仙桃中学模拟试卷
- 格式:doc
- 大小:50.00 KB
- 文档页数:7
第一套:满分150分2020-2021年湖北省仙桃中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
数学参考答案及评分说明一、选择题(每小题3分,共30分)1—5 ACBAC 6—10 DABBD二、填空题(每小题3分,共15分)11. 12x2y3;12. -1≤x<1;13.43;14.;15. ①②③.三、解答题(共75分)16.解:原式=…………………4分=.…………………6分17. 证明:∵B是AD的中点,∴AB=BD.……………………………………………………1分∵BC∥DE,∴∠ABC=∠D.……………………………………………………2分在△ABC和△BDE中,,∴△ABC≌△BDE(SAS).…………………………………………5分∴∠C=∠E.…………………………………………………………6分18. 解:(1)30÷30%=100(名),答:本次调查共抽查了100名学生.………………………………2分(2)被抽查的100人中最喜爱羽毛球的人数为:100×5%=5(名),∴被抽查的100人中最喜爱篮球的人数为:100-30-10-15-5=40(名),900×=360(名).答:估计该校900名初中生中最喜爱篮球项目的人数为360名.………4分(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.……………………………………………………6分19. 解:如图:延长DA,交PE于点F,则DF⊥PE,AD=BC=2,AB=CD=EF=1.6,设AF=x m,∴DF=AF+AD=(x+2).…………………2分在Rt△PFA中,∠PAF=58°,∴PF=AF•tan58°≈1.6x.………………3分在Rt△PDF中,∠PDF=31°,∴tan31°=.………………4分∴x=1.2.……………………………………………………………5分经检验:x=1.2是原方程的根,……………………………………6分∴PF=1.6x=1.92.…………………………………………7分∴PE=PF+EF=1.92+1.6≈3.5.∴路灯顶部到地面的距离PE约为3.5米.………………………8分20. (1)解:∵点A的横坐标是2,∴将x=2代入y2=k2(x-2)+5=5.∴A(2,5).∴将A(2,5)代入得:k1=10.∴.………………………………………………2分∵点B的纵坐标是-4,∴将y=-4代入得,.∴B(,-4).∴将B(,-4)代入y2=k2(x-2)+5得:-4=k2(-2)+5.解得:k2=2.∴y2=2(x-2)+5=2x+1.……………………………………4分(2)证明:如图所示,由题意可得:C(,5),D(2,-4).………………5分设CD所在直线的表达式为y=kx+b,∴.解得:.∴CD所在直线的表达式为y=-2x.…………………………7分∴当x=0时,y=0.∴直线CD经过原点.…………………………………………8分21. (1)证明:∵点A ,B ,C ,E 均在⊙O 上,∴四边形ABCE 为圆内接四边形.∴∠ABC +∠AEC =180°.………………………………1分又∵∠CEF +∠AEC =180°,∴∠ABC =∠CEF . ………………………………………2分又∵AB=AC ,∴∠ABC =∠ACB . ………………………………………3分又∵∠AEB =∠ACB ,∠AEB =∠GEF ,∴∠GEF =∠CEF . …………………………………………4分(2)解:作AH ⊥BC 于H .又∵AB =AC ,∴AH 为BC 的垂直平分线.过点D 作DM ⊥BC 于点M ,连接OB .∵AH 为BC 的垂直平分线,∴点O 在AH 上.∴BH =HC =BC =3.∴OH=. (5)分∴AH=OA +OH=5+4=9.∵AH ⊥BC ,DM ⊥BC ,∴DM ∥AH .又AD = CD .∴.∴MH =HC =,DM =AH =. ……………………………6分∴BM =BH +MH =.……………………………………7分∴BD =.……………………8分22. 解:(1)如图,以OP 所在直线为y 轴,OB 所在直线为x 轴,O 为原点,建立平面直角坐标系.……………………………………………………1分∵OA =4m ,∴抛物线的对称轴是直线x =2. …………………………2分又OB =6m ,∴水线最高点与点B 之间的水平距离为:6-2=4(m ).………3分(2)①由题意,结合(1),又因为抛物线形水线也随之上下平移,∴可设过点P 的抛物线为y =a (x -2)2+h . …………………4分又P (0,1.5),B (6,0),A B CG D E .O H M F∴.∴,h=2.………………………5分∴所求解析式为y=(x-2)2+2.∴水线的最大高度为2m.……………………………………6分②令y=1.5,∴1.5=(x-2)2+2.……………………………………7分∴x=0或4.…………………………………………………8分∵为了不被水喷到,∴0<x<4.……………………………………………………10分23.解:(1)证明:∵四边形ABCD是矩形,∴∠ADC=90°.∵GD⊥DF,∴∠FDG=90°.∴∠ADG=∠CDF.…………………………………………1分又∵AG=CF,∠G=∠DFC=90°,∴△ADG≌△CDF(AAS).………………………………2分∴AD=CD.∴四边形ABCD是正方形;…………………………………3分(2)FH=AH+CF.………………………………………………4分理由:∵DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,∴四边形HFDG是矩形.……………………………………5分∴∠G=∠DFC=90°.∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°.∴∠ADG=∠CDF.∴△ADG≌△CDF(AAS).………………………………6分∴AG=CF,DG=DF.∴矩形HFDG是正方形.∴FH=HG=AH+AG=AH+CF;……………………………7分(3)连接AC,如图,……………………………………………8分∵四边形ABCD是正方形,∴∠BAC=45°,∵AH⊥CE,AH=HM,∴△AHM是等腰直角三角形.∴∠HAM=45°.∴∠HAB=∠MAC.……………………………………9分∵,∴△AHB∽△AMC.……………………………………10分∴.即BH=CM.…………………………………………11分24. 解:(1)∵二次函数y=ax2+bx+c的图象经过A(-1,0),B(3,0),(0,-3)三个点,∴.∴.∴二次函数的表达式为:y=x2-2x-3.……………………2分(2)过R作RT⊥PQ,垂足为T,……………………3分∵点Q的横坐标为m,点R的横坐标为m+,∴QT=.∵二次函数y=x2-2x-3的对称轴为直线x=1,∴点P,Q关于直线x=1对称.∵Q到x=1的距离是m-1,∴PQ=2(m-1)=2m-2.∴PT=2m-2+.……………………………4分∵y R=(m+)2-2(m+)-3,y T=y Q=m2-2m-3,∴RT=y R-y T=2m-2+2.……………………………5分∴在Rt△RPT中,tan∠RPQ===.………………6分(3)t 的取值范围是:或-1<t<0或0<t≤.……………………12分附答案如下:线段AB先向上平移3个单位长度,再向右平移1个单位长度,得到的线段设为A'B',则A'(0,3),B'(4,3),二次函数y=(x2-2x-3)与x轴交于A(-1,0),B(3,0)两点,对称轴为直线x=1,二次函数y=(x2-2x-3)与二次函数y=(x2-2x-3)只是开口大小和方向发生了变化,并且||越大,开口越小.若线段A'B'与二次函数y=(x2-2x-3)的图象只有一个交点,分以下三种情况:①当t>0时,开口向上,如图,线段A'B'与二次函数y=(x2-2x-3)的图象只有一个交点,当抛物线经过B'(4,3)时开口最大,最小,t最大,把(4,3)代入y=(x2-2x-3)得t=,∴0<t≤.②当t<0时,开口向下,如图,线段A'B'与二次函数y=(x2-2x-3)的图象只有一个交点(1,3),代入y=(x2-2x-3)得.③当t<0时,开口向下,如图,线段A'B'与二次函数y=(x2-2x-3)的图象只有一个交点,当抛物线经过A'(0,3)时开口最大,||最小,t最小,把(0,3)代入y=(x2-2x-3)得t=-1,∴-1<t<0.综上,t的取值范围是:或-1<t<0或0<t≤.。
