§1 简单几何体
- 格式:ppt
- 大小:17.54 MB
- 文档页数:93
学习简单的几何体几何体一般是由平面图形组成的,是一类自由度较高的几何图形。
熟练掌握几何体,不仅可以帮助我们更好地理解三维几何学,还可以应用到日常生活中,比如设计、建筑、制造等方面。
在本文中,我们将介绍几个简单的几何体,以便读者更好的理解和掌握。
1. 立方体立方体是最简单的几何体之一,它有六个面,每个面都是正方形。
因为每个面都相等,所以立方体具有对称性。
如果边长为a,则它的体积为a³,表面积为6a²。
2. 圆柱圆柱由两个平行圆面和一个侧面连接而成。
如果圆柱的高度为h,底面圆的半径为r,则它的体积为πr²h,表面积为2πr²+2πrh。
圆柱是一种常见的几何体,我们可以把它应用到建筑、设计等领域中。
3. 金字塔金字塔是由一个底面组成的,这个底面可以是任何形状,例如正方形、三角形、矩形等。
金字塔的高度可以从底面到顶点的距离来计算。
如果我们知道底面的面积和高度,则可以计算出金字塔的体积为1/3×(底面积×高度)。
表面积的计算较为复杂,需要根据金字塔的底面形状来计算每个面的面积,然后将其相加。
4. 球体球体是一个非常有趣的几何体,它由一个曲面组成,所有点到球心的距离都相等。
如果球的半径为r,则它的体积为4/3×πr³,表面积为4πr²。
球体具有非常高的对称性,因此在几何学和物理学中经常被用作实验、计算和建模的对象。
在本文中,我们介绍了几个非常常见的几何体,它们在多个领域中都有广泛的应用。
虽然这些几何体的定义和计算方法很简单,但是它们对设计、建筑、物理学等领域都具有重大作用,因此值得我们花费时间去深入学习和掌握。
简单几何体
基本思想:利用空间图形,培养空间想象能力,分析图形及其结构特征
1,简单旋转体:圆柱、圆锥、圆台、球
分析截面:横截面(中截面)、竖截面(轴截面)
2,简单多面体:棱柱(直、正)、棱锥(正)--高与斜高、棱台(正)---高与斜高
分析截面:横截面、竖截面
3,组合体
4,折叠与展开
位于同一面上的诸元素间的位置关系不变,而涉及两个面之间的图形之间则发生量的变化。
立体图形的展开或平面图形的折叠是培养空间立体感的好方法
1,已知某圆柱的底面半径为1cm,高为2cm,求该圆柱的侧面积,表面积和体积。
2,已知用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长。
3,圆台的两底面的半径分别为2和5
,母线长为
4,已知半径为5的球的两个平行截面的周长分别为6π和8π,求这两个截面圆心之间的距离。
5,已知某正三棱柱的底面边长为1,高为2,求该正三棱柱的侧面积,表面积和体积。
6,已知正四棱锥V A B C D
-,底面面积为16
,侧棱长为,计算它的高和斜高。
7,设正三棱台的上、下底面的边长分别为2cm和5cm,侧棱长为5cm,求这个棱台的高。
8,在以O为顶点的三棱锥中,过O的三条棱两两的交角都是30︒,在一条棱上取A、B两
点,OA=4cm,OB=3cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面摩擦),求此绳在A、B之间的最短绳长。
第一章立体几何初步§1简单几何体1.1简单旋转体知识点一旋转体[填一填](1)概念:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.(2)特殊的旋转体:圆柱、圆锥、圆台、球.知识点二球[填一填](1)概念:以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面.球面所围成的几何体叫作球体,简称球.半圆的圆心叫作球心.连接球心和球面上任意一点的线段叫作球的半径.连接球面上两点并且过球心的线段叫作球的直径.如图所示.(2)表示:球常用表示球心的字母表示.如上图中的球记作球O.[答一答]1.在平面几何中,你学习了直线与圆的位置关系,那么平面与球的位置关系如何?提示:类比平面上直线与圆的位置关系,平面与球有以下几种位置关系:相离、相切、相交,其中相离是平面与球无公共点,相切是平面与球有且只有一个公共点,相交则是平面与球有无数多个公共点.知识点三圆柱、圆锥、圆台[填一填](1)概念:分别以矩形的一边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台.圆台也可以看作是用平行于圆锥底面的平面截这个圆锥而得到的.垂直于旋转轴的边旋转而成的圆面叫作它们的底面;不垂直于旋转轴的边旋转而成的曲面叫作它们的侧面,无论转到什么位置,这条边都叫作侧面的母线.如图所示.