函数的基本性质练习题及答案
- 格式:doc
- 大小:134.50 KB
- 文档页数:4
函数的基本性质一.选择题(共8小题)1.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A.y=﹣x3B.y=ln|x|C.y=cosx D.y=2﹣|x|2.下列函数中与f(x)=2x+2﹣x具有相同的奇偶性的是()A.y=sinx B.y=x2+x+1 C.y=|x|D.y=|lgx|3.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)4.已知函数f(x)=,则f(f(﹣1))等于()A.0 B.1 C.2 D.35.已知函数f(x)=x﹣2,g(x)=x3﹣tanx,则下列说法正确的是()A.f(x)•g(x)是奇函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)+g(x)是偶函数6.若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则e f(﹣2)的值为()A.B.C.D.7.设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f (x)=x,则f(7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.58.若函数是R上的单调函数,则实数a取值范围为()A.(1,+∞)B.(1,8) C.(4,8) D.[4,8)二.填空题(共4小题)9.当m=时,函数f(x)=e x+me﹣x(m∈R)为奇函数.10.已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=.11.已知函数f(x)是奇函数,g(x)是偶函数,定义域都是R,且f(x)+g(x)=3x﹣x3,则f(﹣1)+g(﹣2)=.12.已知函数,那么=.三.解答题(共4小题)13.已知函数f(x)=+1是奇函数,其中a是常数.(1)求函数f(x)的定义域和a的值;(2)若f(x)>3,求实数x的取值范围.14.已知函数f(x)=x2+.(1)求证:f(x)是偶函数;(2)判断函数f(x)在(0,)和(,+∞)上的单调性并用定义法证明.15.在R上定义运算⊗:x⊗y=x(2﹣y),已知关于x的不等式(x+1)⊗(x+1﹣a)>0的解集是{x|b<x<1}.(1)x求实数a,b(2)对于任意的t∈A,不等式x2+(t﹣2)x+1>0恒成立,求实数x的取值范围.16.已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.2018年07月08日高中数学8的高中数学组卷参考答案与试题解析一.选择题(共8小题)1.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A.y=﹣x3B.y=ln|x|C.y=cosx D.y=2﹣|x|【解答】解:A.y=﹣x3是奇函数,不是偶函数,∴该选项错误;B.x∈(0,+∞)时,y=ln|x|=lnx单调递增,∴该选项错误;C.y=cosx在(0,+∞)上没有单调性,∴该选项错误;D.y=2﹣|x|是偶函数;x∈(0,+∞)时,单调递减,∴该选项正确.故选:D.2.下列函数中与f(x)=2x+2﹣x具有相同的奇偶性的是()A.y=sinx B.y=x2+x+1 C.y=|x|D.y=|lgx|【解答】解:f(x)的定义域为R,f(﹣x)=2﹣x+2x=f(x),∴f(x)是偶函数.对于A,y=sinx是奇函数,对于B,y=x2+x+1的对称轴为x=﹣,∴y=x2+x+1非奇非偶函数,对于C,|﹣x|=|x|,∴y=|x|是偶函数,对于D,y=|lgx|的定义域为(0,+∞),故y=|lgx|为非奇非偶函数.故选:C.3.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.4.已知函数f(x)=,则f(f(﹣1))等于()A.0 B.1 C.2 D.3【解答】解:由题意知,f(﹣1)=log2(1+1)=1,f(f(﹣1))=f(1)=1﹣3+4=2,故选:C.5.已知函数f(x)=x﹣2,g(x)=x3﹣tanx,则下列说法正确的是()A.f(x)•g(x)是奇函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)+g(x)是偶函数【解答】解:∵f(x)=x﹣2,g(x)=x3﹣tanx,∴f(﹣x)=x﹣2=f(x),g(﹣x)=﹣x3+tanx=﹣g(x),∴f(x)为偶函数,g(x)为奇函数,∴f(﹣x)•g(﹣x)=﹣f(x)g(x),故是奇函数,显然B、C、D均错误;故选:A.6.若函数f(x)是定义在R上的奇函数,且x>0时,f(x)=lnx,则e f(﹣2)的值为()A.B.C.D.【解答】解:由题意可得e f(﹣2)=e﹣f(2)=e﹣ln2==,故选:B.7.设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f (x)=x,则f(7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.5【解答】解:∵f(x+2)=﹣f(x),∴可得f(x+4)=f(x),∵f(x)是(﹣∞,+∞)上的奇函数∴f(﹣x)=﹣f(x).∴故f(7.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5.故选:B.8.若函数是R上的单调函数,则实数a取值范围为()A.(1,+∞)B.(1,8) C.(4,8) D.[4,8)【解答】解:①若函数f(x)单调性递增,则满足,解得4≤a<8.②若函数f(x)单调性递减,则满足,此时无解.综上实数a取值范围为:4≤a<8.故选:D.二.填空题(共4小题)9.当m=﹣1时,函数f(x)=e x+me﹣x(m∈R)为奇函数.【解答】解:f(x)为R上的奇函数;∴f(0)=0;即1+m=0;∴m=﹣1.故答案为:﹣1.10.已知函数f(x)是定义在R上的奇函数,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(2)=12.【解答】解:∵当x∈(﹣∞,0)时,f(x)=2x3+x2,∴f(﹣2)=﹣12,又∵函数f(x)是定义在R上的奇函数,∴f(2)=12,故答案为:1211.已知函数f(x)是奇函数,g(x)是偶函数,定义域都是R,且f(x)+g(x)=3x﹣x3,则f(﹣1)+g(﹣2)=.【解答】解:∵函数f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=3x﹣x3,∴f(﹣x)+g(﹣x)=﹣f(x)+g(x)=3﹣x+x3,故g(x)=(3﹣x+3x),f(x)=(3x﹣3﹣x)﹣x3,故f(﹣1)+g(﹣2)=(3﹣1﹣31)+1+(3﹣2+32)=,故答案为:.12.已知函数,那么=.【解答】解:∵,∴f()=∴f(x)+f()=1∴f(2)+f()=1,f(3)+f()=1,f(4)+f()=1,f(1)=∴=故答案为:三.解答题(共4小题)13.已知函数f(x)=+1是奇函数,其中a是常数.(1)求函数f(x)的定义域和a的值;(2)若f(x)>3,求实数x的取值范围.【解答】解:(1)由2x﹣1≠0得:x≠0,即函数的定义域为{x|x≠0},∵函数f(x)=+1是奇函数,∴f(﹣x)=﹣f(x),即+1=﹣﹣1,解得:a=2,(2)若f(x)>3,得:>2,即0<2x﹣1<1,即1<2x<2,解得:x∈(0,1)14.已知函数f(x)=x2+.(1)求证:f(x)是偶函数;(2)判断函数f(x)在(0,)和(,+∞)上的单调性并用定义法证明.【解答】证明:(1)∵函数f(x)=x2+,∴x≠0,且f(﹣x)=(﹣x)2+==f(x),∴f(x)是偶函数.解:(2)函数f(x)在(0,)单调递减,在(,+∞)上的单调递增.证明如下:在(0,)上任取x1,x2,且x1<x2,则f(x1)﹣f(x2)==()+=()(1﹣),∵x1,x2∈(0,),且x1<x2,∴<0,1﹣<0,∴f(x1)﹣f(x2)>0,∴函数f(x)在(0,)上单调递减.在(,+∞)上任取x1,x2,且x1<x2,则f(x1)﹣f(x2)==()+=()(1﹣),∵x1,x2∈(,+∞),且x1<x2,∴<0,1﹣>0,∴f(x1)﹣f(x2)<0,∴函数f(x)在(0,)上单调递增.15.在R上定义运算⊗:x⊗y=x(2﹣y),已知关于x的不等式(x+1)⊗(x+1﹣a)>0的解集是{x|b<x<1}.(1)x求实数a,b(2)对于任意的t∈A,不等式x2+(t﹣2)x+1>0恒成立,求实数x的取值范围.【解答】解:(1)由(x+1)⊗(x+1﹣a)>0,得(x+1)(a+1﹣x)>0,∴(x+1)(x﹣a﹣1)<0,∴﹣1<x<a+1,∵不等式(x+1)⊗(x+1﹣a)>0的解集是{x|b<x<1},∴b=﹣1,a+1=1,a=0;(2)由(1)知,A=(﹣1,1),令g(t)=xt+(x2﹣2x+1),对于任意的t∈(﹣1,1),不等式x2+(t﹣2)x+1>0恒成立,当x=0时,上式显然成立;当x≠0时,则,即,解得:或.∴实数x的取值范围是.16.已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.。
