化为()044342=-+-xy y x因为x 、y 均为整数,所以,06448162≥+-=∆x x 且为完全平方数.于是,令(),464481622n x x =+-其中n 为正整数所以()04322=-+-n x x因为x 、n 均为整数所以(),04492≥--=∆n 且为完全平方数,即有,742-n 为完全平方数.于是,再令,7422m n =-其中m 为正整数所以()()722=-+m n m n因为m n m n -+22与奇偶性相同,且m n m n -〉+22所以12,72=-=+m n m n由上.2=n相应的,032=-x x 解得()303===x x x ,所以舍去或把3=x 代入已知方程中得(),522舍去或==y y 所以2=y 所以()()2,3,=y x(14)因式分解法因式分解也是中学阶段重要的基础知识之一.它应用广泛,在多项式简化、计算、方程求根等问题中都有涉及.因式分解比较复杂,再解题时,根据所给题目的特点,灵活运用,将方程分解成若干个方程组来求解.这种方法的目的是增加方程的个数,这样就有可能消去某些未知数,或确定未知数的质因数,进而求出其解.利用因式分解法求不定方程()0≠=+abc cxy by ax 整数解的基本思路:将()0≠=+abc cxy by ax 转化为()()ab b cy a x =--后,若ab 可分解为,11Z b a b a ab i i ∈=== 则解的一般形式为,⎪⎩⎪⎨⎧+=+=c b b y c a a x ii 再取舍得其整数解. 例14 方程a b a ,4132=-、b 都是正整数,求该方程的正整数解. 解 已知方程可化为ab a b =-128所以()()9696812-=+-+b a ab即()()96128-=+-b a因为a 、b 都是正整数所以1212,0〉+〉b b这样964832241612或或或或=+b所以4=b 或12或20或36或84相应地2=a 或4或5或6或7所以方程的正整数解为:()()()()().84,7,36,6,20,5,12,4,4,24小结本文只针对不定方程整数解问题做一个初步的探索,归纳提炼出一些解这类题的常规方法和技巧,对解不定方程具有一定的指导意义;并且,还根据自己的积累,总结,发掘出一些新的方法,技巧,具有创新和学习的意义.不定方程(组)在人们的实际生活中有一定的现实意义和应用价值.正确解决这类问题的关键,是在把实际问题转化为数学问题后,依据问题中的条件,特别注意挖掘隐含的条件,使理论化与实际化相结合,灵活运用所学的数学知识,从而讨论出符合题意的解.本文对解决这类问题的方法做以总结,在解决实际问题时,应具体问题具体分析,灵活选用方法技巧,这对于学生的思维能力、分析问题、解决问题的能力的提高有很大的帮助.参考文献[1] 王云峰.判别式法[J].数学教学通讯,2011(07):14—16.[2] 濮安山.中学数学解题方法[M].黑龙江:哈尔滨师范大学出版社,2003年10月.[3] 王秀明.浅析不定方程的解法[J].数理化学习,2009(8):22—25.[4] 黄一生.因式分解在解题中的应用[J].初中生之友,2011(Z):32—35.[5] 张东海,尹敬会.浅谈韦达定理在解题中的应用[J].中学数学教学参考,1994(5):22-23.[6] 范浙杨 .初中数学竞赛中整数解问题的求解方法[J].中学数学研究,2006(12):17-19.[7] 黄细把.求不定分式方程整数解的几种方法[J].数理化学习(初中版),2005(3):27—31.[8] Grinelord.On a method of solving a class of Diophantineequations[M].Mathcomp.,32(1978):936-940[9] 陈志云.关于不定方程(组)的一些常用的初等解法[J].高等函数学报(自然科学版),1997(2):14-29.