(完整版)小学奥数竞赛难题中的难题(1)
- 格式:doc
- 大小:1.51 MB
- 文档页数:14
小学奥数一年级1,计算:1+3+5+7+9+11+13+15+17+19,22,环形跑道上正在进行长跑比赛。
每位运动员前面有8个人在跑,每位运动员后而也有8个人在跑.跑道上一共有()个运动员?1 .判断:小易的糖果比薇薇多,薇薇的糖果比欣欣少,那么下面哪个说法是对的?⑴小易的糖果比欣欣多(2)小易的糖果比欣欣少2,按规律填数。
①2、4、6、8、10、12、( )@3. 4、6、9、13、18、( )1.明家门前有一排小树苗,柳树左边有6棵杨树,它的右边有10棵松树,这排小树苗一共有多少棵?2.小白兔有12个萝卜,它给了小灰兔3个萝卜后,它俩的萝卜就一样多,小灰兔原来有多少个萝卜?1、3、5、2、4、6、3、5、7、()、()、()1.有一筐梨,2个2个地拿,最后剩1个,这筐梨的个数是单数还是双数?2.13个小朋友玩“老鹰抓小鸡“的游戏,已经抓住了5只”小鸡”,还有几只小鸡没抓住?2、懒羊羊问喜羊羊借了一个小魔方,但是它想用同样的魔方组成一个大的魔方块,请问它还需要问喜羊羊借至少多少个一样大小的魔方呢?1、体育课上,23名男生一、二报数,最后一个人报的是单数、还是双数?虹年级1.找规律:根据规律填数(1)30、28、26、()、()……(2)1、3、6、()(3)15、20、25、()2.晨晨家三月份用电45度,比二月份节约17度。
这两个月一共用电多少度?1.一个农民带着一只狗、一只猫和一条鱼过河,小船每次只能载1个人和一样东西。
农民想带狗过去,又怕猫吃鱼;若带鱼过去又怕狗欺负猫。
那么他应该怎样才能将三样东西安全弄过河呢?2.求1+2+3+...+24+25 的和.1.计算96-95-94+93+92-91-90+89+88-87-86+85+84-83-82+81=2.计算2x4x5x25x541.计算35+34-33-32+31+30-29-28+27+26-25-24+23+22-21-20+19+18-17-16+152.计算60-59+58-57+56-55+54-53+52-51=1.一盒精装的笔,连盒共值18元,笔比盒贵14元,盒和笔的价钱各是多少?2.在下列各式右端的方框内,填上与左端不相同的运算符号,使各等式成立.12+6 + 2 = 12口6口22、有小明,小梅和小亮三人,站成一排,可以有几种站法()1、妈妈买来一些巧克力,送给邻居小妹妹2块后拿回了家,小亚先吃了其中的一半,又给弟弟吃了剩下的一半,这时还有1块巧克力,妈妈一共买了多少块巧克力?2、无法区分的7个苹果放在三个同样的盘子里,允许有的盘子空着不放。
小学各题型奥数题及答案一.比例问题1.AB两人在河边钓鱼,A钓了三条,B钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,A、B怎么分?答案:A收8元,B收2元。
解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。
又因为“A钓了三条”,相当于A吃之前已经出资3*6=18元,“B钓了两条”,相当于B吃之前已经出资2*6=12元。
而AB两人吃了的价值都是10元,所以A还可以收回18-10=8元B还可以收回12-10=2元刚好就是客人出的钱。
2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。
增加的成本2份刚好是下降利润的2份。
售价都是25份。
所以,今年的成本占售价的22/25。
3.AB两车分别从甲乙两地出发,相向而行,出发时,A.B的速度比是5:4,相遇后,A的速度减少20%,B的速度增加20%,这样,当A到达乙地时,B离甲地还有10千米,那么甲乙两地相距多少千米?解:原来A.B乙的速度比是5:4现在的A:5×(1-20%)=4现在的B:4×(1+20%)4.8A到乙地后,B离甲地还有:5-4.8=0.2总路程:10÷0.2×(4+5)=450千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。
根据“体积增加1/3”,可知体积是原来的4/3。
体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。
 小学1-6年级奥数难点解析(附34个必考要点)???点上方蓝字小学奥数可加关注关注后上网课、下资料、领取小学满分题库一年级奥数一年级的孩子刚刚踏入小学。
不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,这就需要家长对整个六年的小学学习有一个全面的规划。
学习重点难点解析:巧算与速算的基本知识:对于一年级的学生来说,计算是学生学习时遇到的第一个问题。
如果能够在看似无序的算式中寻找到一定的规律,化繁为简,那么学生一定能够增强学习数学的信心,提高学习数学的兴趣。
另外,计算与速算是各种后续问题学习的基础。
学好数学,首先就要过计算这关。
认识并学会数各种基本图形:正方形、长方体、圆和立方体等是小学学习中最常见的图形。
通过系统的指导,使一年级的学生能够计算出各种基本图形的个数;使学生建立起有序思维,为建立思维模式打下基础。
学习简单的枚举法:枚举法对于一年级的学生来说的确是有一定的困难。
在华数课本中,介绍这一难题时采用数数这种更为直观的方式,将复杂抽象的问题形象化,便于孩子们理解。
枚举法训练的重点在于有序的思维方式,学习之初将抽象问题形象化,能够更好地引导学生去主动思考,建立起自己的思维方式。
数字的奇与偶、不等与相等等关于数论的基础知识:数论问题是后续学习中的一个重点,而这学期将要学到的:数字的奇与偶、不等与相等等无疑将会是今后学习的基础,在这里我们把数论问题分解为各种类型逐一讲解,使华数学习更加系统。
二年级奥数二年级是开发孩子智力、形成良好思维习惯的最佳时期,学习奥数不仅能够极大地锻炼孩子的思维能力,也能为孩子之后的学习打下坚实的基础。
对于二年级的学生家长来说,激发孩子对华数的兴趣是最主要的。
学习重点难点解析:计算要过关:对于二年级学生的奥数学习来说,最先碰到的问题就是计算问题,计算问题是重点也是难点。