(2)表示:圆柱、圆锥、圆台都是用表示轴的字母表示.如上图中的圆柱、圆锥、圆台分别记为圆柱OO′、圆锥SO、圆台OO′.[答一答]2.对圆柱、圆锥、圆台:(1)平行于底面的截面是什么样的图形?(2)过轴的截面(简称轴截面)分别是什么样的图形?(3)研究圆柱、圆台和圆锥之间的关系.提示:(1)平行于底面的截面,图形都是圆.(2)过轴的截面,对于圆柱是矩形,对于圆锥是等腰三角形,对于圆台是等腰梯形.(3)圆柱的上底面变小,就变为圆台,当上底面变为一个点时,它就变成了圆锥.圆台是由圆锥截得的,“补台成锥”是解决圆台问题的一种重要方法.3.为什么以直角三角形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体不一定是圆锥?提示:如图①所示,Rt△ABC中,AB⊥AC,以直角边AC所在的直线为轴旋转所得旋转体是圆锥,如图②;以直角边AB所在的直线为轴旋转所得旋转体也是圆锥,如图③;以斜边BC所在的直线为轴旋转所得旋转体不是圆锥,是两个同底面的圆锥拼接成的几何体,如图④.由此可见,平面图形绕同一平面内的一条直线旋转所得几何体是什么样的旋转体,跟所选旋转轴所在的直线的位置关系有关.在理解圆柱、圆锥和圆台的概念时要注意以下几点(1)我们以轴上的两个字母表示几何体,可以记作圆柱OO′,圆锥SO,圆台OO′.(2)圆台可看作是用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分.(3)这三种几何体的母线不是唯一的.圆柱的母线互相平行,圆锥的母线交于一点,圆台的母线延长后交于一点.连接圆柱上、下底面圆周上两点,不一定是圆柱的母线,圆柱的母线与轴平行.但连接圆锥顶点和底面圆周上任一点得到的线段都是母线.(4)用一个与底面平行的平面去截这三种几何体,得到的截面都是圆面.类型一旋转体的有关概念【例1】以下对于几何体的描述,错误的是()A.NBA决赛中使用的篮球不是球体B.一个等腰三角形绕着底边上的高所在直线旋转180°形成的封闭曲面所围成的图形叫作圆锥C.用平面去截圆锥,底面与截面之间的部分叫作圆台D.以矩形的一组对边的中垂线所在直线为轴旋转180°所形成的几何体为圆柱【思路探究】根据柱、锥、台的结构特征进行判断.【解析】根据球的定义可知A正确.由圆锥的定义知B正确.当平面与圆锥的底面平行时底面与截面之间的部分为圆台,故C错误.由圆柱的定义知D正确.【答案】 C规律方法1.判断简单旋转体结构特征的方法(1)明确由哪个平面图形旋转而成.(2)明确旋转轴是哪条直线.2.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.(2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)圆柱上底面圆上任一点与下底面圆上任一点的连线都是圆柱的母线;(2)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(3)圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(4)到定点的距离等于定长的点的集合是球.解:(1)错误.由圆柱母线的定义知,圆柱的母线应平行于轴.(2)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(3)正确.(4)错误.应为球面.类型二有关几何体的计算问题【例2】一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.【思路探究】本题主要考查圆台中的有关计算,关键是画出轴截面,依据相似三角形求解.【解】(1)如右图所示,设圆台的轴截面是等腰梯形ABCD,O1,O分别是上、下底面的中心,作AM⊥BC于M,延长BA,CD交于S,连接SO,则SO经过O1.由已知得上底面半径O1A=2 cm ,下底面半径OB =5 cm ,且腰长AB =12 cm ,∴圆台的高AM =122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l cm ,则由△SAO 1∽△SBO ,得l -12l =25,解得l =20. 即截得此圆台的圆锥的母线长为20 cm.规律方法 解决这类问题一般是画出轴截面解三角形.一个圆锥的高为2,母线与轴的夹角为30°,则圆锥的母线长为433. 解析:先明确圆锥的相关概念,画出示意图,再利用直角三角形的知识求解,如图所示,设圆锥底面直径为AB ,SO 为高,SA 为母线,由题意可知∠ASO =30°,所以在Rt △AOS 中,SA =SO cos ∠ASO =2cos30°=433. 