高中数学必修一1.3函数的基本性质练习题及答案一:单项选择题: (共10题,每小题5分,共50分)1。
已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A 。
1 B 。
2 C 。
3 D 。
42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A 。
)2()1()23(f f f <-<-B 。
)2()23()1(f f f <-<- C.)23()1()2(-<-<f f f D.)1()23()2(-<-<f f f3。
如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是()A.增函数且最小值是5- B 。
增函数且最大值是5-C 。
减函数且最大值是5-D 。
减函数且最小值是5-4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A 。
奇函数 B.偶函数C 。
既是奇函数又是偶函数D 。
非奇非偶函数5. 函数)11()(+--=x x x x f 是( )A.是奇函数又是减函数B.是奇函数但不是减函数C.是减函数但不是奇函数D.不是奇函数也不是减函数6。
下列函数既是奇函数,又在区间上单调递减的是( )A 。
B 。
C. D 。
7。
设函数|| + b + c 给出下列四个命题:①c = 0时,y 是奇函数 ②b 0 , c 〉0时,方程0 只有一个实根③y 的图象关于(0 , c)对称 ④方程0至多两个实根其中正确的命题是( )A .①、④B .①、③C .①、②、③D .①、②、④8。
已知函数f(x)=3-2|x|,g(x)=x2—2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)〈g(x)时,F(x)=f(x)。
函数的基本性质练习(含答案)基础训练A组1.若函数f(x)为偶函数,则f(-x)=f(x),代入函数f(x),得到:m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)(-x)^2+(m-2)(-x)+(m^2-7m+12)化简得到:(m-1)x^2+(m-2)x+(m^2-7m+12) = (m-1)x^2-(m-2)x+(m^2-7m+12)移项得到:4x=0,因此m=2,选B。
2.偶函数在[-∞,-1]上是增函数,说明在[1,+∞)上也是增函数,因此f(-3/2)<f(-1)<f(2),选A。
3.因为f(x)是奇函数,所以在[-7,-3]上也是增函数,最小值为-5,因此选A。
4.F(x) = f(x) - f(-x),代入f(-x)得到:F(x) = f(x) - (-f(x)) = 2f(x)因此F(x)是偶函数,选B。
5.对于y=x,有y'=1>0,在(0,1)上是增函数,选A。
6.化简得到f(x)=-x^2+x,因此在[0,1]上是减函数,但f(-x)=-f(x),因此是奇函数,选B。
填空题1.因为f(x)是奇函数,所以f(0)=0,不等式化简得到f(x)<0,解为(-5,0)U(0,5)。
2.值域为(-∞,+∞),因为2x+x+1可以取到任意大的值。
3.y=x+1,因此值域为(1,2]。
4.f(x)的导数为2(k-2)x+(k-1),当x(k-1)/(2(k-2))时导数小于0,因此f(x)的递减区间为(-∞,-(k-1)/(2(k-2)))U((k-1)/(2(k-2)),+∞)。
5.命题(1)和(2)正确,命题(3)和(4)错误,因此正确的命题个数为2.解答题1.一次函数y=kx+b的单调性取决于k的符号,当k>0时单调递增,当k0时单调递减,当k0时开口向上,单调递增,当a<0时开口向下,单调递减。
2.因为定义域为(-1,1),所以f'(x)=2x-1<0当x<1/2时,f(x)单调递减,因此f(x)在(-1/2,1/2)上取得最大值,最小值为f(1)=3.x0时,f(x)为正数。
函数性质综合练习(含详解答案)一、选择题1.若函数1y ax =+在[]1,2上的最大值与最小值的差为2,则实数a 的值是( )A. 2B. 2-C. 2或2-D. 02.若函数()()2212f x x a x =+-+在区间[)4,+∞上单调递增.则a 的取值范围是( ) A. [3,)-+∞B. (,3]-∞-C. (,5]-∞D. [)3,+∞3.已知定义在R 上的奇函数()f x ,当0x >时, ()21f x x x =+-,那么当0x <时, ()f x 的解析式为( )A. ()21f x x x =++ B. ()21f x x x =--+C. ()21f x x x =-+- D. ()21f x x x =-++ 4.函数282y x x =-+的增区间是( )A.(],4-∞-B.[)4,-+∞C.(],4-∞D.[)4,+∞5.函数11y x =-在区间[]2,3上的最小值为( ) A.2 B.12 C.13D.12- 6.设()f x 为定义在(),-∞+∞上的偶函数,且()f x 在[)0,+∞上为增函数,则()()()2,π,3f f f --的大小顺序是( )A.()()()π32f f f ->>-B.()()()π23f f f ->->C.()()()π32f f f -<<-D.()()()π23f f f -<-<7.函数()1f x x x =-的图象关于( ) A.y 轴对称B.直线y x =-对称C.原点对称D.直线y x =对称二、填空题 8.已知22()1x f x x=+,那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++=__________。
9.已知函数()132f x x +=+,则函数()f x 的解析式为__________.10.若函数()[)22,2,4f x x x x =-∈则f x 的值域是__________.11.若函数()211f x x +=-,则()2f =12.已知函数()y f x =为奇函数,若()()321f f -=,则()()23f f ---=__________.13.若函数()()22121f x mx m x =++-是偶函数,则m =__________.14若函数,,则的最小值是 。
函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高一数学函数的基本性质试题答案及解析1.下列幂函数中过点(0,0),(1,1)的偶函数是()A.B.C.D.【答案】B【解析】A中函数的定义域是,不关于原点对称,不具有奇偶性;B中函数经验证过这两个点,又定义域为,且;C中函数不过(0,0);D中函数,∵,∴是奇函数,故选B.【考点】幂函数的性质与函数的奇偶性.2.已知函数的定义域为,为奇函数,当时,,则当时,的递减区间是.【答案】【解析】因为为奇函数,所以的图象关于对称,当时,,所以当时,函数的单调递减区间为,因为图象关于对称,所以当时,的递减区间是.【考点】本小题主要考查函数图象和性质的应用,考查学生数形结合思想的应用和推理能力.点评:解决本小题的关键是分析出函数的图象关于对称,在关于对称的两个区间上单调性相同.3.设函数,若,则实数=()A.-4或-2B.-4或2C.-2或4D.-2或2【答案】B【解析】当时,;当时,.【考点】本小题主要考查分段函数的求值,考查学生的运算求解能力.点评:分段函数求值,分别代入求解即可.4.函数的单调增区间是_______.【答案】【解析】由,所以此函数的定义域为,根据复合函数的单调性,所以此函数的单调增区间为.5.(本小题满分12分)已知函数 (为常数)在上的最小值为,试将用表示出来,并求出的最大值.【答案】【解析】(1)因为抛物线y=x2-2ax+1的对称轴方程是,本题属于轴动区间定的问题,然后分轴在区间左侧,在区间内,在区间右侧三种情况分别得到其最小值,得到最小值h(a),然后再求出h(a)的最大值.∵y=(x-a)2+1-a2,∴抛物线y=x2-2ax+1的对称轴方程是.(1)当时,,当时,该函数取最小值;(2) 当时, , 当时,该函数取最小值;(3) 当a>1时, , 当时,该函数取最小值综上,函数的最小值为6.证明:函数是偶函数,且在上是减少的。
(本小题满分12分)【答案】见解析。
【解析】本试题主要是考查了函数的奇偶性的定义以及单调性的性质。