根据学校数学的学习情况,孩子还没有学习乘除法的列竖式,尤其是乘法的列竖式在二年级华数的学习中要求的比较多,比如华数课本下册第三讲速算与巧算中就多次用到了乘法,另外一些应用题中也会有所应用。
小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。
解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。
解得x = -24。
2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。
解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。
解得x = 60。
3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。
解:设长方形的长为x厘米,宽为y厘米。
根据题意可得方程组:x - y = 4;2x + 2y = 32。
解得x = 10,y = 6。
所以长方形的长为10厘米,宽为6厘米。
4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。
解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。
解得x = 12。
5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。
解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。
将已知的三边长代入公式即可求得三角形的面积。
6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。
解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。
解得x = 10。
7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。
解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。
解得x = 4。
所以原来正方形的边长为4厘米。
8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。
四年级奥数题难题大全一、和差问题1. 甲、乙两箱共有水果60千克,如果从甲箱中取出5千克放到乙箱中,则两箱水果一样重。
求两箱原来各有水果多少千克?- 解析:两箱水果调整后一样重时,每箱重60÷2 = 30千克。
那么原来甲箱有30+5 = 35千克,乙箱有30 - 5=25千克。
2. 四年级有3个班,一班和二班的平均人数是44人,二班和三班的平均人数是43人,三班和一班的平均人数是42人。
这三个班各有多少人?- 解析:一班和二班总人数为44×2 = 88人,二班和三班总人数为43×2 = 86人,三班和一班总人数为42×2 = 84人。
把这三个和相加,就是三个班总人数的2倍,即(88 + 86+84)÷2=129人。
那么三班人数为129 - 88 = 41人,一班人数为129 - 86 = 43人,二班人数为129 - 84 = 45人。
二、倍数问题3. 有两堆棋子,第一堆有87个,第二堆有69个。
从第一堆中拿多少个棋子到第二堆,就能使第二堆棋子数是第一堆的3倍?- 解析:两堆棋子总数为87 + 69 = 156个。
当第二堆棋子数是第一堆的3倍时,把棋子总数分成4份,第一堆占1份,第二堆占3份。
此时第一堆有156÷(3 + 1)=39个。
所以从第一堆拿到第二堆的棋子数为87 - 39 = 48个。
4. 被除数、除数、商三个数的和是212,已知商是2。
被除数和除数各是多少?- 解析:因为商是2,设除数为x,被除数就是2x。
根据题意可得2x+x +2=212,3x=210,x = 70。
被除数为2×70 = 140。
三、年龄问题5. 父亲今年47岁,儿子今年21岁。
多少年前父亲的年龄是儿子年龄的3倍?- 解析:父子年龄差为47 - 21 = 26岁。
当父亲年龄是儿子年龄的3倍时,儿子年龄为26÷(3 - 1)=13岁。
所以是21 - 13 = 8年前。
六年级数学奥数难题1、某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
六年级奥数经典题、难题集粹(华杯赛难度)—附详细解答一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
小学四年级数学奥数竞赛试卷及答案(1)一、拓展提优试题1.三个连续自然数的乘积是120,它们的和是.2.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.3.如果a表示一个三位数,b表示一个两位数,那么,a+b最小是a+b 最大是,a﹣b最小是,a﹣b最大是.4.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则=.5.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.6.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.7.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?8.如果,那么=.9.有6个数排成一行,它们的平均数是27,已知前4个数的平均数是23,后3个数的平均数34,第4个数是.10.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴号帽子.11.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.12.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有副.13.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要天.14.