类型三 有关球的截面问题【例3】 在球内有相距9 cm 的两个平行截面,面积分别为49π cm 2和400π cm 2,求此球的半径.【思路探究】 作轴截面(过与截面圆垂直的半径作截面),将空间图形化为平面图形.利用截面的性质解直角三角形.【解】 两截面与球心的位置关系有两种:(1)两截面位于球心的同侧;(2)球心在两截面之间.若两截面位于球心的同侧,如图①,C ,C 1分别是两平行截面的圆心,设球的半径为R ,截面圆的半径分别为r ,r 1,由πr 21=49π,得r 1=7(cm),由πr 2=400π,得r =20(cm),在Rt△OB1C1中,OC1=R2-r21=R2-49,在Rt△OBC中,OC=R2-r2=R2-400,由题意知OC1-OC=9 cm,即R2-49-R2-400=9,解得R=25(cm),若球心在两截面之间,如图②,OC1=R2-49,OC=R2-400.由题意知OC1+OC=9 cm,即R2-49+R2-400=9,R2-49=9-R2-400,平方得R2-400=-15,此方程无解,说明第二种情况不存在.综上所述,所求球的半径为25 cm.规律方法在解决球的截面问题时,可作轴截面,将空间图形化为平面图形.由于球心与截面圆心的连线垂直于截面圆,因此经过球心与截面圆心的连线作轴截面如图.则球的半径R,截面圆半径r,球心到截面的距离d有如下关系:d2+r2=R2.在半径等于13 cm的球内有一个截面,它的面积是25π cm2,求球心到这个截面的距离.解:设截面圆的半径为r cm.因为πr2=25π,所以r=5.设球心到截面的距离为d cm,则d=132-52=12.所以球心到截面的距离为12 cm.类型四圆柱、圆锥、圆台的侧面展开图问题【例4】如图所示,一圆柱的底面半径为2,母线长为5,轴截面为矩形ABCD,从点A拉一绳子沿圆柱侧面到点C,求最短绳长.【思路探究】(1)绳子是在圆柱的侧面上,与侧面有关的问题用侧面展开图来解决.(2)沿母线BC剪开,将圆柱侧面的一半展开,得展开图矩形,其中AD是母线的长,AB′是底面周长的一半.【解】沿BC剪开,将圆柱侧面的一半展开得到矩形B′ADC′,如图所示,连接AC′,则AC′的长即为所求最短绳长,由题意可知,B′C′=5,AB′=2π,即最短绳长为25+4π2.规律方法1.圆柱问题中的基本量为底面半径r、h、母线长l,且h=l.2.解决与圆柱有关的问题可作轴截面或侧面展开图,将空间问题转化为平面问题.3.轴截面是矩形,长和宽分别为2r和l.4.侧面展开图是矩形,长和宽分别为2πr和l.圆锥底面半径r=1 cm,母线l=6 cm,现有一只蚂蚁,从圆锥底面圆周上点A沿侧面爬一周后又回到A点,求它至少要爬的路程.解:如图所示,将圆锥侧面沿母线P A 展开,所得扇形的圆心角θ=r l ·360°=16×360°=60°,∴△P AA ′为等边三角形,∴AA ′=6,即它至少要爬的路程为6 cm.——转化与化归思想——立体几何问题平面化1.利用轴截面将空间问题转化为平面问题圆柱、圆锥、圆台、球的轴截面中含有丰富的元素和良好的图形性质,因此在解决几何体的有关长度计算问题时常常利用轴截面来解决,将空间问题转化为平面问题.2.用侧面展开的方法求圆柱、圆锥和圆台侧面上两点间距离(最值)求几何体侧面上两点间最短距离的问题,常把侧面展开,转化为平面几何问题后解决.【例5】 如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x );(2)绳子最短时,顶点到绳子的最短距离;(3)f (x )的最大值.【思路分析】 求几何体侧面上两点之间的距离的最小值时,往往利用其侧面展开图求解.【精解详析】 将圆锥的侧面沿SA 剪开,并展开,如图所示,该图形为扇形,且弧AA ′的长度L 就是圆O 的周长,所以L =2πr =2π.所以∠ASM =L 2πl ×360°=2π2π×4×360°=90°.(1)由题意知,绳子长度的最小值为展开图中的AM ,且AM =x 2+16(0≤x ≤4),所以f (x )=AM 2=x 2+16(0≤x ≤4).(2)作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,因为12SA ·SM =12AM ·SR ,所以SR =SA ·SM AM =4x x 2+16(0≤x ≤4),即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4). (3)因为f (x )=x 2+16(0≤x ≤4)是增函数,所以f (x )的最大值为f (4)=32.