高三一轮复习:函数的基天性质一、选择题:1、以下各组函数中,表示同一函数的是()A 、f ( x) 1, g( x) x0B 、f ( x) x 2, g( x)x24x2 C、f ( x)x , g (x)x, x0 D 、f (x) x, g (x) ( x )2x, x0x3, x10,则 f (8) 2、已知函数f ( x)5)], x ()f [ f (x10A 、 2B、 4C、 6D、 73、设函数 f ( x) 和 g( x) 分别是R上的偶函数和奇函数,则以下结论恒建立的是()A 、f ( x)g( x) 是偶函数B 、f (x)g( x) 是奇函数C、f ( x)g ( x) 是偶函数 D 、f ( x)g( x) 是奇函数4、假如奇函数 f (x)在区间[ 3,7]上是增函数且最小值为5,那么 f ( x) 在区间 [ 7,3] 上是()A、增函数且最小值为C、减函数且最小值为55B、增函数且最大值为D、减函数且最大值为555、设f ( x)是R上的奇函数, f ( x 2) f (x) ,当0x 1时,f (x)x ,则 f (7.5)()A、0.5B、0.5C、1.5D、 1.5二、填空题:6、已知函数 f ( x)3x , x 1,若 f (x)2,则 xx, x17、已知函数 f (x), g(x) 分别由下表给出:x123x f ( x)131g(x)123 321则 f [ g(1)] 的值为;知足 f [ g( x)] g[ f (x)] 的 x 的值为8f ( x)为 R上的减函数,则知足f () f (1)的实数 x 的取值范围是、已知1x9 f ( x) 关于随意实数 x 知足条件 f (x 1) f (3x),若 f ( 1)8,则 f (5)、函数、设函数 f ( x)( x 1)( xa)为奇函数,则a10x11、设 f 1 (x) cos x ,定义 f n 1 (x) 为 f n (x) 的导数,即 f n 1( x) f n (x) ,n*,若ABC的内角 A 知足 f 1 ( A) f 2 ( A) f 2013( A) 0,则 sin A 的值是12、在 R 上定义运算: x y x(1 y) ,若对随意 x2 ,不等式 ( x a)x a 2 都建立,则实数 a 的取值范围是三、解答题:13、已知 f x 是二次函数, 不等式 f x0 的解集是 0, 5 ,且 fx 在点 1, f 1处的切线与直线 6x y 1 0 平行 .(1)求 fx 的分析式;(2)能否存在tN *,使得方程f x370 在区间 t, t 1 内有两个不等的实数x根?若存在,求出t 的值;若不存在,说明原因.【参照答案】1、 C2、 D 【分析】f (8) f [ f (85)] f [ f (13)] f (10)73、 C4、 B5、 B 【分析】 f (x2) f ( x) , f ( x4) f ( x2) ,即 f (x4) f ( x)f ( x) 是以周期为 4 的周期函数,f ( 7.5) f (7.58) f ( 0.5) f (0.5)0.56、log32【分析】由x1得, x log 3 2 ;由x 1得, x 无解3x2x27、 1; 2【分析】f [ g (1)] f (3)1;把 x 1,2,3 分别代入 f [ g( x)]g[ f ( x)] 进行考证8、(,0)(1,) 【分析】由11得,x10 ,即x 0或 x 1x x9、810、111、 1【分析】由题意可知, f n ( x) 是一个周期为 4 的周期函数,且f1 (x) f2 (x)f3 (x) f 4 ( x)0 ,所以 f1 ( A) f 2 ( A)f2013 ( A) f 2013( A)f1( A) cos A0,即 A2 sin A112、(,7] 【分析】 ( x a)x( x a)(1x)x2ax x ax2ax x a a 2 对随意x 2 恒建立即 a x2x22 恒建立x2对随意xx2x2( x2)432( x 2)47x22x 3x2当且仅当 x24,即 x4时等号建立xa7213、( 1)解法 1:∵f x是二次函数,不等式 f x0 的解集是0,5 ,∴可 f x ax x5, a0 .⋯⋯⋯⋯⋯ 1分∴ f / ( x)2ax5a .⋯⋯⋯⋯⋯ 2分∵函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.⋯⋯⋯⋯⋯ 3分∴ 2a5a6,解得 a2.⋯⋯⋯⋯⋯ 4分∴ f x2x x52x210x .⋯⋯⋯⋯⋯ 5分解法 2:f x ax2bx c ,∵不等式 f x0的解集是 0, 5 ,∴方程 ax2bx c0的两根0, 5.∴ c0, 25a5b0 .①⋯⋯⋯⋯⋯ 2分∵ f / ( x)2ax b .又函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.∴ 2a b 6 .②⋯⋯⋯⋯⋯ 3分由①② , 解得a 2 ,b10 .⋯⋯⋯⋯⋯ 4分∴ f x2x210x .⋯⋯⋯⋯⋯ 5分( 2)解:由( 1)知,方程f x370 等价于方程 2x310 x2370 .x⋯⋯⋯⋯⋯ 6 分h x2x310 x237 ,h/x6x220x2x3x10 .⋯⋯⋯⋯⋯ 7分当x0,10,/0h x10上减;⋯⋯⋯ 8分h x,函数在33当 x10,, h/x0 ,函数 h x 在10 ,33上增 .⋯9分∵ h 310, h 1010, h450,⋯⋯⋯⋯⋯ 12分327∴方程在区,10,10,内分有独一数根,在区h x0340, 3,334,内没有数根 .⋯⋯⋯⋯⋯ 13分∴存在独一的自然数 t 3 ,使得方程 f x 37t, t 1 内有且只0 在区x有两个不等的数根 .⋯⋯⋯⋯⋯ 14分。
函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 一些单调性的判断规则:①若f (x)与g(x)在定义域内都是增函数(减函数),那么f (x) + g(x)在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。
②复合函数的单调性规则是“同增异减”。
2.函数的奇偶性的定义:(1)对于函数f (x)的定义域内任意一个x,都有f (-x) = —f (x),则称f (x)为.奇函数的图象关于对称。
(2)对于函数f (x)的定义域内任意一个x,都有f (-x) = f (x),则称f (x)为.偶函数的图象关于对称。
(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
3.奇偶函数图象的对称性(1)若y = f (a + x)是偶函数,则 f (a + x) = f (a - x) o f (2a - x) = f (x) o f (x)的图象关于直线x= a对称;(2)若y = f (b + x)是偶函数,则 f (b - x) = - f (b + x) o f (2b - x) = - f (x) o f (x)的图象关于点(b,0)中心对称;4.若函数满足f Q + a)= f Q),则函数的周期为T=a。
二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+ 8)上单调递减的函数是()A. y = 2|x|B. y = x3C. y = -x2+1D. y=cosx【答案】C【解析】试题分析:偶函数需满足f (-x) = f (x),由此验证可知A,C,D都是偶函数,但要满足在区间(0,+ 8) 上单调递减,验证可知只有C符合.考点:偶函数的判断,函数的单调性.2. f (x) = x2-2x + 4的单调减区间是.【答案】(fl) 【解析】试题分析:将函数进行配方得/(,) =,2—2x + 4 = (x —1)2+3,又称轴为x = l,函数图象开口向上,所 以函数的单调减区间为(-8,1) . 考点:二次函数的单调性.3 .函数y = log (%2 +2% —3)的单调递减区间为()2A. (— °°, —3)B. (— °°, — 1)C. (1, +°°)D. ( — 3, — 1) 【答案】A 【解析】试题分析:由x2 + 2x —3>0,得%<—3或x>l, .♦./(%)的定义域为(―8,—3)U(L+8).y = log (%2 + 2% —3)可看作由 y = log 沈和 M = %2 + 2% — 3 复合而成的,u - X2 +2x-3 = (x +1)2 -4 2 2在(—8,—3)上递减,在(1,+8)上递增,又y = log "在定义域内单调递增,.・.y = log (%2+2%-3)在2 2(—8,—3)上递减,在(1,+8)上递增,所以y = log (%2+ 2% —3)的单调递减区间是(―叫—3),故选A.2考点:复合函数的单调性.4 .已知丁 = %2+2(〃 — 2)% + 5在区间(4,+8)上是增函数,则a 的范围是( )【答案】B 【解析】试题分析:函数y = %2+2(〃-2)% + 5的图像是开口向上以x = 2-a 为对称轴的抛物线,因为函数在区 间(4,+8)上是增函数,所以2 —a V 4,解得“之―2 ,故A 正确。
2015年03月27日1560961913的高中数学组卷一.选择题(共19小题)1.已知函数f(x)=ae x﹣2x﹣2a,a∈[1,2],若函数f(x)在区间[0,ln2]上的值域为[p,q],则()A.p≥﹣,q B.p,q C.p≥﹣2,q≤﹣1 D.p≥﹣1,q≤02.已知a为实数,函数f(x)=x2﹣|x2﹣ax﹣2|在区间(﹣∞,﹣1)和(2,+∞)上单调递增,则a的取值范围为()A.[1,8]B.[3,8]C.[1,3]D.[﹣1,8]3.已知函数f(x)=e x﹣ax﹣1,若∃x0∈(0,+∞),使得f(lgx0)>f(x0)成立,则a的取值范围是()A.(0,+∞)B.(0,1)C.(1,+∞)D.[1,+∞)4.设f(x)=在区间[﹣2,2]上最大值为4,则实数a的取值范围为()A.[ln2,+∞]B.[0,ln2]C.(﹣∞,0]D.(﹣∞,ln2]5.已知函数f(x)=在区间[0,+∞)上的最大值为a,则实数a的取值范围是()A.(﹣∞,﹣]B.(﹣∞,]C.[﹣,+∞)D.[,+∞)6.已知定义在R上的奇函数y=f(x),对于∀x∈R都有f(1+x)=f(1﹣x),当﹣1≤x<0时,f(x)=log2(﹣x),则函数g(x)=f(x)﹣2在(0,8)内所有的零点之和为()A.6 B.8 C.10 D.127.函数f(x)=++对称中心为()A.(﹣4,6)B.(﹣2,3)C.(﹣4,3)D.(﹣2,6)8.