湖北省荆州市仙桃中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数有极大值和极小值,则实数a的取值范围()A.(-1,2) B.(-∞,-3)∪(6,+∞)C.(-3,6) D.(-∞,-1)∪(2,+∞)参考答案:B2. 设函数,其中,则导数f ′(1)的取值范围为( )参考答案:【知识点】导数的应用B12【答案解析】A :∵,∴f'(x)=sinθx2+cosθx∴f′(1)=sinθ+cosθ=2sin(θ+)∵θ∈[0,],∴θ+∈[,]∴sin(θ+)∈[,1]∴f′(1)∈[,2],故答案为:A.【思路点拨】先对函数进行求导,然后将x=1代入,再由两角和与差的公式进行化简,根据θ的范围和正弦函数的性质可求得最后答案.3. 对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为M函数:(i)对任意的x∈[0,1],恒有f(x)≥0;(ii)当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.则下列四个函数中不是M函数的个数是()①f(x)=x2②f(x)=x2+1③f(x)=ln(x2+1)④f(x)=2x﹣1.A.1 B.2 C.3 D.4参考答案:A【考点】函数与方程的综合运用.【专题】函数的性质及应用.【分析】利用已知条件函数的新定义,对四个选项逐一验证两个条件,判断即可.【解答】解:(i)在[0,1]上,四个函数都满足;(ii)x1≥0,x2≥0,x1+x2≤1;对于①,,∴①满足;对于②,=2x1x2﹣1<0,∴②不满足.对于③,=而x1≥0,x2≥0,∴,∴,∴,∴,∴,∴③满足;对于④,=,∴④满足;故选:A.【点评】本题通过函数的运算与不等式的比较,另外也可以利用函数在定义域内的变化率、函数图象的基本形式来获得答案,本题对学生的运算求解能力和数形结合思想提出一定要求.4. 设实数a,b,c满足:,则下列不等式中不成立的是()A. B. C. D.参考答案:D因为,所以,所以,不等式右边全部成立;选项A,,成立选项B,由A可得,成立选项C,,成立5. 函数,当时下列式子大小关系正确的是()A. B.C. D.参考答案:C6. 已知二次函数,若是偶函数,则实数的值为( )A. -1B.1 C. -2 D. 2参考答案:D7. 复数(i为虚数单位)在复平面内对应的点所在象限为()第二象限 B.第一象限 C.第四象限 D.第三象限参考答案:C由,可知复数在复平面内对应的坐标为,所以复数在复平面内对应的点在第四象限.故选C.8. 已知△ABC中,内角A,B,C所对的边分别为a,b,c,若=,则sin(2A+)的取值范围是()A.(﹣,)B.(﹣,1] C.(,1] D.[﹣1,)参考答案:B【考点】GI:三角函数的化简求值.【分析】将已知的等式变形,能够得到A的范围,然后求sin(2A+)取值范围.【解答】解:因为=,由正弦定理得到,所以sinCcosA=sin(A+C)(1+cosC),展开整理得到cosC(sinA+sinB)=0,因为sinA+sinB≠0,所以cosC=0,所以C=,所以A+B=,所以0<A<,所以<2A+<,所以﹣<sin(2A+)≤1;所以sin(2A+)的取值范围是(﹣,1];故选B9. 如图,在边长为e(e为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为A. B.C. D.参考答案:C 略10. 已知函数的周期为2,当时,,如果,则函数的所有零点之和为( )A .2B .4C .6D .8参考答案: D二、 填空题:本大题共7小题,每小题4分,共28分11. 已知正数x ,y 满足,则当x ______时,的最小值是______.参考答案:1 【分析】 将化简成只关于的解析式,再换元利用基本不等式求解即可.【详解】正数x ,y 满足,,可得,,令则且,,当且仅当即,此时取最小值1,故答案为:【点睛】本题主要考查了基本不等式的应用,需要换元后再利用基本不等式,属于中等题型.12. 下列说法正确的为 .(填序号)①集合A= ,B={},若B A ,则-3a 3;②函数与直线x=l 的交点个数为0或l ;③函数y=f (2-x )与函数y=f (2+x )的图象关于直线x=2对称;④,+∞)时,函数的值域为R ;参考答案: ②13. 已知扇形的面积为,半径为1,则该扇形的圆心角的弧度数是.参考答案:14. 已知菱形ABCD 的边长为2,,则.参考答案:615. 已知.参考答案:16. 一物体沿直线以的单位:秒,v 的单位:米/秒)的速度做变速直线运动,则该物体从时刻t=0到5秒运动的路程s为米。
2025届湖北省仙桃中学高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( )A .21,06e ⎛⎫-⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭2.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .3.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合A B 的真子集的个数是( )A .8B .7C .4D .34.设集合{}2320M x x x =++>,集合1{|()4}2xN x =≤ ,则 M N ⋃=( )A .{}2x x ≥-B .{}1x x >-C .{}2x x ≤-D .R5.已知椭圆C :()222210x y a b a b +=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF 的三边长2BF ,AB ,2AF 成等差数列,则C 的离心率为( )A .12B .33C .22D .326.若函数()3cos 4sin f x x x =+在x θ=时取得最小值,则cos θ=( ) A .35B .45-C .45D .357.已知i 是虚数单位,则(2)i i +=( ) A .12i +B .12i -+C .12i --D .12i -8.已知(0,)απ∈,且tan 2α=,则cos2cos αα+=( )A .2535- B .535- C .535+ D .2535+ 9.等腰直角三角形ABE 的斜边AB 为正四面体ABCD 侧棱,直角边AE 绕斜边AB 旋转,则在旋转的过程中,有下列说法:(1)四面体E -BCD 的体积有最大值和最小值; (2)存在某个位置,使得AE BD ⊥;(3)设二面角D AB E --的平面角为θ,则DAE θ≥∠;(4)AE 的中点M 与AB 的中点N 连线交平面BCD 于点P ,则点P 的轨迹为椭圆. 其中,正确说法的个数是( ) A .1B .2C .3D .410.已知函数2(0x y a a -=>且1a ≠的图象恒过定点P ,则函数1mx y x n+=+图象以点P 为对称中心的充要条件是( )A .1,2m n ==-B .1,2m n =-=C .1,2m n ==D .1,2m n =-=-11.羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则1A 和1B 两人组成一队参加比赛的概率为( ) A .19B .29C .13D .4912.若,x y 满足约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最大值为( )A .10B .8C .5D .3二、填空题:本题共4小题,每小题5分,共20分。
湖北省仙桃市汉江高级中学2025届高三3月份第一次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,点()11,P x y ,()11,Q x y --在椭圆C 上,其中1>0x ,10y >,若22PQ OF =,11QF PF ≥,则椭圆C 的离心率的取值范围为( ) A.⎡⎢⎣⎭B.(2⎤⎦ C.12⎛⎤ ⎥ ⎝⎦D.(1⎤⎦ 2.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( )A .23B .2C .14D .133.已知函数32,1()ln ,1(1)x x x f x a x x x x ⎧-+<⎪=⎨≥⎪+⎩,若曲线()y f x =上始终存在两点A ,B ,使得OA OB ⊥,且AB 的中点在y轴上,则正实数a 的取值范围为( )A .(0,)+∞B .10,e ⎛⎤ ⎥⎝⎦C .1,e ∞⎡⎫+⎪⎢⎣⎭ D .[e,)+∞4.已知点(3,0),(0,3)A B -,若点P在曲线y =PAB △面积的最小值为( )A .6B .3 C.92-D.92+5.过双曲线22221x y a b-= (0,0)a b >>的左焦点F 作直线交双曲线的两天渐近线于A ,B 两点,若B 为线段FA 的中点,且OB FA ⊥(O 为坐标原点),则双曲线的离心率为( )ABC .2 D6.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面7.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是( )A .5i >B .8i >C .10i >D .12i >8.已知复数z 满足:34zi i =+(i 为虚数单位),则z =( )A .43i +B .43i -C .43i -+D .43i --9.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=,则()2AE AC +的最小值为( )A .232B .12C .252D .1310.设M 是ABC ∆边BC 上任意一点,N 为AM 的中点,若AN AB AC λμ=+,则λμ+的值为( )A .1B .12C .13D .1411.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A .33263cmB .36463cmC .33223cmD .36423cm 12.已知复数z ,满足(34)5z i i -=,则z =( )A .1B .5C .3D .5二、填空题:本题共4小题,每小题5分,共20分。