【解后反思】 求解旋转体侧面上两点间的最小距离时,一般将几何体侧面展开,从而将空间问题转化为平面问题,将曲线问题转化为直线问题来解决,使复杂问题简单化.如图,圆台的上、下底面半径分别为5 cm 和10 cm ,母线长AB =20 cm ,从圆台母线AB 的中点M 拉一条绳子绕圆台侧面转到A 点.求:在绳子最短时,上底圆周上的点到绳子的最短距离.提示:类似几何体表面最短路径问题一般是把侧面展开,转化为平面几何知识求解. 解:如图,将圆台侧面展开,则绳子的最短长度为侧面展开图中A 1M 的长度,所以∠AOA 1=10-520×360°=90°, 设OB =l ′,则5l ′·360°=90°, 所以l ′=20 cm ,所以OA =OA 1=40 cm ,OM =30 cm.在Rt△A1OM中,A1M=OA21+OM2=402+302=50(cm).过点O作OQ⊥A1M于Q,交弧BB1于P,则PQ为所求最短距离.因为OA1·OM=A1M·OQ,则40×30=50·OQ,所以OQ=24 cm,所以PQ=OQ-OP=OQ-OB=24-20=4(cm),即上底圆周上的点到绳子的最短距离为4 cm.一、选择题1.下列不是旋转体的是(D)A.圆台B.圆锥C.圆柱D.球面解析:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形叫作空间几何体.旋转体是特珠的空间几何体.因此球面不是旋转体.2.下列说法中正确的是(D)A.圆台是直角梯形绕其一边所在的直线旋转而成的B.圆锥是直角三角形绕其一边所在的直线旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的底面与截面之间的部分解析:圆台是直角梯形绕垂直于底边的腰所在的直线旋转而得到的,故A不正确;圆锥是直角三角形绕其一条直角边所在的直线旋转而得到的,故B不正确;而圆柱、圆锥、圆台、球都是旋转体,故C不正确.3.有下列表述:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是(D)A.①②B.②③C.①③D.②④解析:对于①③,两点的连线不一定在圆柱、圆台的侧面上,当然有可能不是母线了,对于②④,由母线的定义知正确.二、填空题4.有下列说法:①球的半径是连接球面上任意一点和球心的线段;②球的直径是球面上任意两点间的线段;③用一个平面截一个球,得到的是一个圆;④空间中到一定点距离相等的点的集合是一个球.其中正确的有①.解析:①球是半圆绕其直径所在的直线旋转,旋转面所围成的封闭的几何体,不难理解,半圆的直径就是球的直径,半圆的圆心就是球心,半圆的半径就是球的半径,因此①正确;如果球面上的两点连线经过球心,则这条线段就是球的直径,因此②错误;球是一个几何体,平面截它应得到一个面而不是一条曲线,所以③错误;空间中到一定点距离相等的点的集合是一个球面,而不是一个球体,所以④错误.5.圆柱、圆锥和圆台过轴的截面分别是矩形、等腰三角形和等腰梯形.三、解答题6.在半径为25 cm的球内有一个截面,它的面积是49π cm2,求球心到这个截面的距离.解:设球的半径为R,截面圆的半径为r,球心到截面的距离为d,如图所示.因为S=πr2=49π cm2,所以r=7 cm,所以d=R2-r2=252-72=24(cm),即球心到这个截面的距离为24 cm.1.2 简单多面体知识点一多面体与棱柱[填一填]1.多面体我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台都是简单多面体.2.棱柱(1)棱柱的有关概念两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱.两个互相平行的面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是平行四边形.两个面的公共边叫作棱柱的棱,其中两个侧面的公共边叫作棱柱的侧棱,底面多边形与侧面的公共顶点叫作棱柱的顶点,与两个底面都垂直的直线夹在两底面间的线段长叫作棱柱的高.(2)棱柱的分类①按底面多边形的边数:棱柱的底面可以是三角形、四边形、五边形……我们把这样的棱柱分别叫作三棱柱、四棱柱、五棱柱…….②按侧棱与底面是否垂直:[答一答]1.有人说:有两个面互相平行,其余各面都是平行四边形的几何体是棱柱.你认为这种说法对吗?提示:这种说法不对.棱柱有两个本质特征:(1)有两个面互相平行;(2)其余各面每相邻两个面的公共边相互平行.