已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(﹣ax+lnx+1)+f(ax ﹣lnx﹣1)≥2f(1)对x∈[1,3]恒成立,则实数a的取值范围是()A.[2,e]B.[,+∞)C.[,e]D.[,]9.已知定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,则关于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为()A.(﹣∞,﹣)∪(2,+∞) B.(﹣,2)C.(﹣∞,)∪(2,+∞)D.(,2)10.如图,长方形ABCD的长AD=2x,宽AB=x(x≥1),线段MN的长度为1,端点M、N在长方形ABCD的四边上滑动,当M、N沿长方形的四边滑动一周时,线段MN的中点P所形成的轨迹为G,记G的周长与G围成的面积数值的差为y,则函数y=f(x)的图象大致为()A.B.C.D.11.已知函数f(x)=(3x+1)e x+1+mx(m≥﹣4e),若有且仅有两个整数使得f(x)≤0,则实数m的取值范围是()A.(,2]B.[﹣,﹣)C.[﹣,﹣)D.[﹣4e,﹣)12.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y 与点P走过的路程x的函数关系如图,那么点P所走的图形是()A.B.C.D.13.在实数集R上定义一种运算“*”,对于任意给定的a、b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a、b∈R,a*b=b*a;(2)对任意a、b∈R,a*0=a;(3)对任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.关于函数f(x)=x*的性质,有如下说法:①在(0,+∞)上函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为(﹣∞,﹣1),(1,+∞).其中所有正确说法的个数为()A.0 B.1 C.2 D.314.设f(x)满足:①任意x∈R,有f(x)+f(2﹣x)=0;②当x≥1时,f(x)=|x﹣a|﹣1,(a>0),若x∈R,恒有f(x)>f(x﹣m),则m的取值范围是()A.(0,+∞)B.(4,+∞)C.(3,+∞)D.(5,+∞)15.若函数,则f(f(1))的值为()A.﹣10 B.10 C.﹣2 D.216.若函数f(x)在定义域上存在区间[a,b](ab>0),使f(x)在[a,b]上值域为[,],则称f(x)在[a,b]上具有“反衬性”.下列函数①f(x)=﹣x+②f(x)=﹣x2+4x ③f (x)=sin x ④f(x)=,具有“反衬性”的为|()A.②③B.①③C.①④D.②④17.函数f(x)=(++2)(+1)的值域是()A.[2+,8]B.[2+,+∞)C.[2,+∞)D.[2+,4]18.已知函数f(x)=1﹣,g(x)=lnx,对于任意m≤,都存在n∈(0,+∞),使得f(m)=g(n),则n﹣m的最小值为()A.e﹣B.1 C.﹣D.19.已知函数f(x)=(x﹣)•cosx,x∈[﹣π,π]且x≠0,则下列描述正确的是()A.函数f(x)为偶函数B.函数f(x)在(0,π)上有最大值无最小值C.函数f(x)有2个不同的零点D.函数f(x)在(﹣π,0)上单调递减二.解答题(共10小题)20.已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).21.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.22.已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f'(x)+)在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:×××…×<(n≥2,n∈N*).23.已知函数,a为正常数.(1)若f(x)=lnx+φ(x),且,求函数f(x)的单调增区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范围.24.已知函数f(x)=x2+ax﹣lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g (x)的最小值是3,若存在,求出a的值;若不存在,说明理由;(3)当x∈(0,e]时,证明:.25.设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.26.设函数f(x)=(1+x)2﹣2ln(1+x)(1)若关于x的不等式f(x)﹣m≥0在[0,e﹣1]有实数解,求实数m的取值范围.(2)设g(x)=f(x)﹣x2﹣1,若关于x的方程g(x)=p至少有一个解,求p的最小值.(3)证明不等式:(n∈N*).27.已知函数f(x)=x2﹣alnx在区间(1,2]内是增函数,g(x)=x﹣a在区间(0,1]内是减函数.(1)求f(x),g(x)的表达式;(2)求证:当x>0时,方程f(x)﹣g(x)=x2﹣2x+3有唯一解;(3)当b>﹣1时,若f(x)≥2bx﹣在x∈(0,1]内恒成立,求b的取值范围.28.已知函数f(x)=,g(x)=()|x﹣m|,其中m∈R且m≠0.(Ⅰ)判断函数f(x)的单调性;(Ⅱ)当m<﹣2时,求函数F(x)=f(x)+g(x)在区间[﹣2,2]上的最值;(Ⅲ)设函数h(x)=,当m≥2时,若对于任意的x1∈[2,+∞),总存在唯一的x2∈(﹣∞,2),使得h(x1)=h(x2)成立,试求m的取值范围.29.对于函数f(x)和g(x),若存在常数k,m,对于任意x∈R,不等式f(x)≥kx+m ≥g(x)都成立,则称直线y=kx+m是函数f(x),g(x)的分界线.已知函数f(x)=e x(ax+1)(e为自然对数的底,a∈R为常数).(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设a=1,试探究函数f(x)与函数g(x)=﹣x2+2x+1是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.2015年03月27日1560961913的高中数学组卷参考答案与试题解析一.选择题(共19小题)1.(2016•衡阳县模拟)已知函数f(x)=ae x﹣2x﹣2a,a∈[1,2],若函数f(x)在区间[0,ln2]上的值域为[p,q],则()A.p≥﹣,q B.p,q C.p≥﹣2,q≤﹣1 D.p≥﹣1,q≤0【分析】构造函数g(a)=(e x﹣2)a﹣2x,a∈[1,2],由x∈[0,ln2],可得e x∈[1,2].看做关于a的因此函数可得:g(x)max=g(1)=e x﹣2﹣2x,g(x)min=g(2)=2e x﹣4﹣2x.x ∈[0,ln2].函数f(x)在区间[0,ln2]上的值域为[p,q],利用q=e x﹣2﹣2x,p=2e x﹣4﹣2x.x∈[0,ln2].利用导数研究其单调性极值与最值,即可得出.【解答】解:构造函数g(a)=(e x﹣2)a﹣2x,a∈[1,2],由x∈[0,ln2],可得e x∈[1,2].∴g(a)在a∈[1,2]上单调递减,∴g(a)max=g(1)=e x﹣2﹣2x,g(a)min=g(2)=2e x﹣4﹣2x.x∈[0,ln2].函数f(x)在区间[0,ln2]上的值域为[p,q],∴q=e x﹣2﹣2x,p=2e x﹣4﹣2x.x∈[0,ln2].q′=e x﹣2≤0,∴函数q(x)单调递减,∴q(ln2)≤q≤q(0),∴﹣2ln2≤q≤﹣1.p′=2e x﹣2≥0,∴函数p(x)单调递增,∴p(ln2)≥p≥p(0),﹣2ln2≥p≥﹣2..综上可得:p≥﹣2,q≤﹣1.故选:C.【点评】本题考查了一次函数的单调性、利用导数研究函数的单调性极值与最值,考查了转化能力与计算能力,属于难题.2.(2016•义乌市模拟)已知a为实数,函数f(x)=x2﹣|x2﹣ax﹣2|在区间(﹣∞,﹣1)和(2,+∞)上单调递增,则a的取值范围为()A.[1,8]B.[3,8]C.[1,3]D.[﹣1,8]【分析】根据绝对值的应用,将函数进行转化,结合一元二次不等式与一元二次函数之间的关系,结合函数的单调性的性质进行讨论判断.【解答】解:令函数g(x)=x2﹣ax﹣2,由于g(x)的判别式△=a2+8>0,故函数g(x)一定有两个零点,设为x1和x2,且x1<x2.∵函数f(x)=x2﹣|x2﹣ax﹣2|=,故当x∈(﹣∞,x1)、(x2,+∞)时,函数f(x)的图象是位于同一条直线上的两条射线,当x∈(x1,x2)时,函数f(x)的图象是抛物线y=2x2﹣ax﹣2下凹的一部分,且各段连在一起.由于f(x)在区间(﹣∞,﹣1)和(2,+∞)上单调递增,∴a>0且函数g(x)较小的零点x1=≥﹣1,即a+2≥,平方得a2+4a+4≥a2+8,得a≥1,同时由y=2x2﹣ax﹣2的对称轴为x=,若且﹣1≤≤2,可得﹣4≤a≤8.综上可得,1≤a≤8,故实a的取值范围为[1,8],故选:A.【点评】本题主要考查函数单调性的应用,根据绝对值的意义转化为一元二次函数,利用一元二次函数和一元二次不等式之间的关系是解决本题的关键.综合性较强,难度较大.3.(2016•衡水校级二模)已知函数f(x)=e x﹣ax﹣1,若∃x0∈(0,+∞),使得f(lgx0)>f(x0)成立,则a的取值范围是()A.