湖北仙桃中学九年级上册压轴题数学模拟试卷含详细答案一、压轴题1.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,过点B 作射线BB 1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF ⊥AC 交射线BB 1于F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD =AB ,并求出此时DE 的长度;(2)当△DEG 与△ACB 相似时,求t 的值.2.已知函数1221,(21)1y x m y m x =+-=++均为一次函数,m 为常数.(1)如图1,将直线AO 绕点()1,0A -逆时针旋转45°得到直线l ,直线l 交y 轴于点B .若直线l 恰好是1221,(21)1y x m y m x =+-=++中某个函数的图象,请直接写出点B 坐标以及m 可能的值;(2)若存在实数b ,使得||(1)10m b b ---=成立,求函数1221,(21)1y x m y m x =+-=++图象间的距离;(3)当1m 时,函数121y x m =+-图象分别交x 轴,y 轴于C ,E 两点,(21)1y m x =++图象交x 轴于D 点,将函数11y y y =的图象最低点F 向上平移5621m +个单位后刚好落在一次函数121y x m =+-图象上,设12y y y =的图象,线段OD ,线段OE 围成的图形面积为S ,试利用初中知识,探究S 的一个近似取值范围.(要求:说出一种得到S的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)3.在平面直角坐标系中,抛物线y=ax2+bx﹣3过点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D.(1)求抛物线的解析式;(2)点P为直线CD上的一个动点,连接BC;①如图1,是否存在点P,使∠PBC=∠BCO?若存在,求出所有满足条件的点P的坐标;若不存在,请说明理由;②如图2,点P在x轴上方,连接PA交抛物线于点N,∠PAB=∠BCO,点M在第三象限抛物线上,连接MN,当∠ANM=45°时,请直接写出点M的坐标.4.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.(探究)(1)证明:OBC≌OED;(2)若AB=8,设BC为x,OB2为y,是否存在x使得y有最小值,若存在求出x的值并求出y的最小值,若不存在,请说明理由.5.如图1,在平面直角坐标系中,抛物线与x轴交于点A(-1,0),B(点A在点B的左侧),交y轴与点(0,-3),抛物线的对称轴为直线x=1,点D为抛物线的顶点.(1)求该抛物线的解析式;(2)已知经过点A的直线y=kx+b(k>0)与抛物线在第一象限交于点E,连接AD,DE,BE ,当2ADE ABE S S ∆∆=时,求点E 的坐标.(3)如图2,在(2)中直线AE 与y 轴交于点F ,将点F 向下平移233+个单位长度得到Q ,连接QB .将△OQB 绕点O 逆时针旋转一定的角度α(0°<α<360°)得到OQ B '',直线B Q ''与x 轴交于点G .问在旋转过程中是否存在某个位置使得OQ G '是等腰三角形?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.6.在平面直角坐标系中,将函数y =x 2﹣2mx+m (x≤2m ,m 为常数)的图象记为G ,图象G 的最低点为P(x 0,y 0).(1)当y 0=﹣1时,求m 的值.(2)求y 0的最大值.(3)当图象G 与x 轴有两个交点时,设左边交点的横坐标为x 1,则x 1的取值范围是 .(4)点A 在图象G 上,且点A 的横坐标为2m ﹣2,点A 关于y 轴的对称点为点B ,当点A 不在坐标轴上时,以点A 、B 为顶点构造矩形ABCD ,使点C 、D 落在x 轴上,当图象G 在矩形ABCD 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.7.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.8.如图,⊙O 经过菱形ABCD 的三个顶点A 、C 、D ,且与AB 相切于点A .(1)求证:BC 为⊙O 的切线;(2)求∠B 的度数.(3)若⊙O 半径是4,点E 是弧AC 上的一个动点,过点E 作EM ⊥OA 于点M ,作EN ⊥OC 于点N ,连接MN ,问:在点E 从点A 运动到点C 的过程中,MN 的大小是否发生变化?如果不变化,请求出MN 的值;如果变化,请说明理由.9.定义:对于二次函数2y ax bx c =++(0)a ≠,我们称函数221()1111()222ax bx c x m y ax bx c x m ⎧++-≥⎪=⎨---+<⎪⎩为它的m 分函数(其中m 为常数).例如:2y x 的m 分函数为221()11()2x x m y x x m ⎧-≥⎪=⎨-+<⎪⎩.设二次函数244y x mx m =-+的m 分函数的图象为G .(1)直接写出图象G 对应的函数关系式.(2)当1m =时,求图象G 在14x -≤≤范围内的最高点和最低点的坐标.(3)当图象G 在x m ≥的部分与x 轴只有一个交点时,求m 的取值范围.(4)当0m >,图象G 到x 轴的距离为m 个单位的点有三个时,直接写出m 的取值范围.10.如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长.11.如图,在矩形ABCD中,AB=6,BC=8,点E,F分别在边BC,AB上,AF=BE=2,连结DE,DF,动点M在EF上从点E向终点F匀速运动,同时,动点N在射线CD上从点C沿CD方向匀速运动,当点M运动到EF的中点时,点N恰好与点D重合,点M到达终点时,M,N同时停止运动.(1)求EF的长.(2)设CN=x,EM=y,求y关于x的函数表达式,并写出自变量x的取值范围.(3)连结MN,当MN与△DEF的一边平行时,求CN的长.12.如图,正方形ABCD中,对角线AC、BD交于点O,E为OC上动点(与点O不重合),作AF⊥BE,垂足为G,交BO于H.连接OG、CG.(1)求证:AH=BE;(2)试探究:∠AGO 的度数是否为定值?请说明理由;(3)若OG⊥CG,BG=32,求△OGC的面积.13.如图,抛物线23y ax bx =++经过点A (1,0),B (4,0)与y 轴交于点C .(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出四边形PAOC 周长的最小值;若不存在,请说明理由.(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求M 的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy 中,已知直线AB 经过点A (﹣2,0),与y 轴的正半轴交于点B ,且OA =2OB .(1)求直线AB 的函数表达式;(2)点C 在直线AB 上,且BC =AB ,点E 是y 轴上的动点,直线EC 交x 轴于点D ,设点E 的坐标为(0,m )(m >2),求点D 的坐标(用含m 的代数式表示);(3)在(2)的条件下,若CE :CD =1:2,点F 是直线AB 上的动点,在直线AC 上方的平面内是否存在一点G ,使以C ,G ,F ,E 为顶点的四边形是菱形?