[10] 敏志奇.不定方程的若干解法[J].(自然科学版),1998(3):87-91.谢辞经过一点时间的查找资料、整理资料、写作论文,今天,我的论文已接近尾声,这也意味着我的大学生活即将拉上帷幕,此时此刻真的让我感慨万分.论文撰写过程的每一个细节都影响着整篇论文的质量,稍一疏忽变出差错,这使我联想到我们的做人处事又何尝不是如此,每一个标点符号对我的考验是千真万确的事,标点符号竟然有着如此重要的地位,我想标点符号大概与我们在日常生活中的每一个细节的决定、每一次不经意的言谈举止一样吧!虽然非常细微却同样举足轻重.当然,在这将要完结的时刻,我将送上我真诚的感谢.首先,我要感谢我的论文指导老师—高丽老师.从初稿的批阅到最后的完成自然都离不开高老师的悉心指导,大体上论文撰写过程中高老师的指导模式是这样的:学生写好—高老师逐一批改—高老师进行当面指导—学生改写一次高老师再批注、再指导,如此不厌其烦的进行指导.在这里我要感谢高老师的随和、平易近人带给我很多心灵上的启迪,我想这是我大学里最后的有意义的一课.我想多少年之后我依然会清晰地记着高老师的和蔼可亲.其次,我要感谢我的同学,你们不但给了我很多宝贵的意见,有时候会亲自帮我修改论文.尤其是在大家时间都这么紧的情况下,竟然有同学花费整天的时间帮助我,在这里,我想表达我的感谢.谢谢!非常感谢!除过这些良师益友,最后我要感谢那些学识渊博并愿意把他所拥有的知识发表于书刊、网站的编写者们,让我有机会了解那么多知识,让我在论文中有了自己的想法和研究,谢谢你们的启迪.再次送上我诚挚的感谢!。
例谈方程整数解问题的解法
一般来说,方程整数解问题可以通过下面几种解法来解决:
1. 穷举法:即把所有可能的整数解都列出来,然后检查每一个解是否满足方程的要求。
例如,求解2x + 3y = 6的整数解,可以列出x从0到6的所有可能的取值,然后检查每一个取值是否满足方程。
2. 因式分解法:即把方程的左边式子分解成两个因式,然后用因式分解的思想来求解方程的整数解。
例如,求解2x + 3y = 6的整数解,可以把左边式子分解成2x = 6 - 3y,然后把x和y分别替换成另一个整数,比如x = 3,y = 0,就可以求得一组整数解(3, 0)。
3. 迭代法:即从一个初始值开始,不断地迭代,直到找到满足方程要求的整数解。
例如,求解2x + 3y = 6的整数解,可以从(0,2)开始,不断地迭代,直到找到满足方程要求的整数解。
求不定方程整数解的方法浅析摘要:第一章:引言所谓不定方程,是指未知数的个数多于独立方程式的个数的方程或方程组.因此,要求一个不定方程的全部的解抑或是其全部整数解都是相当困难的,有时甚至是不可能的或不现实的.然而,在现实生活中,特别是一些具体的生活实例中,它的应用又是非常的广泛的;另外,不定方程的重要性在数学竞赛中也得到了充分体现,每年世界各地的数学竞赛中,不定方程问题都占有一席之地;它也是培养和考查学生数学思维的好材料,数学竞赛中的不定方程问题,不仅要求选手对初等数论的一般理论、方法要有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决相关问题.数千年来,不定方程问题一直是一些数学家甚至草根阶级的数学爱好者研究的热点问题,仿佛它是一块资源丰富的土地,每个人都能有希望在这占有自己的一席之地.也正是由于它具有这样一个特点,不定方程的类型,以及解各类不定方程的各种方法层出不穷,求解各类不定方程也几乎毫无固定章法可循,而本文,只针对于不定方程整数解问题做一个初步的探索,归纳提炼出一些解这类题的常规方法和技巧,对解不定方程具有一定的指导意义;并且着重针对中学数学竞赛中的不定方程整数解问题进行分析,研究其方法,思想,具有一定的教学意义;另外,还根据自己的积累,总结,发掘出一些新的方法,技巧,具有创新和学习的意义.