(0,+∞)B.(0,1)C.(1,+∞)D.[1,+∞)【分析】可知lgx0<x0,从而根据条件便可判断f(x)为减函数或存在极值点,求导数f′(x)=e x﹣a,从而可判断f(x)不可能为减函数,只能存在极值点,从而方程a=e x有解,这样由指数函数y=e x的单调性即可得出a的取值范围.【解答】解:∵lgx0<x0;∴要满足∃x0∈(0,+∞),使f(lgx0)>f(x0),则:函数f(x)为减函数或函数f(x)存在极值点;∵f′(x)=e x﹣a;x∈(0,+∞)时,f′(x)≤0不恒成立,即f(x)不是减函数;∴只能f(x)存在极值点,∴f′(x)=0有解,即a=e x有解;∴a∈(1,+∞);即a的取值范围为(1,+∞).故选:C.【点评】考查函数y=lgx和y=x图象的位置关系,减函数的定义,函数极值和极值点的定义,以及指数函数的单调性.4.(2016•洛阳二模)设f(x)=在区间[﹣2,2]上最大值为4,则实数a的取值范围为()A.[ln2,+∞]B.[0,ln2]C.(﹣∞,0]D.(﹣∞,ln2]【分析】分别求出函数在﹣2≤x≤0和(0,2]的最大值,进行比较即可得到结论.【解答】解:当﹣2≤x≤0时f(x)=4x3+6x2+2,则f′(x)=12x2+12x=12x(x+1),由f′(x)>0得﹣2<x<﹣1,由f′(x)<0得﹣1<x<0,则当x=﹣1时,函数f(x)取得极大值,此时f(﹣1)=﹣4+6+2=4;当x>0时,f(x)=2e ax,若a=0,则f(x)=2<4,若a<0,则函数f(x)在(0,2]上为减函数,则f(x)<f(0)=2,此时函数的最大值小于4,若a>0,则函数在(0,2]为增函数,此时函数的最大值为f(2)=2e2a,要使f(x)在区间[﹣2,2]上最大值为4,则2e2a≤4,即e2a≤2,得2a≤ln2,则a≤ln2,综上所述,a≤ln2,故选:D【点评】本题主要考查函数最值的应用,根据分段函数的表达式分别求出对应区间上的最大值,进行比较是解决本题的关键.5.(2016春•赣州校级期中)已知函数f(x)=在区间[0,+∞)上的最大值为a,则实数a的取值范围是()A.(﹣∞,﹣]B.(﹣∞,]C.[﹣,+∞)D.[,+∞)【分析】由求导公式和法则求出f′(x),化简后对a进行分类讨论,分别利用导数在定义域内求出函数的单调区间、最值,再求出实数a的取值范围.【解答】解:由题意得,==,(1)当a=1时,,当x∈(0,2)时,f′(x)<0,f(x)在(0,2)上递减,当x∈(2,+∞)时,f′(x)>0,f(x)在(0,2)上递增,∴f(x)在区间[0,+∞)上有极小值f(2)=,∵f(0)=a=1,且=<0,∴f(x)在区间[0,+∞)上有最大值f(0)=a=1,成立;(2)当a>1时,由f′(x)=0得x=2或<0,∴当x∈(0,2)时,f′(x)<0,f(x)在(0,2)上递减,当x∈(2,+∞)时,f′(x)>0,f(x)在(0,2)上递增,∴f(x)在区间[0,+∞)上有极小值f(2)=,∵f(0)=a>1,且=<1,∴f(x)在区间[0,+∞)上有最大值f(0)=a,成立;(3)当a<1时,由f′(x)=0得x=2或,①当a=时,有2=,f′(x)<0,则f(x)在区间[0,+∞)上递减,∴f(x)在区间[0,+∞)上的最大值是f(0)=a,成立,②当时,有2<,当x∈(2,)时,f′(x)>0,则f(x)在区间(2,)上递增,当x∈(,+∞)、(0,2)时,f′(x)<0,则f(x)在区间(,+∞)、(0,2)上递减,∴f(x)在区间[0,+∞)上的极大值是f()=,又f(0)=a,由题意得≤a,解得0≤a<1,即成立,③当时,有2>,当x∈(,2)时,f′(x)>0,则f(x)在区间(,2)上递增,当x∈(2,+∞)时,f′(x)<0,则f(x)在区间(2,+∞)上递减,∴f(x)在区间[0,+∞)上的极大值是f(2)==,又f(0)=a,由题意得≤a,解得a≥,即,综上可得,a的取值范围是,故选:D.【点评】本题考查了导数与函数的单调性、最值的关系,考查分类讨论思想和极限思想的应用,属于难题.6.(2016•安徽二模)已知定义在R上的奇函数y=f(x),对于∀x∈R都有f(1+x)=f(1﹣x),当﹣1≤x<0时,f(x)=log2(﹣x),则函数g(x)=f(x)﹣2在(0,8)内所有的零点之和为()A.6 B.8 C.10 D.12【分析】根据函数奇偶性和对称性之间的关系求出函数是周期为4的周期函数,作出函数在一个周期内的图象,利用数形结合进行求解.【解答】解:∵奇函数y=f(x),对于∀x∈R都有f(1+x)=f(1﹣x),∴f(1+x)=f(1﹣x)=﹣f(x﹣1),则f(2+x)=﹣f(x),即f(4+x)=f(x),则函数f(x)是周期为4的周期函数.若0<x≤1,则﹣1≤﹣x<0,则f(﹣x)=log2x=﹣f(x),则f(x)=﹣log2x,0<x≤1,若1≤x<2,则﹣1≤x﹣2<0,∵f(2+x)=﹣f(x),∴f(x)=﹣f(x﹣2),则f(x)=﹣f(x﹣2)=﹣log2(2﹣x),1≤x<2,若2<x<3,则0<x﹣2<1,f(x)=﹣f(x﹣2)=log2(x﹣2),2<x<3,由g(x)=f(x)﹣2=0得f(x)=2,作出函数f(x)在(0,8)内的图象如图:由图象知f(x)与y=2在(0,8)内只有4个交点,当0<x≤1时,由f(x)=﹣log2x=2,得x=,当1≤x<2时,由f(x)=﹣log2(2﹣x)=2得x=,则在区间(4,5)内的函数零点x=4+=,在区间(5,6)内的函数零点x=+4=,则在(0,8)内的零点之和为+++==12故在(0,8)内所有的零点之12,故选:D【点评】本题主要考查函数与方程的应用,根据函数奇偶性和对称性的性质求出函数的周期性,利用函数与方程之间的关系转化为两个函数的交点问题,利用数形结合是解决本题的关键.7.(2016•武汉模拟)函数f(x)=++对称中心为()A.(﹣4,6)B.(﹣2,3)C.(﹣4,3)D.(﹣2,6)【分析】由已知中函数f(x)=++,可得6﹣f(﹣4﹣x)=f(x),结合函数图象对称变换法则,可得函数图象的对称中心.【解答】解:∵函数f(x)=++=3﹣(),∴6﹣f(﹣4﹣x)=6﹣(++)=6﹣(++)=3﹣(),∴6﹣f(﹣4﹣x)=f(x),即函数f(x)=++对称中心为(﹣2,3),故选:B.【点评】本题考查的知识点是函数图象的对称性,函数图象的对称变换,难度较大.8.(2016•邵阳三模)已知定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(﹣ax+lnx+1)+f(ax﹣lnx﹣1)≥2f(1)对x∈[1,3]恒成立,则实数a的取值范围是()A.[2,e]B.[,+∞)C.[,e]D.[,]【分析】由条件利用函数的奇偶性和单调性,可得0≤ax﹣lnx≤2对x∈[1,3]恒成立.令g(x)=ax﹣lnx,则由g′(x)=a﹣=0,求得x=.分类讨论求得g(x)的最大值和最小值,从而求得a的范围.【解答】解:∵定义在R上的偶函数f(x)在[0,+∞)上递减,∴f(x)在(﹣∞,0)上单调递增,若不等式f(﹣ax+lnx+1)+f(ax﹣lnx﹣1)≥2f(1)对x∈[1,3]恒成立,则2f(ax﹣lnx﹣1)≥2f(1)对x∈[1,3]恒成立,即f(ax﹣lnx﹣1)≥f(1)对x∈[1,3]恒成立.∴﹣1≤ax﹣lnx﹣1≤1 对x∈[1,3]恒成立,即0≤ax﹣lnx≤2对x∈[1,3]恒成立.令g(x)=ax﹣lnx,则由g′(x)=a﹣=0,求得x=.①当≤1,即a<0 或a≥1时,g′(x)≥0在[1,3]上恒成立,g(x)为增函数,∵最小值g(1)=a≥0,最大值g(3)=3a﹣ln3≤2,∴0≤a≤,综合可得,1≤a≤.②当≥3,即0<a≤时,g′(x)≤0在[1,3]上恒成立,g(x)为减函数,∵最大值g(1)=a≤2,最小值g(3)=3a﹣ln3≥0,∴≤a≤2,综合可得,a无解.③当1<<3,即<a<1时,在[1,)上,g′(x)<0恒成立,g(x)为减函数;在(,3]上,g′(x)>0恒成立,g(x)为增函数.故函数的最小值为g()=1﹣ln,∵g(1)=a,g(3)=3a﹣ln3,g(3)﹣g(1)=2a﹣ln3.若2a﹣ln3>0,即ln<a<1,∵g(3)﹣g(1)>0,则最大值为g(3)=3a﹣ln3,此时,由1﹣ln≥0,g(3)=3a﹣ln3≤2,求得≤a≤,综合可得,ln<a<1.若2a﹣ln3≤0,即<a≤ln3=ln,∵g(3)﹣g(1)≤0,则最大值为g(1)=a,此时,最小值1﹣ln≥0,最大值g(1)=a≤2,求得≤a≤2,综合可得≤a≤ln.综合①②③可得,1≤a≤或ln<a<1或≤a≤ln,即≤a≤,故选:D.【点评】本题主要考查函数的奇偶性和单调性的综合应用,函数的恒成立问题,体现了转化、分类讨论的数学思想,属于难题.9.(2016•江西校级模拟)已知定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f (x+2)为偶函数,则关于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为()A.(﹣∞,﹣)∪(2,+∞) B.(﹣,2)C.(﹣∞,)∪(2,+∞)D.(,2)【分析】根据函数的单调性和奇偶性的关系,将不等式进行转化进行求解即可.