若存在,请求出点G 的坐标;若不存在,请说明理由.15.如图1,已知Rt ABC ∆中,90ACB ∠=,2AC =,23BC =标系中位置如图所示,点,A C 在x 轴的负半轴上(点C 在点A 的右侧),顶点B 在第二象限,将ABC ∆沿AB 所在的直线翻折,点C 落在点D 位置(1)若点C 坐标为()1,0-时,求点D 的坐标;(2)若点B 和点D 在同一个反比例函数的图象上,求点C 坐标;(3)如图2,将四边形BCAD 向左平移,平移后的四边形记作四边形1111B C A D ,过点1D 的反比例函数(0)k y k x=≠的图象与CB 的延长线交于点E ,则在平移过程中,是否存在这样的k ,使得以点1,,E B D 为顶点的三角形是直角三角形且点11,,D B E 在同一条直线上?若存在,求出k 的值;若不存在,请说明理由16.如图,在矩形ABCD 中,已知AB=4,BC=2,E 为AB 的中点,设点P 是∠DAB 平分线上的一个动点(不与点A 重合).(1)证明:PD=PE .(2)连接PC ,求PC 的最小值.(3)设点O 是矩形ABCD 的对称中心,是否存在点P ,使∠DPO=90°?若存在,请直接写出AP 的长.17.在平面直角坐标系中,经过点()0,2A 且与33y x =-平行的直线,交x 轴于点B ,如图1所示.(1)试求B 点坐标,并直接写出ABO ∠的度数;(2)过()1,0M 的直线与AB 成45︒夹角,试求该直线与AB 交点的横坐标;(3)如图2,现有点(,)C m n 在线段AB 上运动,点,(320)D m -+在x 轴上,N 为线段CD 的中点.①试求点N 的纵坐标y 关于横坐标x 的函数关系式;②直接写出N 点的运动轨迹长度为 .18.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P 分别作x 轴、y 轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P 是“和谐点”.(1)点M (1,2)_____“和谐点”(填“是”或“不是”);若点P (a ,3)是第一象限内的一个“和谐点”,3x a y =⎧⎨=⎩是关于x ,y 的二元一次方程y x b =-+的解,求a ,b 的值. (2)如图②,点E 是线段PB 上一点,连接OE 并延长交AP 的延长线于点Q ,若点P (2,3),2OBE EPQ S S ∆∆-=,求点Q 的坐标;(3)如图③,连接OP ,将线段OP 向右平移3个单位长度,再向下平移1个单位长度,得到线段11O P .若M 是直线11O P 上的一动点,连接PM 、OM ,请画出图形并写出OMP ∠与1MPP ∠,1MOO ∠的数量关系.19.已知正方形ABCD 中AC 与BD 交于点,点M 在线段BD 上,作直线AM 交直线DC 于E ,过D 作DH ⊥AE 于H ,设直线DH 交AC 于N .(1)如图1,当M 在线段BO 上时,求证:MO=NO ;(2)如图2,当M 在线段OD 上,连接NE 和MN ,当EN//BD 时,①求证:四边形DENM 是菱形;②求证:BM =AB ;(3)在图3,当M 在线段OD 上,连接NE ,当NE ⊥BC 时,求证:AN 2=NC ⋅AC .20.如图①,在ABC 中,AB AC =,BAC α∠=,点D 、E 分别在边AB 、AC 上,AD AE =,连接BE ,点M 、P 、N 分别为DE 、BE 、BC 的中点.(1)观察猜想:图①中,线段PM 与PN 的数量关系是_____________,用含α的代数式表示MPN ∠的度数是________________________;(2)探究证明:把ADE 绕点A 顺时针方向旋转到图②的位置,连接MN ,BD ,CE ,当120α=︒时,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内任意旋转,若90α=︒,3AD =,7AB =,请直接写出线段MN 的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)当t=1时,AD=AB ,AE=1;(2)当t=34或 16或 94或 176时,△DEG 与△ACB 相似. 【解析】试题分析:(1)根据勾股定理得出AB=5,要使AD=AB =5,∵动点D 每秒5个单位的速度运动,∴t=1;(2)当△DEG 与△ACB 相似时,要分两种情况讨论,根据相似三角形的性质,列出比例式,求出DE 的表达式时,要分AD <AE 和AD >AE 两种情况讨论.试题解析:(1)∵∠ACB=90°,AC=3,BC=4, ∴2234+.∵AD=5t ,CE=3t , ∴当AD=AB 时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G 是EF 的中点, ∴GE=2.当AD <AE (即t <32)时,DE=AE ﹣AD=3+3t ﹣5t=3﹣2t , 若△DEG 与△ACB 相似,则 DE AC EG BC =或 DE BC EG AC =, ∴32324t -=或32423t -=, ∴t=34或t=16; 当AD >AE (即t >32)时,DE=AD ﹣AE=5t ﹣(3+3t )=2t ﹣3, 若△DEG 与△ACB 相似,则 DE AC EG BC =或 DE BC EG AC =, ∴23324t -=或23423t -=, 解得t=94或t=176; 综上所述,当t=34或 16或 94或 176时,△DEG 与△ACB 相似. 点睛:本题第一问比较简单,第二问的讨论较多,关键是要理清头绪,相似三角形的讨论,和线段的大小的选择,做题时要分清,分细.2.(1)(0,1);1或0 (2(3)348131200010S << 【解析】【分析】(1)由题意,可得点B 坐标,进而求得直线l 的解析式,再分情况讨论即可解的m 值; (2)由非负性解得m 和b 的值,进而得到两个函数解析式,设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH ,证得四边形GPTH 是正方形,求出GP 即为距离;(3)先根据解析式,用m 表示出点C 、E 、D 的坐标以及y 关于x 的表达式为()221221421y y y m x m x m =⋅+++-=,得知y 是关于x 的二次函数且开口向上、最低点为其顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭,根据坐标平移规则,得到关于m 的方程,解出m 值,即可得知点D 、E 的坐标且抛物线过D 、E 点,观察图象,即可得出S 的大体范围,如:ODE S S <,较小的可为平行于DE 且与抛物线相切时围成的图形面积. 【详解】解:(1)由题意可得点B 坐标为(0,1),设直线l 的表达式为y=kx+1,将点A (-1,0)代入得:k=1,所以直线l 的表达式为:y=x+1,若直线l 恰好是121y x m =+-的图象,则2m-1=1,解得:m=1,若直线l 恰好是2(21)1y m x =++的图象,则2m+1=1,解得:m=0,综上,()0,1B ,1m =或者0m =(2)如图,()110m b b ---=()110m b b ∴+--=0m ≥,10b -≥0m ∴=,10b -=0m ∴=11y x ∴=-,21y x =+设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH1OG OH OP OT ====,PH GT ⊥∴四边形GPTH 是正方形//GH PT ∴,90HGP ∠=︒,即HG GP ⊥2HP =2GP ∴=(3)121y x m =+-,()2211y m x =++121y x m =+-分别交x 轴,y 轴于C ,E 两点()12,0C m ∴-,()0,21E m -()2211y m x =++图象交x 轴于D 点1,021D m -∴+⎛⎫ ⎪⎝⎭()()()22122121121421y y y x m m x m x m x m =⋅=+-++=+++-⎡⎤⎣⎦1m >210m ∴+>∴二次函数()2221421y m x m x m =+++-开口向上,它的图象最低点在顶点∴顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭抛物线顶点F 向上平移5621m +,刚好在一次函数121y x m =+-图象上 ()()2222156*********m m m m m m -∴-+=-+-+++且1m2m ∴=2125163(3)(51)y y y x x x x =⋅=+=∴+++,∴13y x =+,251y x =+∴由13y x =+,251y x =+得到1,05D ⎛⎫- ⎪⎝⎭,()0,3E , 由25163y x x =++得到与x 轴,y 轴交点是()3,0-,1,05⎛⎫- ⎪⎝⎭,()0,3, ∴抛物线经过1,05D ⎛⎫- ⎪⎝⎭,()0,3E 两点 12y y y ∴=⋅的图象,线段OD ,线段OE 围成的图形是封闭图形,则S 即为该封闭图形的面积探究办法:利用规则图形面积来估算不规则图形的面积.