正是由于这两个特征,使棱柱的各侧面都是平行四边形,但是有两个面互相平行,其余各面都是平行四边形的几何体未必是棱柱.反例如图.知识点二棱锥[填一填](1)定义有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.这个多边形叫作棱锥的底面,其余各面叫作棱锥的侧面,相邻侧面的公共边叫作棱锥的侧棱,各侧面的公共点叫作棱锥的顶点,过顶点作底面的垂线,顶点与垂足间的线段长叫作棱锥的高.(2)正棱锥如果棱锥的底面是正多边形,且各侧面全等,就称作正棱锥.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱锥分别叫作三棱锥、四棱锥、五棱锥…….[答一答]2.有一个面是多边形,其余各面都是三角形的几何体是棱锥吗?为什么?提示:不一定,判断一个几何体是否是棱锥,关键是紧扣棱锥的三个本质特征:(1)有一个面是多边形;(2)其余各面都是三角形;(3)这些三角形有一个公共顶点.这三个特征缺一不可,显然,这种说法不满足(3). 反例如图.知识点三棱台[填一填](1)定义用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.原棱锥的底面和截面叫作棱台的下底面和上底面,其他各面叫作棱台的侧面,相邻侧面的公共边叫作棱台的侧棱,与两个底面都垂直的直线夹在两底面间的线段长叫作棱台的高.(2)正棱台用正棱锥截得的棱台叫作正棱台,正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高.(3)分类按底面多边形的边数分:底面是三角形、四边形、五边形……的棱台分别叫作三棱台、四棱台、五棱台…….[答一答]3.棱台的各侧棱是什么关系?各侧面是什么样的多边形?两个底面是什么关系?提示:棱台的各侧棱延长后交于一点,各侧面是梯形,两个底面是相似的多边形.4.观察下面的几何体,思考问题:图①是棱台吗?图②用任意一个平面去截棱锥,一定能得到棱台吗?提示:图①不是棱台,因为各侧棱延长后不交于一点,图②中只有用平行于底面的平面去截才能得到棱台.1.对于多面体概念的理解,注意以下两个方面(1)多面体是由平面多边形围成的,围成一个多面体至少要四个面.(2)多面体是一个“封闭”的几何体.2.对于棱柱的定义注意以下三个方面(1)有两个面平行,各侧棱都平行,各侧面都是平行四边形.(2)有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱.(3)从运动的观点看,棱柱可以看成是一个平面多边形,从一个位置沿一条不与其共面的直线运动到另一位置时,形成的几何体.3.对于棱锥要注意有一个面是多边形,其余各面都是三角形的几何体不一定是棱锥,必须强调其余各面是共顶点的三角形.4.棱台中各侧棱延长后必相交于一点,否则不是棱台.类型一概念的理解与应用【例1】下列关于多面体的说法正确的个数为________.①所有的面都是平行四边形的几何体为棱柱;②棱台的侧面一定不会是平行四边形;③底面是正三角形,且侧棱相等的三棱锥是正三棱锥;④棱台的各条侧棱延长后一定相交于一点;⑤棱柱的每一个面都不会是三角形.【解析】①中两个四棱柱放在一起,如图所示,能保证每个面都是平行四边形,但并不是棱柱.故①错.②中棱台的侧面一定是梯形,不可能为平行四边形,②正确.根据棱锥的概念知③正确.根据棱台的概念知④正确.棱柱的底面可以是三角形,故⑤不正确.正确的个数为3.【答案】 3规律方法有关棱柱、棱锥、棱台结构特征的判断方法(1)举反例法:结合棱柱、棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点下面属于多面体的是①②.(将正确答案的序号填在横线上)①建筑用的方砖;②埃及的金字塔;③茶杯;④球.解析:①②属于多面体;③④属于旋转体.类型二棱柱的结构特征【例2】如图所示,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,说明理由.【思路探究】判断一个几何体是否是棱柱,关键是验证几何体是否满足棱柱的定义.如果是棱柱,一是要找到两个面平行,二是要判定其余各个面的公共边平行;如果不是棱柱,则需指出不满足定义或举出反例.【解】(1)是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面都是四边形,其余各面都是矩形,矩形当然是平行四边形,并且几何体的四条侧棱互相平行.(2)截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.