【解答】解:∵定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,∴y=f(x+2)关于x=0对称,即函数f(x+2)在(0,+∞)上为减函数,由f(2x﹣1)﹣f(x+1)>0得f(2x﹣1)>f(x+1),即f(2x﹣3+2)>f(x﹣1+2),即|2x﹣3|<|x﹣1|,平方整理得3x2﹣10x+8<0,即<x<2,即不等式的解集为(,2),故选:D【点评】本题主要考查不等式的求解,利用函数奇偶性和单调性的关系,将不等式进行转化是解决本题的关键.综合性较强,有一定的难度.10.(2016•张掖校级模拟)如图,长方形ABCD的长AD=2x,宽AB=x(x≥1),线段MN 的长度为1,端点M、N在长方形ABCD的四边上滑动,当M、N沿长方形的四边滑动一周时,线段MN的中点P所形成的轨迹为G,记G的周长与G围成的面积数值的差为y,则函数y=f(x)的图象大致为()A.B.C.D.【分析】根据条件确定点P,对应的轨迹,然后求出相应的周长和面积,求出函数f(x)的表达式,然后根据函数表达式进行判断图象即可.【解答】解:∵线段MN的长度为1,线段MN的中点P,∴AP=,即P的轨迹是分别以A,B,C,D为圆心,半径为的4个圆,以及线段GH,FE,RT,LK,部分.∴G的周长等于四个圆弧长加上线段GH,FE,RT,LK的长,即周长==π+4x﹣2+2x﹣2=6x+π﹣4,面积为矩形的面积减去4个圆的面积,即等于矩形的面积减去一个整圆的面积为,∴f(x)=6x+π﹣4﹣=,是一个开口向下的抛物线,∴对应的图象为C,故选:C.【点评】本题主要考查函数图象的识别和判断,根据条件确定点P的轨迹是解决本题的关键,综合性较强,难度较大.11.(2016•成都校级模拟)已知函数f(x)=(3x+1)e x+1+mx(m≥﹣4e),若有且仅有两个整数使得f(x)≤0,则实数m的取值范围是()A.(,2]B.[﹣,﹣)C.[﹣,﹣)D.[﹣4e,﹣)【分析】根据不等式的关系转化为两个函数的大小关系,构造函数g(x)=mx,h(x)=﹣(3x+1)e x+1,利用g(x)≤h(x)的整数解只有2个,建立不等式关系进行求解即可.【解答】解:由f(x)≤0得(3x+1)e x+1+mx≤0,即mx≤﹣(3x+1)e x+1,设g(x)=mx,h(x)=﹣(3x+1)e x+1,h′(x)=﹣(3e x+1+(3x+1)e x+1)=﹣(3x+4)e x+1,由h′(x)>0得﹣(3x+4)>0,即x<﹣,由h′(x)<0得﹣(3x+4)<0,即x>﹣,即当x=﹣时,函数h(x)取得极大值,当m≥0时,满足g(x)≤h(x)的整数解超过2个,不满足条件.当m<0时,要使g(x)≤h(x)的整数解只有2个,则满足,即,即,即﹣≤m<﹣,即实数m的取值范围是[﹣,﹣),故选:B【点评】本题主要考查函数与方程的应用,利用数形结合以及利用构造法,构造函数,利用数形结合建立不等式关系是解决本题的关键.12.(2016•通州区一模)点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如图,那么点P所走的图形是()A.B.C.D.【分析】根据O,P两点连线的距离y与点P走过的路程x的函数图象,由图象可知函数值随自变量的变化成轴对称性并且变化圆滑.由此即可排除A、C.D.【解答】解:观察函数的运动图象,可以发现两个显著特点:①点P运动到周长的一半时,OP最大;②点P的运动图象是抛物线.设点M为周长的一半,A.当点P在线段OA上运动时,y=x,其图象是一条线段,不符合条件,B.满足条件.C.当点P在线段OA上运动时,y=x,其图象是一条线段,不符合条件,D.OM≤OP,不符合条件①,并且OP的距离不是对称变化的,因此排除选项D.故选:B.【点评】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.13.(2016•栖霞市校级模拟)在实数集R上定义一种运算“*”,对于任意给定的a、b∈R,a*b为唯一确定的实数,且具有性质:(1)对任意a、b∈R,a*b=b*a;(2)对任意a、b∈R,a*0=a;(3)对任意a、b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)﹣2c.关于函数f(x)=x*的性质,有如下说法:①在(0,+∞)上函数f(x)的最小值为3;②函数f(x)为奇函数;③函数f(x)的单调递增区间为(﹣∞,﹣1),(1,+∞).其中所有正确说法的个数为()A.0 B.1 C.2 D.3【分析】根据条件在③中令c=0得到a*b=ab+a+b从而得到f(x)的表达式,结合函数的奇偶性,单调性和最值的性质分别进行判断即可.【解答】解:①由新运算“*”的定义③令c=0,则(a*b)*0=0*(ab)+(a*0)+(0*b)=ab+a+b,即a*b=ab+a+b∴f(x)=x*=1+x+,当x>0时,f(x)=x*=1+x+≥1+2=1+2=3,当且仅当x=,即x=1时取等号,∴在(0,+∞)上函数f(x)的最小值为3;故①正确,②函数的定义域为(﹣∞,0)∪(0,+∞),∵f(1)=1+1+1=3,f(﹣1)=1﹣1﹣1=﹣1,∴f(﹣1)≠﹣f(1)且f(﹣1)≠f(1),则函数f(x)为非奇非偶函数,故②错误,③函数的f′(x)=1﹣,令f′(x)=0则x=±1,∵当x∈(﹣∞,﹣1)或(1,+∞)时,f′(x)>0∴函数f(x)的单调递增区间为(﹣∞,﹣1)、(1,+∞).故③正确;故正确的是①③,故选:C【点评】本题是一个新定义运算型问题,考查了函数的最值、奇偶性、单调性等有关性质,根据条件令c=0求出函数的解析式是解决本题的关键.综合性较强,有一定的难度.14.(2016•四川模拟)设f(x)满足:①任意x∈R,有f(x)+f(2﹣x)=0;②当x≥1时,f(x)=|x﹣a|﹣1,(a>0),若x∈R,恒有f(x)>f(x﹣m),则m的取值范围是()A.(0,+∞)B.(4,+∞)C.(3,+∞)D.(5,+∞)【分析】根据函数的对称性求出a的值,作出函数f(x)的图象,利用数形结合以及图象关系进行平移计算即可.【解答】解:∵任意x∈R,有f(x)+f(2﹣x)=0,∴f(2﹣x)=﹣f(x),则函数关于(1,0)点对称,当x=1时,f(1)+f(2﹣1)=0,即2f(1)=0,则f(1)=0,∵当x≥1时,f(x)=|x﹣a|﹣1,∴f(1)=|1﹣a|﹣1=0,则|a﹣1|=1,则a﹣1=1或a﹣1=﹣1,则a=2或a=0,∵a>0,∴a=2,即当x≥1时,f(x)=|x﹣2|﹣1当x≤1时,﹣x≥﹣1,2﹣x≥1,即f(x)=﹣f(2﹣x)=﹣(|2﹣x﹣2|﹣1)=1﹣|x|,x≤1,作出函数f(x)的图象如图:若f(x)>f(x﹣m),则由图象知,将函数f(x)向右平移m个单位即可,由图象知,m>4,故选:B【点评】本题主要考查函数图象的应用,根据函数的对称性求出函数的解析式,以及利用图象平移是解决本题的关键.综合性较强,有一定的难度.15.(2016•赤峰模拟)若函数,则f(f(1))的值为()A.﹣10 B.10 C.﹣2 D.2【分析】先求f(1),再求f(f(1))即可.【解答】解:f(1)=2﹣4=﹣2,f(f(1))=f(﹣2)=2×(﹣2)+2=﹣2,故选C.【点评】本题考查了分段函数的应用及复合函数的应用.16.(2016春•义乌市期末)若函数f(x)在定义域上存在区间[a,b](ab>0),使f(x)在[a,b]上值域为[,],则称f(x)在[a,b]上具有“反衬性”.下列函数①f(x)=﹣x+②f(x)=﹣x2+4x ③f(x)=sin x ④f(x)=,具有“反衬性”的为|()A.②③B.①③C.①④D.②④【分析】根据条件得到若函数在区间[a,b]上具有“反衬性”,则等价为在区间[a,b]上,函数f(x)与y=有两个交点,且函数在区间上单调递减即可,作出对应的图象,利用数形结合进行判断即可.【解答】解:若函数f(x)在定义域上存在区间[a,b](ab>0),使f(x)在[a,b]上值域为[,],则等价为函数f(x)与y=有两个交点,且函数在区间上单调递减即可.①若f(x)=﹣x+,作出函数f(x)与y=的图象,由图象知两个函数有两个交点,则f (x)具有“反衬性”,②若f(x)=﹣x2+4x,作出函数f(x)与y=的图象,由图象知两个函数有两个交点,但函数在交点对应的区间上不具单调性,则f(x)不具有“反衬性”,③f(x)=sin x,作出函数f(x)与y=的图象,由图象知两个函数有两个交点,函数在交点对应的区间上单调递减,则f(x)具有“反衬性”,④f(x)=,当2<x<3时,f(x)=f(x﹣1)=[﹣|x﹣2|+1]=﹣|x﹣2|+,当3<x<4时,f(x)=f(x﹣1)=[﹣|x﹣3|+]=﹣|x﹣2|+,作出函数f(x)与y=的图象,由图象知两个函数有两个交点,函数在交点对应的区间上不单调递减,则f(x)不具有“反衬性”,综上具有“反衬性”的函数是①③,故选:B【点评】本题主要考查与函数有关的新定义题目,正确理解条件结合数形结合,转化为函数f(x)与y=有两个交点,且函数在区间上单调递减是解决本题的关键.综合性较强,难度较大.17.(2016春•杭州期末)函数f(x)=(++2)(+1)的值域是()A.[2+,8]B.[2+,+∞)C.[2,+∞)D.[2+,4]【分析】容易得出f(x)的定义域为[﹣1,1],并设,两边平方,根据x 的范围即可求出,且得出,从而得出,求导,根据导数在上的符号即可判断函数在上单调递增,从而得出y的范围,即得出函数f(x)的值域.