探究过程:①观察大于S 的情况.很容易发现ODE S S <1,05D ⎛⎫- ⎪⎝⎭,()0,3E 11332510ODE S =⨯⨯=,310S ∴< (若有S 小于其他值情况,只要合理,参照赋分.)②观察小于S 的情况.选取小于S 的几个特殊值来估计更精确的S 的近似值,取值会因人而不同,下面推荐一种方法,选取以下三种特殊位置:位置一:如图当直线MN 与DE 平行且与抛物线有唯一交点时,设直线MN 与x ,y 轴分别交于M ,N1,05D ⎛⎫- ⎪⎝⎭,()0,3E ∴直线:153DE y x =+设直线1:15MN y x b =+25163y x x =++21530x x b ∴++-=()1430b ∴∆=-⨯-=,15920b = ∴直线59:1520MN y x =+ ∴点59,0300M ⎛⎫- ⎪⎝⎭15959348122030012000OMN S =⨯⨯=∴,348112000S ∴> 位置二:如图当直线DR 与抛物线有唯一交点时,直线DR 与y 轴交于点R设直线2:DR y kx b =+,1,05D ⎛⎫- ⎪⎝⎭∴直线1:5DR y kx k =+ 25163y x x =++()21516305x k x k +-∴+-= ()211645305k k ⎛⎫∴∆=--⨯⨯-= ⎪⎝⎭,14k = ∴直线14:145DR y x =+ ∴点140,5R ⎛⎫ ⎪⎝⎭1141725525ODR S ∴=⨯⨯=,725S ∴> 位置三:如图当直线EQ 与抛物线有唯一交点时,直线EQ 与x 轴交于点Q设直线:3EQ y tx =+25163y x x =++()25160x t x +∴-=()2160t ∴∆=-=,16t =∴直线:163EQ y x =+ ∴点3,016Q ⎛⎫- ⎪⎝⎭ 139321632OEQ S =⨯⨯=∴,932S ∴> 348197120003225>> 我们发现:在曲线DE 两端位置时的三角形的面积远离S 的值,由此估计在曲线DE 靠近中间部分时取值越接近S 的值探究的结论:按上述方法可得一个取值范围348131200010S << (备注:不同的探究方法会有不同的结论,因而会有不同的答案.只要来龙去脉清晰、合理,即可参照赋分,但若直接写出一个范围或者范围两端数值的差不在0.01之间不得分.)【点睛】本题是一道综合性很强的代数与几何相结合的压轴题,知识面广,涉及有旋转的性质、坐标平移规则、非负数的性质、一次函数的图象与性质、二次函数的图象与性质、一元二次方程、不规则图形面积的估计等知识,解答的关键是认真审题,找出相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,利用相关信息进行推理、探究、发现和计算.3.(1)y =x 2+2x ﹣3;(2)①存在,点P 的坐标为(1,﹣2)或(﹣5,﹣8);②点M(﹣43,﹣359) 【解析】【分析】 (1)y =ax 2+bx ﹣3=a (x +3)(x ﹣1),即可求解;(2)①分点P (P ′)在点C 的右侧、点P 在点C 的左侧两种情况,分别求解即可;②证明△AGR≌△RHM(AAS),则点M(m+n,n﹣m﹣3),利用点M在抛物线上和AR =NR,列出等式即可求解.【详解】解:(1)y=ax2+bx﹣3=a(x+3)(x﹣1),解得:a=1,故抛物线的表达式为:y=x2+2x﹣3①;(2)由抛物线的表达式知,点C、D的坐标分别为(0,﹣3)、(﹣1,﹣4),由点C、D的坐标知,直线CD的表达式为:y=x﹣3;tan∠BCO=13,则cos∠BCO=310;①当点P(P′)在点C的右侧时,∵∠P′AB=∠BCO,故P′B∥y轴,则点P′(1,﹣2);当点P在点C的左侧时,设直线PB交y轴于点H,过点H作HN⊥BC于点N,∵∠PBC=∠BCO,∴△BCH为等腰三角形,则BC=2CH•cos∠BCO=2×CH1022 3110 +=解得:CH=53,则OH=3﹣CH=43,故点H(0,﹣43),由点B、H的坐标得,直线BH的表达式为:y=43x﹣43②,联立①②并解得:58 xy=-⎧⎨=-⎩,故点P的坐标为(1,﹣2)或(﹣5,﹣8);②∵∠PAB=∠BCO,而tan∠BCO=13,故设直线AP的表达式为:y=13x s+,将点A的坐标代入上式并解得:s=1,故直线AP的表达式为:y=13x+1,联立①③并解得:43139xy⎧=⎪⎪⎨⎪=⎪⎩,故点N(43,139);设△AMN的外接圆为圆R,当∠ANM=45°时,则∠ARM=90°,设圆心R的坐标为(m,n),∵∠GRA+∠MRH=90°,∠MRH+∠RMH=90°,∴∠RMH=∠GAR,∵AR=MR,∠AGR=∠RHM=90°,∴△AGR≌△RHM(AAS),∴AG=m+3=RH,RG=﹣n=MH,∴点M(m+n,n﹣m﹣3),将点M的坐标代入抛物线表达式得:n﹣m﹣3=(m+n)2+2(m+n)﹣3③,由题意得:AR=NR,即(m+3)2=(m﹣43)2+(139)2④,联立③④并解得:29109mn⎧=-⎪⎪⎨⎪=-⎪⎩,故点M(﹣43,﹣359).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形全等、圆的基本知识等,其中(2)①,要注意分类求解,避免遗漏.4.(1)见解析;(2)x=4,16【分析】(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF .∵四边形ABCD 是矩形,∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90°由折叠得∠DEF =∠DAF ,AD =DE∴∠DEF =90°又∵∠ADE =∠DAF =90°,∴四边形ADEF 是矩形又∵AD =DE ,∴四边形ADEF 是正方形∴AD =EF =DE ,∠FDE =45°∵AD =BC ,∴BC =DE由折叠得∠BCO =∠DCO =45°∴∠BCO =∠DCO =∠FDE .∴OC =OD .在△OBC 与△OED 中,BC DE BCO FDE OC OD =⎧⎪∠=∠⎨⎪=⎩,,, ∴△OBC ≌△OED (SAS );(2)连接EF 、BE .∵四边形ABCD 是矩形,∴CD =AB =8.由(1)知,BC =DE∵BC =x ,∴CE =8-x由(1)知△OBC ≌△OED∴OB =OE ,∠OED =∠OBC .∵∠OED +∠OEC =180°,∴∠OBC +∠OEC =180°.在四边形OBCE 中,∠BCE =90°,∠BCE +∠OBC +∠OEC +∠BOE =360°,∴∠BOE =90°.在Rt △OBE 中,OB 2+OE 2=BE 2.在Rt △BCE 中,BC 2+EC 2=BE 2.∴OB 2+OE 2=BC 2+CE 2.∵OB 2=y ,∴y +y =x 2+(8-x)2.∴y =x 2-8x +32∴当x=4时,y 有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.5.(1)223y x x =--;(2)点E 的坐标为(113,289);(3)存在;点Q '的坐标332-)或(3233,32)或(32-,3). 【解析】【分析】(1)利用待定系数法代入计算,结合对称轴,即可求出解析式;(2)取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;然后求出直线AE 的解析式,结合抛物线的解析式,即可求出点E 的坐标;(3)由题意,先求出点F 的坐标,然后得到点Q 的坐标,得到OQ 和OB 的长度,然后结合等腰三角形的性质进行分类讨论,可分为四种情况进行分析,分别求出点Q '的坐标即可.