第二章:解决某些不规则类不定方程的常规思想方法1、不等式分析法其一般操作步骤:①想办法通过构造不等式求出其中某个(某些)变量的范围; ②根据该变量的范围求出该变量的整数解;③分情况讨论该变量分别取某个整数解时其他变量的取值.常见的构造不等式的技巧:①注意题中的隐含条件,常见的如:1)若给出的是对称形式的不定方程,解题是可增加一个 “不妨设Λ≤≤≤z y x ”的条件.2)若题目要求是正整数解,则有“Λ,1,1,1≥≥≥z y x ”若要求是相异的正整数,则有“Λ,3,2,1≥≥≥z y x ”②利用基本不等式求变元范围,常见的如“()xy y x 42≥+”③分离变量:可将某个变量分离出来,并通过该变量的范围求 其他变量的范围.④可利用二次方程有整数解的条件,即“0≥∆”,或更强点的 “∆ 为完全平方数”.常规应用:①一般在某些对称式中能用到此方法进行放缩估值;②在具体的限制某个(或某些)变量的范围时,可分离变量利 用此方法对其他变量进行估值;③对于方程“02=++w vx ux (其中u,v,w 是常数或者是含其他变量的式子)”可利用关于x 的方程有整数根的条件,即“0≥∆”, 或更强点的“∆ 为完全平方数”对其他变量进行估值; ④具体能通过变形转化为关于某些整体的表达式,再利用常规 不等式进行估值,比如”转化为关于x+y 与xy 的表达式, 用()xy y x 42≥+等“例1:求不定方程()332y x y x +=+的正整数解.解: 方法1:由于此不定方程是对称的,这里不妨设1≥≥y x ,则 ()()22332x y x y x ≤+=+1)当x=1时,经检验:()()1,1,=y x 不满足方程;2)当x=2时,经检验:()() 1,2,=y x 满足方程,()() 2,2,=y x 满足方程;3)当x=3时,经检验:()()1,3,=y x 不满足方程,()()2,3,=y x 不满足方程,()()3,3,=y x 不满足方程;∴综上所述:取消不妨设,由对称性知:不定方程的正整数解为()()()(). 2,2 2,1 1,2,,,=y x 方法2:已知方程化为 ()()()222y xy x y x y x +-+=+令 t y x =+, 则即 t y x =+利用不等式:()xy y x 42≥+ 则: 1)当t=2时,此方程无正整数解;2) 当t=3时,2=y , 1=y3) 当t=4时,2=y . ∴综上所述:不定方程的正整数解为()()()(). 2,2 2,1 1,2,,,=y x 例2:求不定方程019262=-++-y x yx yx 的整数解.解:方法1:已知方程可化为:019)1322=-+--y x y yx (, 则 此方程可看成关于x 的一元二次方程有整数解的情况∴ )19(4)1342---=∆y y y (=4(1-5y)则∆必是一个完全平方数,这里不妨设:∴512m k -= 由求根公式:1531+-=m x 故方程要有整数根,当且仅当5, 11 51=-=+m m 或经检验:64==m m 或符合题意当4=m 时,21=x ,3142=x ,3-=y 当6=m 时,7161=x ,42=x ,7-=y ∴综上所述:原方程的整数解为)7,4(),3,2(),--=y x (方法2:已知方程化为:x x y 21)3(2-=-分离y: 2)321--=x x y ( 事实上当y=0时,x=21 ,不合题意,则有: 1≥y ,即 1)3212≥--x x ( ∴2)321-≥-x x ( (*)i )若,0≤x 则有:0)2(2≤+-x 无解ii )若,0>x 由x 为整数则有1≥x , 则(*)式化为:∴ 6)4(2≤-x∴. 6, 5, 4, 2=x当 2=x 时,y=-3;当4=x 时,y=-7;当5=x 时,25-=y 不合题意舍去;当6=x 时,911-=y 不合题意舍去; ∴综上所述:原方程的整数解为)7,4(),3,2(),--=y x ( 2、同余分析法其一般操作步骤:①方程两边同时取特殊数的模,消去部分未知数,将等式化为 同余式;②由同余式来估计剩下未知数的取值范围(或特征),从而达 到解不定方程的目的.