【解答】解:f(x)的定义域为[﹣1,1];设,则;∵﹣1≤x≤1;∴0≤1﹣x2≤1,;∴2≤t2≤4;∴,且,设y=f(x);∴;∴,令y′=0得,,或0;∴在上单调递增;∴时,y取最小值,t=2时,y取最大值8;∴;∴原函数的值域为.故选A.【点评】考查函数值域的概念及求法,换元法求函数的值域,结合二次函数的图象求二次函数的值域,根据导数符号判断函数单调性的方法,以及根据函数单调性求函数最值的方法.18.(2016春•华蓥市期末)已知函数f(x)=1﹣,g(x)=lnx,对于任意m≤,都存在n∈(0,+∞),使得f(m)=g(n),则n﹣m的最小值为()A.e﹣B.1 C.﹣D.【分析】由题意可得1﹣=lnn;从而可得n=;令1﹣=t,t<1;则m=t﹣,从而得到y=n﹣m=e t﹣t+;求导求函数的最小值即可.【解答】解:由m≤知1﹣≤1;由f(m)=g(n)可化为1﹣=lnn;故n=;令1﹣=t,t≤1;则m=t﹣,则y=n﹣m=e t﹣t+;故y′=e t+t﹣1在(﹣∞,1]上是增函数,且y′=0时,t=0;故y=n﹣m=e t﹣t+在t=0时有最小值,故n﹣m的最小值为1;故选:B.【点评】本题考查了函数恒成立问题,利用导数法以及换元法转化为求函数的最值是解决本题的关键.19.(2016春•湖州期末)已知函数f(x)=(x﹣)•cosx,x∈[﹣π,π]且x≠0,则下列描述正确的是()A.函数f(x)为偶函数B.函数f(x)在(0,π)上有最大值无最小值C.函数f(x)有2个不同的零点D.函数f(x)在(﹣π,0)上单调递减【分析】A.根据函数奇偶性的定义进行判断,B.将函数分解为g(x)=x﹣,h(x)=cosx,讨论g(x)和h(x)的单调性和符号,进行判断,C.根据函数零点的定义解方程f(x)=0进行判断,D.将函数分解为g(x)=x﹣,h(x)=cosx,讨论g(x)和h(x)的单调性即可.【解答】解:A.函数的定义域关于原点对称,则f(﹣x)=(﹣x+)•cosx=﹣(x﹣)•cosx=﹣f(x),即函数f(x)为奇函数.故A错误,B.当x∈(0,π)时,设g(x)=x﹣,h(x)=cosx,当x∈(0,1]时,g(x)<0,且为增函数,h(x)为减函数,且h(x)>0,此时f(x)为增函数,当x∈(1,)时,g(x)>0,且为增函数,h(x)为减函数,且h(x)>0,此时f(x)≥0,当x∈[,π)时,g(x)>0,且为增函数,h(x)为减函数,且h(x)<0,此时f(x)<0,则函数f(x)为减函数无最小值,则函数存在极大值,同时也是最大值,故B正确,C.由f(x)=(x﹣)•cosx=cosx=0得cosx=0或x2﹣1=0,即x=±1或x=或x=﹣,即函数f(x)有4个不同的零点,故C错误,D.当x∈(﹣π,0)时,设g(x)=x﹣,h(x)=cosx,当x∈(﹣π,﹣)时,g(x)和h(x)都是增函数且h(x)<0,g(x)<0,此时f(x)为减函数,当x∈(1,π)时,g(x)和h(x)都是增函数且h(x)>0,g(x)>0,此时f(x)为增函数,故函数f(x)在(﹣π,0)上不单调,故D错误,故选:B.【点评】本题主要考查与函数性质有关的命题的真假判断,涉及函数奇偶性,单调性以及函数与方程的应用,综合性较强,难度较大.二.解答题(共10小题)20.(2014•新课标II)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.21.(2013•新课标Ⅰ)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.22.(2016•商丘三模)已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f'(x)+)在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:×××…×<(n≥2,n∈N*).【分析】利用导数求函数的单调区间的步骤是①求导函数f′(x);②解f′(x)>0(或<0);③得到函数的增区间(或减区间),对于本题的(1)在求单调区间时要注意函数的定义域以及对参数a的讨论情况;(2)点(2,f(2))处的切线的倾斜角为45°,即切线斜率为1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在区间(t,3)上总不是单调函数可知:,于是可求m的范围.(3)是近年来高考考查的热点问题,即与函数结合证明不等式问题,常用的解题思路是利用前面的结论构造函数,利用函数的单调性,对于函数取单调区间上的正整数自变量n有某些结论成立,进而解答出这类不等式问题的解.【解答】解:(Ⅰ)(2分)当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0时,f(x)不是单调函数(4分)(Ⅱ)得a=﹣2,f(x)=﹣2lnx+2x﹣3∴,∴g'(x)=3x2+(m+4)x﹣2(6分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣2∴由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有:,∴(10分)(Ⅲ)令a=﹣1此时f(x)=﹣lnx+x﹣3,所以f(1)=﹣2,由(Ⅰ)知f(x)=﹣lnx+x﹣3在(1,+∞)上单调递增,∴当x∈(1,+∞)时f(x)>f(1),即﹣lnx+x﹣1>0,∴lnx<x﹣1对一切x∈(1,+∞)成立,(12分)∵n≥2,n∈N*,则有0<lnn<n﹣1,∴∴【点评】本题考查利用函数的导数来求函数的单调区间,已知函数曲线上一点求曲线的切线方程即对函数导数的几何意义的考查,考查求导公式的掌握情况.含参数的数学问题的处理,构造函数求解证明不等式问题.23.(2015•江苏二模)已知函数,a为正常数.(1)若f(x)=lnx+φ(x),且,求函数f(x)的单调增区间;(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范围.【分析】(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案.(2)设h(x)=g(x)+x,依题意得出h(x)在(0,2]上是减函数.下面对x分类讨论:①当1≤x≤2时,②当0<x<1时,利用导数研究函数的单调性从及最值,即可求得求a 的取值范围.【解答】解:(1),∵,令f′(x)>0,得x>2,或,∴函数f(x)的单调增区间为,(2,+∞).(2)∵,∴,∴,设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数.当1≤x≤2时,,,令h′(x)≤0,得:对x∈[1,2]恒成立,设,则,∵1≤x≤2,∴,∴m(x)在[1,2]上递增,则当x=2时,m(x)有最大值为,∴当0<x<1时,,,令h′(x)≤0,得:,设,则,∴t(x)在(0,1)上是增函数,∴t(x)<t(1)=0,∴a≥0.综上所述,.【点评】本小题主要考查函数单调性的应用、利用导数研究函数的单调性、导数的几何意义、不等式的解法等基础知识,考查运算求解能力,属于基础题.24.(2015•北京校级模拟)已知函数f(x)=x2+ax﹣lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g (x)的最小值是3,若存在,求出a的值;若不存在,说明理由;(3)当x∈(0,e]时,证明:.【分析】(1)先对函数f(x)进行求导,根据函数f(x)在[1,2]上是减函数可得到其导函数在[1,2]上小于等于0应该恒成立,再结合二次函数的性质可求得a的范围.。
函数的性质练习(奇偶性,单调性,周期性,对称性)1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(=x f 在区间[6,6-]上的根的个数可能是A.0B.1C.3D.52、f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是( )A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(-x f ,那么=)3120(fA.0B.2C. 2-D.2± 4、已知112)(-+=x x x f ,那么=+++++-+-+-)8()6()4()2()0()2()4()6(f f f f f f f f A.14 B.15 C. 16- D.165、已知)(x f 的定义域为R ,若)1()1(+-x f x f 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(+x fD.)3(+x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(--=+x f x f ,则下列结论一定成立的是A.)(x f 的周期为4B. )(x f 的周期为6C. )(x f 的图像关于直线1=x 对称D. )(x f 的图像关于点(1 , 0) 对称 7、定义在R 上的函数)(x f 满足:)()(x f x f -=-,)1()1(x f x f -=+,当∈x [1-, 1] 时,3)(x x f =,则=)2013(fA.1-B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f -=+,并且)1(+x f 为 偶函数. 