规律方法棱柱的两个主要结构特征:(1)有两个面互相平行;(2)各侧棱都互相平行,各侧面都是平行四边形.通俗地讲,就是棱柱“两头一样平,上下一样粗”.下列说法中,正确的是(C)A.底面是正多边形的棱柱是正棱柱B.棱柱中两个互相平行的面一定是棱柱的底面C.棱柱的各个面中,至少有两个面互相平行D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形解析:正棱柱是底面是正多边形且侧棱垂直于底面的棱柱,故A错误;棱柱中可以有两个侧面互相平行,不一定是底面,同时底面可以是平行四边形,故B,D错;由棱柱的概念知C正确.故正确答案为C.类型三棱锥的几何特征【例3】已知正三棱锥V-ABC的底面边长为6,高VO=4,D为AB的中点,过点V,C,D作截面,试求该截面的周长和面积.【思路探究】依据题意画出图形,利用高与侧棱、底面等边三角形相应的外接圆半径,高与斜高、底面等边三角形相应边心距构成的直角三角形进行计算.【解】 由题意画出图形,如图所示,其中VO =4,AB =BC =CA =6,∵△ABC 是等边三角形,O 是中心,∴OC =23,OD =3,在Rt △VOC 和Rt △VOD 中,由勾股定理,得VC =42+(23)2=27,VD =42+(3)2=19,∴截面△VCD 的周长为VC +CD +VD =27+33+19,面积为12CD ·VO =12×33×4=6 3.规律方法 1.如图,在正三棱锥的计算中,常要研究基本量:底面边长AB 、侧棱长PC 、高PO 、斜高PD 、边心距OD 、底面外接圆半径OC 等.2.含有这些基本量的直角三角形有Rt △POD 、Rt △POC 、Rt △PDB 、Rt △AOD 等. 3.通过解这些直角三角形可求出基本量,进而完成解题. 4.记住一些结论可提高解题速度.如若AB =a ,则OC =33a ,OD =36a ,CD =32a 等.在四棱锥的四个侧面中,直角三角形最多可有( D ) A .1个 B .2个 C .3个D .4个解析:如图所示,在长方体ABCD -A 1B 1C 1D 1中取四棱锥A 1-ABCD ,则此四棱锥的四个侧面全为直角三角形.故正确答案为D.类型四 棱台的几何特征【例4】 已知四棱台的上底面、下底面分别是边长为4,8的正方形,各侧棱长均为17,求四棱台的高.【思路探究】 思路一:用“补形法”,将棱台还原为棱锥,结合平面几何知识求解;思路二:依题意,作出棱台的对角面,化为平面几何的计算问题.【解】解法一:如图所示,设O 1,O 分别为正方形A 1B 1C 1D 1和正方形ABCD 的中心,则P ,O 1,O 三点共线.A 1O 1=12A 1C 1=12×42=22,AO =12AC =12×82=4 2.∵△P A 1O 1∽△P AO ,∴A 1O 1AO =P A 1P A ,即P A 1P A =12.又∵P A =P A 1+A 1A =2P A 1,∴P A 1=A 1A =17, 在Rt △PO 1A 1中,PO 1=P A 21-A 1O 21=(17)2-(22)2=3.又∵PO 1PO =A 1O 1AO ,∴PO =6,∴OO 1=3.∴四棱台的高为3.解法二:如图所示,在截面ACC 1A 1中,A 1A =CC 1=17,A 1C 1=42,AC =82,过A 1作A 1E ⊥AC 交AC 于点E ,则A 1E 就是四棱台的高.在Rt △A 1EA 中,AE =12×(82-42)=22,A 1A =17,∴A1E=A1A2-AE2=(17)2-(22)2=3,即四棱台的高为3.规律方法正棱台的计算1.将正棱台补成棱锥(1)大、小棱锥中用解直角三角形方法求解;(2)两棱锥之间运用“对应高之比等于相似比”及相似形知识求解.2.在正棱台中作直角梯形,进而化为矩形和直角三角形求解.下列几何体是棱台的是④(填序号).解析:①③都不是由棱锥截得的,不符合棱台的定义,故①③不满足题意,②中的截面不平行于底面,不符合棱台的定义,故②不满足题意,④符合棱台的定义,故填④.——多维探究系列——几何体的侧面或表面展开图问题展开图问题是转化思想的体现,是把立体几何问题转化为平面几何问题的重要手段之一,所以要重视这种问题的应用.【例5】如图是三个几何体的侧面展开图,请问各是什么几何体?【思路分析】图①中,有5个平行四边形,而且还有2个全等的五边形,符合棱柱特点;图②中,有5个三角形,且有共同的顶点,还有1个五边形,符合棱锥特点;图③中,有3个梯形,还有2个相似的三角形,符合棱台的特点.【精解详析】由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把。