【详解】解:(1)根据题意,设二次函数的解析式为2y ax bx c =++,∵对称轴为12b x a=-=,则2b a =-, 把点(-1,0),点(0,-3)代入,有 03a b c c -+=⎧⎨=-⎩, 又∵2b a =-,∴1a =,2b =-,3b =-,∴抛物线的解析式为:223y x x =--;(2)由(1)223y x x =--可知,顶点D 的坐标为(1,4-),点B 为(3,0),∵点A 为(1-,0),∴AD 的中点M 的坐标为(0,-2);如图,连接AD ,DE ,BE ,取AD 中点M ,连接BM ,过点A 作AE ∥BM ,交抛物线于点E ;此时点D 到直线AE 的距离等于点B 到直线AE 距离的2倍,即2ADE ABE S S ∆∆=,设直线BM 为y kx h =+,把点B 、点M 代入,有302k h h +=⎧⎨=-⎩, ∴直线BM 为223y x =-, ∴直线AE 的斜率为23, ∵点A 为(1-,0),∴直线AE 为2233y x =+,∴2223323y x y x x ⎧=+⎪⎨⎪=--⎩,解得:10x y =-⎧⎨=⎩(舍去)或113289x y ⎧=⎪⎪⎨⎪=⎪⎩; ∴点E 的坐标为(113,289); (3)由(2)可知,直线AE 为2233y x =+, ∴点F 的坐标为(0,23), ∵将点F 向下平移233+个单位长度得到Q , ∴点Q 的坐标为(0,3-),∴3OQ =,∵点B 为(3,0),则OB=3,在Rt △OBQ 中,3tan 33OB OQB OQ ∠===, ∴60OQB ∠=︒,由旋转的性质,得60Q OQB '∠=∠=︒,3OQ OQ '==, ①当3OG OQ '==时,OQ G '∆是等边三角形,如图:∴点G 3,0),∴点Q '3 ∴点Q '的坐标为(32,32-); ②当3OQ Q G ''==OQ G '∆是等腰三角形,如图:∵60OQ B ''∠=︒,∴30Q OG '∠=︒, ∵3OQ '=,∴点Q '的坐标为(32,32); ③当3OG OQ '==时,OQ G '∆是等边三角形,如图:此时点G 的坐标为(3,0),∴点Q '的坐标为(3,32); ④当3Q G OQ ''==OQ G '∆是等腰三角形,如图:此时30Q OG '∠=︒,∴点Q '的坐标为(32-,3); 综合上述,点Q '332-)或(3233,32)或(32-,3). 【点睛】本题考查了二次函数的综合问题,也考查了解直角三角形,旋转的性质,等边三角形的性质,等腰三角形的性质,一次函数的性质,以及坐标与图形,解题的关键是熟练掌握图形的运动问题,正确的确定点Q '的位置是关键;注意运用数形结合的思想,分类讨论的思想进行解题.6.(151+或﹣1;(2)14;(3)0<x 1<1;(4)m =0或m >43或23≤m <1 【解析】【分析】(1)分m >0,m =0,m <0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G 与x 轴有两个交点时,m >0,求出当抛物线顶点在x 轴上时m 的值,利用图象法判断即可;(4)分四种情形:①m <0,②m =0,③m >1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m >0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=512+或512-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m的值为512或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m ﹣2<0, 解得23≤m <1, 综上所述,满足条件m 的值为m =0或m >43或23≤m <1. 【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.7.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】 (1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =,点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.8.(1)见解析;(2)60°;(3)不变,MN=3【解析】【分析】(1)连接AO 、CO 、BO 、BD ,根据菱形的性质得到AB=CB ,然后根据SSS 即可证明两三角形全等;(2)首先根据全等的性质得到O 、B 、D 共线,然后根据三角形外角的性质得到∠BOC =2∠ODC =2∠OBC ,最终根据余角的性质即可求解;(3)延长EM 、EN 交⊙O 于F 、G ,连接FG 、OF 、OG ,过点O 作OH 垂直于FG 于点H ,根据垂径定理和三角形中位线的性质得到MN=12FG,根据(2)问结论结合圆周角定理求得∠FOH=60°,最后根据含30°的直角三角形的边角关系即可求解.【详解】(1)如图,连接AO、CO、BO、BD.∵AB是⊙O的切线,∴OA⊥AB∴∠BAO=90°.∵四边形ABCD是菱形∴AB=CB又∵AO=CO,BO=BO∴△BAO≌△BCO(SSS)∴∠BCO=∠BAO=90°,即OC⊥BC∴BC为⊙O的切线(2)∵△ABO≌△CBO∴∠ABO=∠CBO∵四边形ABCD是菱形∴BD平分∠ABC,CB=CD∴点O在BD上∵∠BOC=∠ODC+∠OCD,OD=OC∴∠ODC=∠OCD∴∠BOC=2∠ODC∵CB=CD∴∠OBC=∠ODC∴∠BOC=2∠OBC∵∠BOC+∠OBC=90°∴∠OBC=30°∴∠ABC=2∠OBC=60°即∠B=60°;(3)不变延长EM、EN交⊙O于F、G,连接FG、OF、OG.过点O作OH垂直于FG于点H.∵EM ⊥OA 、EN ⊥OC .∴M 、N 是EF 、EG 的中点.∴MN 是△EFG 的中位线∴MN=12FG . 由(2)知∠ABC =60°∴∠AOC =120°∴∠FOG =∠AOC =120°∴∠MEN =12∠FOG =60°, ∴∠FOH =60°,∴OH=2,FH=23∴FG=43∴MN=12FG=23 【点睛】本题考查了菱形的性质,三角形全等的判定和性质,垂径定理,圆周角定理,正确的引出辅助线,熟练利用三角形和圆的知识点求解是本题的关键.9.(1)22441()1221()2x mx m x m y x mx m x m ⎧-+-≥⎪=⎨-+-+<⎪⎩(2)图象G 在14x -≤≤范围内的最高点和最低点的坐标分别为(4,3),71,2⎛⎫-- ⎪⎝⎭(3)当13m <或12m =或1m 时,图象G 在x m ≥的部分与x 轴只有一个交点(451333m ++<<,1334m -<< 【解析】【分析】(1)根据分函数的定义直角写成关系式即可;(2)将m=1代入(1)所得的分函数可得2243(1)121(1)2x x x y x x x ⎧-+≥⎪=⎨-+-<⎪⎩,然后分11x -≤<和14x ≤≤两种情况分别求出最高点和最低点的坐标,最后比较最大值和最小值即可解答;(3)由于图象G 在x m ≥的部分与x 轴只有一个交点时,则可令对应二元一次方程的根的判别式等于0,即可确定m 的取值;同时发现无论m 取何实数、该函数的图象与x 轴总有交点,再令x=m 代入原函数解析式,求出m 的值,据此求出m 的取值范围;(4)先令2441x mx m m -+-=或-m①,利用根的判别式小于零确定求出m 的取值范围,然后再令x=m 代入2441x mx m m -+-=或-m②,然后再令判别式小于零求出m 的取值范围,令x=m 代入212212x mx m m -+-+=或-m③,令判别式小于零求出m 的范围,然后取①②③两两的共同部分即为m 的取值范围.【详解】 (1)图象G 对应的函数关系式为22441()1221()2x mx m x m y x mx m x m ⎧-+-≥⎪=⎨-+-+<⎪⎩ (2)当1m =时,图象G 对应的函数关系式为2243(1)121(1)2x x x y x x x ⎧-+≥⎪=⎨-+-<⎪⎩.当11x -≤<时,将21212y x x =-+-配方,得21(2)12y x =--+. 所以函数值y 随自变量x 的增大而增大,此时函数有最小值,无最大值. 所以当1x =-时,函数值y 取得最小值,最小值为72y =-. 所以最低点的坐标为71,2⎛⎫--⎪⎝⎭. 当14x ≤≤时,将243y x x =-+配方,得2(2)1y x =--.所以当2x =时,函数值y 取得最小值,最小值为1y =-所以当4x =时,函数值y 取得最大值,最大值为3y =所以最低点的坐标为(2,1)-,最高点的坐标为(4,3)所以,图象G 在14x -≤≤范围内的最高点和最低点的坐标分别为(4,3),71,2⎛⎫-- ⎪⎝⎭. (3)当x m ≥时,令0y =,则24410x mx m -+-= 2(4)4(41)m m ∆=--24(21)m =-所以无论m 取何实数,该函数的图象与x 轴总有交点. 所以当12m =时,图象G 在12x ≥的部分与x 轴只有一个交点. 当x m =时,222441341y m m m m m =-+-=-+-.令0y =,则23410m m -+-=. 解得113m =,21m =. 所以当13m <或1m 时,图象G 在x m ≥的部分与x 轴只有一个交点. 