若3)1(=f ,那么=)101(fA.1B.2C.3D.49、已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于( )A.12 B .1 C.32 D .2 10、若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32 等于( )A .0B .1 C.12 D .-1211、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12、设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则 ()7.5f 等于 ( )A .0.5B .0.5-C .1.5D . 1.5-13、设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ (a R ∈)的大小关系是 ( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f aa -+D .与a 的取值无关14、若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有 ( )A .()f x 0>B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0> 15、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a ≤5D .a ≥317、已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+ 成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ( ) A .10b -<< B .2b >C .12b b <->或 D .不能确定 18、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数19、函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的 是 ( ) A .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭20、设函数()f x 是R 上的奇函数,且当0x >时,()23xf x =-,则()2f -等于( )A .1-B .114C .1D .114-21、设函数)(x f 是R 上的偶函数,且在()+∞,0上是减函数,且12210x x x x >>+,,则 A.)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.不能确定23、已知函数=)(x f ⎩⎨⎧<-≥-0,10,sin x e x x x x ,若)()2(2a f a f >-,则实数a 取值范围是A. (1,-∞-)),2(+∞YB. (1,2-)C. (2,1-)D. (2,-∞-)+∞,1(Y )A .0B .1C .2D .3二、填空题:24、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为25、已知()f x 为偶函数,()g x 是奇函数,且()f x ()22g x x x -=+-,则()f x 、()g x 分别为 ; 26、定义在()1,1-上的奇函数()21x mf x x nx +=++,则常数m = ,n = ;28、.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+.(1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.29、若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.30.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
高中数学必修一1.3函数的基本性质练习题及答案
一:单项选择题: (共10题,每小题5分,共50分)
1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( )
A.1
B.2
C.3
D.4
2. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A.)2()1()23(f f f <-<- B.)
2
()23()1(f f f <-<- C.)23()1()2(-<-<f f f D.)
1()23
()2(-<-<f f f
3. 如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是(
)
A.增函数且最小值是5-
B.增函数且最大值是5-
C.减函数且最大值是5-
D.减函数且最小值是5-
4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数
5. 函数)11()(+--=x x x x f 是( )
A.是奇函数又是减函数
B.是奇函数但不是减函数
C.是减函数但不是奇函数
D.不是奇函数也不是减函数
6. 下列函数既是奇函数,又在区间上单调递减的是( ) A. B. C. D.
7. 设函数|| + b + c 给出下列四个命题:
①c = 0时,y 是奇函数 ②b 0 , c >0时,方程0 只有一个实根
③y 的图象关于(0 , c)对称 ④方程0至多两个实根
其中正确的命题是( )
A .①、④
B .①、③
C .①、②、③
D .①、②、④
8.已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当
f(x)<g(x)时,F(x)=f(x).那么F(x) ( )
A.有最大值7-2,无最小值 B.有最大值3,最小值-1 C.有最大值3,无最小值
D.无最大值,也无最小值
9.已知函数是定义在上的奇函数,当时,的图象如图所示,则不等式
的解集是()
A.
B. C. D.
10.设定义域为R的函数f(x)满足,且f(-1)=,则f(2006)的值为()
A.1 B.1 C.2006 D.
二:填空题:(共2题,每小题10分,共20分)
1.设奇函数
)
(x
f的定义域为[]
5,5
-
,若当
[0,5]
x∈时,)
(x
f的图象如
右图,则不等式
()0
f x<的解是.
2.若函数
2
()(2)(1)3
f x k x k x
=-+-+是偶函数,则)
(x
f的递减区间是____________
三:解答题:(共2题,每小题10分,共20分)
1.判断y=1-2x3在(-)上的单调性,并用定义证明。
3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x0,使得f(x0?)= x0,求函数f(x)的解析表达式.
答案
一:单项选择题:(共10题,每小题5分,共50分)
1. B.奇次项系数为0,20,2 m m
-==
2. D
3 (2)(2),21
2
f f
=--<-<-
3. A.奇函数关于原点对称,左右两边有相同的单调性
4. A
()()()() F x f x f x F x
-=--=-
5. A
()(11)(11)() f x x x x x x x f x -=----+=+--=-
为奇函数,而
2
2
2,1
2,01
(),
2,10
2,1
x x
x x
f x
x x
x x
-≥
⎧
⎪
-≤<
⎪
=⎨
-≤<
⎪
⎪<-
⎩为减函数
6. D
7. C
8. A
9. B
10. B
二:填空题:(共2题,每小题10分,共20分)
1.
(]
(2,0)2,5
-
奇函数关于原点对称,补足左边的图象
2.[)
0,+∞2
10,1,()3
k k f x x
-===-+
三:解答题:(共2题,每小题10分,共20分)
1.证明:任取x1,x2R,且-<x1<x2<+
f(x1)-f(x2)=(1-2x31)-(1-2x32)=2(x32-x13)=2(x2-x1)(x22+x1x2+x21)=2(x2-x1)[(x1+x2)2+x12] ∵
x2>x1∴x0-x1>0,又(x1+x2)2+x12>0, ∴f(x1)-f(x2)>0即f(x1)>f(x2)故f(x)=1-2x3在(-,+)上为单调减函数。
或利用导数来证明(略)
所以0<a<1
3.解:(Ⅰ)因为对任意x∈R,有f(f(x)-x2 + x)=f(x)-x2 +x,
所以f(f(2)- 22+2)=f(2)-22+2.
又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.
若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.
(Ⅱ)因为对任意x∈R,有f(f(x))-x2 +x)=f(x)-x2 +x.
又因为有且只有一个实数x0,使得f(x0)- x0.所以对任意xεR,有f(x)-x2 +x= x0.
在上式中令x= x0,有f(x0)-x + x0= x0,
又因为f(x0)- x0,所以x0-x=0,故x0=0或x0=1.
若x0=0,则f(x)-x2 +x=0,即f(x)= x2-x.
但方程x2-x=x有两上不同实根,与题设条件矛质,故x2≠0.
若x2=1,则有f(x)-x2 +x=1,即f(x)= x2-x+1.易验证该函数满足题设条件.
综上,所求函数为f(x)= x2-x+1(x R)。