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.15.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.【参考答案】一、拓展提优试题1.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.2.解:9⊙3=9×2+3=21;故答案为:21.3.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.解:a+b最小是10+100=110,a+b最大是99+999=1098,a﹣b最小是100﹣99=1,a﹣b最大是999﹣10=989.故答案为:110,1098,1,989.【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.4.【分析】根据整数加法竖式计算的方法进行推算即可.解:根据题意,由加法竖式可得:个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;所以,A=1,B=0;由以上推算可得:假设B=5时,5×5=25,向十位进2;十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;所以,A=1,B=5;由以上推算可得:因此两位数是:10或15.故答案为:10或15.【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.5.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.6.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.7.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.8.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.9.解:23×4+34×3﹣27×6,=92+102﹣162,=194﹣162,=32.答:第4个数是32.故答案为:32.10.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;由于第二位的小孔只看到4,所以小王的帽子编号为4;由第三位的小田看到1,可知第二位的小孔的帽子编号为1;因为第四位的小严没看到3,而第五位的小韦看到了3和2,所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.故答案是:5.11.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.12.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.解:假设全是围棋,则象棋就有:(24×14﹣300)÷(24﹣18)=36÷6=6(副);答:其中象棋有6副.故答案为:6.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.13.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.解:2100÷(450÷3÷2×7)=2100÷(75×7)=2100÷525=4(天),答:用7台收割机收割2100亩小麦需要4天.故答案为:4.【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.14.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.15.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.。
(完整版)小学四年级难度的奥数题库小学四年级上册数学智力题1、某五个数的平均值为60,假如将其中一数改为80,这五个数的平均值为70,改的那个数应是多少?2、30个同学平分一些练习本,后来又来了6人,大伙儿重新分配,每人分得的练习本比原来少2本,这些练习本共有多少?3、甲乙两位同学带着同样多的钞票去买日记本,乙买了8本,剩下的钞票全部借给了甲,刚好使甲买到了12本。
回家后甲还给乙6元,咨询:日记本每本多少钞票?4、两个仓库共有10000千克大米,从每个仓库里取出同样多的大米,结果甲仓库里剩下3450千克,乙仓库里剩下4270千克,每个仓库原来有多少千克大米?5、把一具减法算式的被减数、减数、差加起来和是180,已知减数比差大26,被减数、减数和差各是多少?6、一具数乘8后比原数多了84,原来的数是多少?7、小红今年18岁,小强今年14岁,当两人岁数和是70岁时,两人各有多少岁?8、小红在算有余数的除法时,把被除数237错写成273。
如此商比原来多3而余数正好相同。
这道题的除数和余数各是多少?9、学校图书馆有科技书和故事书共320本,其中故事书的本数是科技书的3倍,故事书有多少本?10、幼儿园小朋友分苹果,假如每人分4个,则多9个,假如每人分5个,则少6个,有多少个小朋友?多少个苹果?11、在一具数的末尾添上一具“0”往后,得到的数比原来的数多36。
原来的数是多少?12、计算:⑴454十999×999十545⑵999十998十997十996十1000十1004十1003十1002十100113、数一数下面的图形.()条线段()个长方形14、要使上下两排的小猫一样多,应该怎么样移?15、按下面图形的罗列事情,算出第24个图形是啥?(1)○○△□○○△□○○△□……第24个图形是()(2)☆◇◇△△☆◇◇△△☆◇◇△△……第24个图形是()16、用火柴棍拼成的数字和符号如下图所示,这么用火柴棍拼成一具减法等式最少要用_____________根火柴17、有学生若干人参加植树活动,假如每组12人,就多11人,假如每组14人,就少9人。
六年级奥数经典题、难题集粹(华杯赛难度)—附详细解答一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。