综上所述,当13m <或12m =或1m 时,图象G 在x m ≥的部分与x 轴只有一个交点. (4)当2441x mx m m -+-=即24310x mx m -+-=,△=()()22443116124m m m m --=-+>0, 方∵212416452<0-⨯⨯=-,∴m 不存在;当2441x mx m m -+-=-即24510x mx m -+-=,△=()()22445116204m m m m --=-+<0,解得14<m <1;① 将x=m 代入2441>x mx m m -+-得-3m 2+3m-1>0,因△=()()234133<0-⨯--=-则m不存在;将x=-m 代入2441>x mx m m -+-得-3m 2+5m-1>0, 解得5<6m --或5>6m +;②将x=m 代入212212x mx m m -+-+=得 221023<m m -+,解得m <33m +<③ 将x=m 代入212212x mx m m -+-+=-得 21=023m m -+,因△=23145<02-⨯=-故m 不存在;在①②③两两同时满足的为5363m ++<<,1343m -<<,即为图象G 到x 轴的距离为m 个单位的点有三个时的m 的取值范围.【点睛】本题属于二次函数综合题,考查了新定义函数的定义、二次函数最值和二次函数图像,正确运用二次函数图像的性质和分类讨论思想是解答本题的关键.10.(1)21(6)33y x =--;(2)3)32 【解析】试题分析:(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点坐标式,然后将C 点坐标代入求解即可.(2)由于DE 是⊙A 的切线,连接AE ,那么根据切线的性质知AE ⊥DE ,在Rt △AED 中,。
图 1 湖北省仙桃三中2022年中考物理模拟试卷一 人教新课标版一、选择题每小题只有一个选项符合题意,每小题2分,共36分1、下面是小明同学对一些物理量的估测,合理的是 ( ) A .地球的半径约6400m B .分子的的直径约为10-10m C .教室内空气的质量约为100g D .人步行的速度约为20m/2、小明家的一杆秤配有一铁质秤砣,在下列哪种情况下该秤砣的质量会发生变化( ) A .配在其他杆秤上 B .生锈了 C .掉到了地毯上 D .带到月球上去3、小明对不同物质a 、b 、c 组成的三个实心体的质量和体积进行了探究,并绘成如图所示图象,由图可知( )A .a 物质密度是b 物质密度的2倍B .c 物质的密度最大C .b 物质的密度是2×103g/m 3D .条件不足,无法判断4、3 如图1是三种不同物质的质量和体积关系的图线,则由图线 可知:( ) A ρ1>ρ2>ρ3 Bρ12009年4月1日F B .G =F C .G <F D .无法比较12、小明和小亮两同学站在滑板上,在旱冰场上相对而立,如果小明用力推小亮,小亮向后退,如图所示。
以下分析正确的是( )A .小亮向后退,说明小明对小亮的推力大于小亮对小明的推力B .小明对小亮的推力与小亮对小明的推力是一对平衡力C .小明和小亮在竖直方向上受力不平衡D .小亮由静止变为后退,说明力可以改变物体的运动状态二、填空与作图13~16题各4分,17题6分,18题4分,共26分13、保护生态环境已作为我市的一项重要措施。
流经我市境内的长江水中就含有大量的泥沙,武穴实验中学物理“STS ”小组的同学测量当地江水得出,每升长江水中含泥沙质量为15g ,若含沙量指每立方米江水中含泥沙的质量,则当地长江水的含沙量为_______g/m 3;设在某一时段里,该江段长江水流量为1000m 3/min ,则每小时将流失约_________g 的泥沙。
湖北仙桃中学中考第二次模拟考试数学试题中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;的面积;(2)当BE所在的直线将△OEF的面积分为3:1时,求S△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2,在Rt △ACO 中,AO =,∴sin ∠OAB =. 故答案为:. 15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm ,∴△OBC 是等边三角形,∴∠BOC =60°,∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°.∴∠A =30°或150°.故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2,∴AP =PE =x ,PD =AD ﹣AP =2﹣x ,∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x 故答案为:y ═﹣x 2+3x .三.解答题17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=32.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;(2)当BE所在的直线将△OEF的面积分为3:1时,求S的面积;△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2, 在Rt △ACO 中,AO =,∴sin ∠OAB =.故答案为:.15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm , ∴△OBC 是等边三角形, ∴∠BOC =60°, ∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°. ∴∠A =30°或150°. 故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2, ∴AP =PE =x ,PD =AD ﹣AP =2﹣x , ∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x故答案为:y ═﹣x 2+3x . 三.解答题 17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=32.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)。
湖北仙桃中学七年级上册压轴题数学模拟试卷及答案一、压轴题1.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.2.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON 的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).3.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.4.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.5.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.6.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值7.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)8.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
2012年XX 仙桃中学语文模拟试卷一、(15分)1.下列词语中加点的字,每对的读音都不同...的一组是(3分)( ) A .威慑./蹑.足 漂.浮物/漂.白粉 哄.堂大笑/哄.抬物价 B .洗漱./咳嗽. 麦秆.儿/赶.潮流 咄.咄怪事/弄巧成拙. C .癖.好/偏僻. 煤气炉./芦.花荡 良莠.不齐/循循善诱. D .狙.击/诅.咒 XX 陵./三棱.柱 酩.酊大醉/刻骨铭.心 2.下列各组词语中,没有错别字的一组是(3分)( )A .精兵简政 名门旺族 世外桃源 休养生息B .融会贯通 明察秋毫 金碧辉煌 沧海一粟C .随声附和 饮鸩止渴 闻过饰非 食不果腹D .迫不及待 口蜜腹剑 无事生非 棉里藏针3.依次填入下列各句横线处得词语,最恰当的一组是(3分)( )①外交部发言人姜瑜24日在例行记者会上说,中方要求韩方妥善处理被扣中方渔船的相关问题,中方有关人员的合法权益。
②见义勇为者的壮举感天动地,值得颂扬,但他们做出的巨大牺牲,更需要给予法律救济和制度。
③这次XX 自治区雪灾,主要发生在北疆地区的阿勒泰、塔城、伊犁、昌吉和东疆的哈密地区、巴州的巴音布鲁克,涉及6个地(州)、29个县(市),受灾人口90多万人,被困牲畜1000多万头(只),部分国道、省道和大部分县乡道路长时间受阻,党和政府对此关怀得。
A. 保障 抚慰 无微不至B. 保证 抚慰 无微不至C. 保障 安抚无所不至D. 保证安抚无所不至3.答案:A4.下列各句中,没有语病、句意明确的一句是(3分)( )A. 温家宝强调,国务院已责成有关部门抓紧完善校车标准,做好校车设计、改造、生产、配备等工作,并建立相应管理制度。