注意:实现这一过程的关键在于取什么数作为模,这需要较强 的观察力!常规的取模原则:①能消去某些未知数时,取它的系数(或底数)作模; ②由费马小定理有“)3(mod 3x x ≡”③频率较高者有模3,模4,模8.常规应用:①事实上,同余理论在证明一个不定方程无整数解时有广泛 而方便的应用;②一般对于某些指数不定方程,或某些系数较大的方程应用 同余理论能起到一个很好的简化作用;③具体的:它能解决“Ax+By=C"型整数解问题.例1:求不定方程7x+19y=213的正整数解.解:方程两边同时7mod 得:两边同时乘以3:)7(mod 26-≡y,27 +=∴k y 代入原方程得: ∴ k x 1925-=k x 1925-= (其中k 为整数)令x>0,y>0, 得 ,027 >+k01925>-k ,∴ 192572-<<k∴k=0 ,1.∴方程的正整数解为()()().9,6, 2,25,=y x例2:证明:无整数解.证明: )16mod 151-1-16001599(≡≡=(*) 设x x x x 14321,,,,Λ是方程的整数解,1)若n x i 2=,则)16(mod 01644≡≡n x i ,2)若12+=n x i ,则)8(mod 12≡x i ,故182+=k x i ,从而)16(mod 111664)18224≡++=+=k k k x i (,)16mod 144144241 (≤+++∴x x x Λ与(*)式矛盾∴该方程无整数解.例3:求不定方程75-12=y x 的全部正整数解.解:i )若75-12=y x ,则方程两边模4得:)4mod 31(≡,矛盾;ii )若75-12=y x ,则方程两边模3,得:)3mod 11--()(≡y ,∴y 为奇数若x>1,方程两边模8得:即)8mod 15(≡y ,又 )8mod 152(≡∴y 2,这与y 为奇数矛盾∴ 1=x ,从而1=y综上所述:原方程有唯一的整数解()() 1,1,=y x .3、约数倍数分析法:此方法经常结合整除理论,是解决不定方程整数解十分有效的 方法,在数学竞赛中也是出现频率高,实用性强的一类方法. 常规的次方法分为两类:①因式分解法:1)将含未知数的代数式置于方程一边作因式分解;2)将方程另一边化为常数,并对其做质因数分解;3)考虑各因数的取值,分解成若干方程(组)来求解. ②分离未知量法:1)将方程的某个(或某些)未知量分离出来,目的是 将其他未知量转化到某个常数的分母位置;2)将处于分子位置的常数作质因数分解;3)考虑分母的取值,分解成若干方程(组)来求解部 分未知量.常规应用:①多半是解决某些能进行因式分解(或部分因式分解)的整 数不定方程问题,并且,有时要求学生因式分解功底十分 扎实;②具体的:它能解决“0=+++D Cy Bx Axy )0≠A (”型不定方程.例1:一队旅客乘坐汽车,要求每辆汽车的旅客人数相等,起初每辆汽车乘了22人,结果剩下1人未上车;如果有一辆汽车空着开走,那么所有旅客正好能平均分乘到其他各车上,已知每辆汽车最多只能容纳32人,求起初有多少俩汽车?有多少个旅客?解:设起初有m 俩汽车;开走一辆后,平均每辆汽车的人数为n 根据人数相等可列方程:)32,2( )1(122≤≥⋅-=+n m n m m ;整理为:)32,2( 0122≤≥=---n m m n mn ; 分析: 属于类型“0=+++D Cy Bx Axy )0≠A (”思路一(部分因式分解):这就化成了例1:求不定方程()72+=+xy y x 的整数解解:分离变量:Θ x,y 为整数∴3)2-y ( ∴ 3 12±±=-,y ∴此方程的解为 (-1,3),(5,1),(1,5),(3,-1)。