B. 阿拉伯国家联盟2011年11月26日在开罗开会商讨制裁叙利亚可能性,而伊拉克总统和外长则分别出面讲话,前者极力反对军事干涉叙利亚局势,后者反对对叙利亚施加经济制裁。
C. 中石油从今年9月1日起,组织开展了为期50天的安全生产大检查,共查出安全事故隐患2.55万项、各类问题约4.44万左右个,因安全违规给予行政处分的有37人,经济处罚52万多元。
D. 2011年11月27日,一年一度的“国考”——中央机关及其直属机构公务员考试录用公共科目笔试。
全国共有96万人左右报名确认参加考试,录用比率约为53:1。
5.下列关于名著的表述中,不正确的一项是(3分)( )下列关于名著的表述中,不正确的一项是(3分)( )A. 《雷雨》中作者通过封建大家庭的罪恶和工人与资本家之间的矛盾冲突,反映了正在酝酿社会大变动的20年代的中国社会现实以雷雨象征作品的社会环境。
意在告诉人们,在中国半殖民地半封建的沉闷抑郁的空气里,一场改变现实的雷雨即将来临;。
B. 鲁迅的小说篇篇不同,各具特色:《孔乙己》以人物的悲剧命运和环境的喜剧氛围,给读者留下了鲜活的印象;《药》的明暗两条线索,显示了艺术构成的才华;《一件小事》开头、结尾的杂文笔法,和中间叙事散文的笔调浑然天成……C. 孔子对学习要求极其严格,“学如不及,犹恐失之”(《论语•泰伯》),他常常担心自己的学习时间不够,因此时时策勉自己。
D. 曹雪芹是中国文学史上对封建社会失去希望的第一位作家,但他却超不脱历史的局限。
他是以一块怀才不遇、无力补天的顽石的身份,无可奈何地叹息这座封建大厦朽败倾颓的。
在他生活的时代,他找不到更先进的思想武器,最终还是把这一切归结于宿命,归结于“色”“空”。
二、(29分)阅读下面文章,完成文后题目。
(9分)儿童文学:还原孩子的天空儿童文学,顾名思义,就是专为少年儿童创作的文学作品。
它的一大特别要求就是通俗易懂,生动活泼。
作品的主题要明确突出,形象具体鲜明,结构单纯,语言浅显精练,情节有趣,想象丰富,而且其内容、形式及表现手法都尽可能适合于少年儿童的生理心理特点,容易为他们所接受。
新世纪儿童文学进入了一个多元化的时代,进入了一个实力团队纷争和实力作家竞技的状态。
今天的儿童文学作家们追求市场效益,创作越来越商业化和娱乐化。
今天儿童文学的著名作家越来越多了,但权威性在消失。
新世纪儿童文学的格局变化,带来多方面的影响,也促使我们对儿童文学创作进行新的思考。
我们必须重新审视儿童文学的价值、阅读市场、作家的创作姿态等问题。
儿童文学的价值包含以下方面:一是对儿童生命和生活的基本状态的呈现,这使儿童文学成为成年人了解儿童世界的窗口。
二是对成人生命与生活的基本状态的适当表现,这使儿童文学成为儿童了解成年人世界的窗口。
三是比如爱,比如合作,比如同情心和悲悯情怀等人类的基本情感。
四是成年人的文化期待,包括成年人作为父母亲角色对儿童的呵护与关爱,以及父母亲对儿童的教育意愿和成长要求。
五是对传统文化的尊重,对民族历史的理解。
六是对母语意识的培养。
儿童文学应该是很慎重的文学,值得我们不仅在文字上选用美的修辞,而且要在主题和内涵上进行母语文化的提炼和选择。
中国儿童文学拥有着世界上最大的阅读市场——3亿少年儿童。
但是现在占据我们市场的多是国外的引进版儿童文学书籍。
《哈利·波特》的市场包装、市场策划、市场运营都给中国儿童文学上了一课。
它有书籍、电影、玩具、等一系列产品,彼此之间形成联动。
相比之下,我国儿童文化商品市场的经营者和参与者在观念上都要转变,应该把儿童文学当作产业,按照市场运行规律来操作。
我们觉得要制造本土的“哈利·波特”,就不能把电影、电视当作儿童文学的敌人,而应该利用所有的市场手段,五指成拳,整合中国的文化力量来发展儿童文学。
一个优秀的儿童文学作家,应该具备比一个优秀的成年人文学作家还要多一层东西,因为成年人文学要求文学性和思想性,儿童文学除了这些,还需要一个深入浅出的过程。
要从表面纷繁复杂的人间世象中提炼出一个让少年儿童能够接受的表现形式,让他们喜欢看,这就是书写的角度的问题。
儿童文学,要从内容上、角度上还原孩子的天空。
儿童不仅仅是一个家庭的希望所在,也是一个国家、一个民族和整个人类传承不息的根本希望所在。
儿童的健康成长,离不开社会各方面的共同努力,自然也脱离不了儿童文学的熏陶。
如何创作出适合孩子们阅读的图书,在潜移默化中完成教育、引导的社会责任,将继续成为社会要解决的重要话题。
6.从原文看,下列对“儿童文学”的理解,不正确的一项是(3分)()A.儿童文学是专门为少年儿童创作的文学作品,要求通俗易懂,生动活泼,在创作内容和角度等方面还原孩子的天空。
B.儿童文学作品的主题要明确突出,形象要鲜明具体,结构单纯,语言浅显精练,情节有趣,想象丰富,让孩子们容易接受。
C.只有符合市场价值,利用所有的市场手段,儿童文学才能有更大的发展空间,像《哈利·波特》一样,把儿童文学当作产业。
D.儿童文学作品的内容、形式及表现手法都要尽可能适合于少年儿童的生理心理特点,让孩子在潜移默化中受到熏陶。
7.下列各项关于儿童文学的价值和对儿童文学作家的要求,不符合文意的一项是(3分)()A.儿童文学能呈现儿童的和适当表现成年人的生活和生命的基本状态,所以儿童文学应成为成年人和儿童相互了解对方世界的窗口。
B.儿童文学的价值应包含人类的基本情感和成年人的文化期待,以及对传统文化的尊重、对民族历史的理解和对母语意识的培养。
C.儿童文学需要一个深入浅出的过程,一个优秀的儿童文学作家应比一个优秀的成年人文学作家在表现形式上有更深一层的东西。
D.如何创作更多适合孩子们阅读的图书,在潜移默化中完成教育、引导孩子的社会责任是儿童文学作家乃至整个社会要解决的重要课题。
8.下列对原文内容的理解和分析,不正确的一项是(3分)()A.今天的儿童文学作家们追求市场效益,创作越来越商业化和娱乐化,今天儿童文学缺少权威,也缺少优秀的儿童文学作品。
B.中国儿童文学拥有世界上最大的阅读市场,儿童文化商品市场的经营者和参与者应该把儿童文学当作产业,按照市场运行规律,利用所有市场手段,整合中国的文化力量(包括电影、电视)来促进儿童文学的发展。
C.如今儿童文学的著名作家越来越多了,但权威性在消失,我们需要重新审视儿童文学的价值、阅读市场、作家的创作姿态等问题。
D.儿童是家庭、国家、民族和整个人类传承不息的希望。
要为孩子们提供更多更好的儿童文学作品,努力构建促进儿童健康成长的社会环境。
阅读下面的文字,完成文后题目。
(20分)中国学术的大损失朱自清大家都知道闻先生是一位诗人。
他的《红烛》,尤其他的《死水》,读过的人很多。
这些集子的特色之一,是那些爱国诗。
在抗战以前他也许是唯一的爱国新诗人。
这里可以看出他对文学的态度。
新文学运动以来,许多作者都认识了文学的政治性和社会性而有所表现,可是闻先生认识得特别亲切,表现得特别强烈。
他在过去的诗人中最敬爱杜甫,就因为杜诗政治性和社会性最浓厚。
后来他更进一步,注意原始人的歌舞:这是集团的艺术,也是与生活打成一片的艺术。
他要的是热情,是力量,是火一样的生命。
但是他并不忽略语言的技巧,大家都记得他是提倡诗的新格律的人,也是创造诗的新格律的人。
他创造自己的诗的语言,并且创造自己的散文的语言。
诗大家都知道,不必细说;散文如《唐诗杂论》,可惜只有五篇,那经济的字句,那完密而短小的篇幅,简直是诗。
我听他近来的演说,有两三回也是这么精悍,字字句句好似称量而出,却又那么自然流畅。
他因此也特别能够体会古代语言的曲折处。
当然,以上这些都得靠学力,但是更得靠才气,也就是想象。
单就读古书而论,固然得先通文字声韵之学;可是还不够,要没有活泼的想象力,就只能做出点滴的工作,决不能融会贯通的。
这里需要细心,更需要大胆。
闻先生能够体会到古代语言的表现方式,他的校勘古书,有些地方胆大得吓人,但却得细心吟味所得;平心静气读下去,不由人不信。
校书本有死校活校之分;他自然是活校,而因为知识和技术的一般进步,他的成就骎骎乎驾活校的高邮王氏父子而上之。
他研究中国古代,可是他要使局部化了石的古代复活在现代人的心目中。
因为这古代与现代究竟属于一个社会,一个国家,而历史是联贯的。
我们要客观地认识古代;可是,是“我们”在客观地认识古代,现代的我们要能够在心目中想象古代的生活,要能够在心目中分享古代的生活,才能认识那活的古代,也许才是那真的古代──这也才是客观地认识古代。
闻先生研究伏羲的故事或神话,是将这神话跟人们的生活打成一片;神话不是空想,不是娱乐,而是人民的生命欲和生活力的表现。
这是死活存亡的消息,是人与自然斗争的纪录,非同小可。
他研究《楚辞》的神话,也是一样的态度。
他看屈原,也将他放在整个时代整个社会里看。
他承认屈原是伟大的天才;但天才是活人,不是偶像,只有这么看,屈原的真面目也许才能再现在我们心中。
他研究《周易》里的故事,也是先有一整个社会的影像在心里。
研究《诗经》也如此,他常说笑话,说他研究《诗经》,越来越“形而下”了──其实这正表现着生命的力量。