简单几何体(自己制作-适合上新课)经典
- 格式:ppt
- 大小:2.92 MB
- 文档页数:38
学习简单的几何体几何体一般是由平面图形组成的,是一类自由度较高的几何图形。
熟练掌握几何体,不仅可以帮助我们更好地理解三维几何学,还可以应用到日常生活中,比如设计、建筑、制造等方面。
在本文中,我们将介绍几个简单的几何体,以便读者更好的理解和掌握。
1. 立方体立方体是最简单的几何体之一,它有六个面,每个面都是正方形。
因为每个面都相等,所以立方体具有对称性。
如果边长为a,则它的体积为a³,表面积为6a²。
2. 圆柱圆柱由两个平行圆面和一个侧面连接而成。
如果圆柱的高度为h,底面圆的半径为r,则它的体积为πr²h,表面积为2πr²+2πrh。
圆柱是一种常见的几何体,我们可以把它应用到建筑、设计等领域中。
3. 金字塔金字塔是由一个底面组成的,这个底面可以是任何形状,例如正方形、三角形、矩形等。
金字塔的高度可以从底面到顶点的距离来计算。
如果我们知道底面的面积和高度,则可以计算出金字塔的体积为1/3×(底面积×高度)。
表面积的计算较为复杂,需要根据金字塔的底面形状来计算每个面的面积,然后将其相加。
4. 球体球体是一个非常有趣的几何体,它由一个曲面组成,所有点到球心的距离都相等。
如果球的半径为r,则它的体积为4/3×πr³,表面积为4πr²。
球体具有非常高的对称性,因此在几何学和物理学中经常被用作实验、计算和建模的对象。
在本文中,我们介绍了几个非常常见的几何体,它们在多个领域中都有广泛的应用。
虽然这些几何体的定义和计算方法很简单,但是它们对设计、建筑、物理学等领域都具有重大作用,因此值得我们花费时间去深入学习和掌握。
简单几何体
基本思想:利用空间图形,培养空间想象能力,分析图形及其结构特征
1,简单旋转体:圆柱、圆锥、圆台、球
分析截面:横截面(中截面)、竖截面(轴截面)
2,简单多面体:棱柱(直、正)、棱锥(正)--高与斜高、棱台(正)---高与斜高
分析截面:横截面、竖截面
3,组合体
4,折叠与展开
位于同一面上的诸元素间的位置关系不变,而涉及两个面之间的图形之间则发生量的变化。
立体图形的展开或平面图形的折叠是培养空间立体感的好方法
1,已知某圆柱的底面半径为1cm,高为2cm,求该圆柱的侧面积,表面积和体积。
2,已知用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm,求圆台的母线长。
3,圆台的两底面的半径分别为2和5
,母线长为
4,已知半径为5的球的两个平行截面的周长分别为6π和8π,求这两个截面圆心之间的距离。
5,已知某正三棱柱的底面边长为1,高为2,求该正三棱柱的侧面积,表面积和体积。
6,已知正四棱锥V A B C D
-,底面面积为16
,侧棱长为,计算它的高和斜高。
7,设正三棱台的上、下底面的边长分别为2cm和5cm,侧棱长为5cm,求这个棱台的高。
8,在以O为顶点的三棱锥中,过O的三条棱两两的交角都是30︒,在一条棱上取A、B两
点,OA=4cm,OB=3cm,以A、B为端点用一条绳子紧绕三棱锥的侧面一周(绳和侧面摩擦),求此绳在A、B之间的最短绳长。
知识点几何图形的动手制作动手制作几何图形是一种富有创意和乐趣的学习方式。
通过亲手制作,能加深对几何知识的理解,提升空间想象能力,同时也能培养动手能力。
我们可以利用简单的材料和工具,轻松制作出各种几何图形,感受几何的魅力。
准备材料在开始之前,准备一些必要的材料是关键。
以下是一些推荐的材料:纸张:可以选择卡纸、彩纸等不同颜色的纸张,增加视觉的层次感。
剪刀:用于裁剪纸张,制作各种形状。
胶水或胶带:将制作好的形状固定。
直尺和圆规:确保测量准确,提高几何形状的规范性。
铅笔和橡皮:先进行草图设计,修改也更方便。
这些材料通常可以在文具店或日常家庭中找到,不需要额外的开支。
立体几何的纸模型立体几何的纸模型制作过程非常有趣,适合不同年龄段的人。
可以选择简单的形状,比如立方体、长方体和圆柱体,逐渐挑战更复杂的模型,如金字塔或圆锥。
制作立方体测量与绘制:用直尺测量并在纸上绘制一个正方形,尺寸可以根据个人的需求选择,通常选择边长为5cm。
剪裁:将正方形剪下来。
复制:将正方形的图形复制六次,准备六个面。
粘贴:在每两个相邻的面边缘上涂胶,然后将其粘贴在一起,形成立方体的结构。
装饰:可以在每个面上绘制不同的图案或使用彩纸,为立方体增添趣味。
通过这样的步骤,不仅能理解立方体的结构,还能进行创意设计。
制作圆柱体圆柱体的制作需要用到圆规铅笔,具体步骤如下:绘制圆形:用圆规在纸上绘制两个相同大小的圆形,这将作为圆柱的上下底面。
绘制侧面:利用直尺测量并绘制一条长方形,长方形的长度等于底面的周长,宽度决定圆柱的高低。
剪裁与折叠:剪下圆形和长方形,长方形的侧面可以进行轻微折叠,以便更加紧密结合。
粘贴:将长方形的一端粘贴到一个圆形的边缘上,然后将另一侧也粘合到另一个圆形上,完成圆柱体的搭建。
圆柱体的制作帮助理解其体积计算的基本原理,并且可以在完成后进行旋转实验,观察不同的效果。
平面几何的创作除了立体几何,平面几何同样能通过动手制作来加深理解,从而激发创造力。
简单立体几何图形立体几何是几何学中研究三维空间中图形的学科。
它包括平面几何的基础,同时研究物体的形状、大小、位置及其相互关系。
在实际生活中,我们经常会遇到一些简单的立体几何图形,比如圆柱、球体、长方体等。
这些图形不仅有形状美观,而且具有一些特殊的性质和应用。
本文将介绍几种简单立体几何图形,分析它们的性质和应用。
一、圆柱圆柱是由一个圆沿着它的直径旋转而成的立体。
圆柱有两个平行且相等的底面,两个底面之间的曲面称为侧面。
圆柱的高度是连接两个底面中心的直线段。
圆柱底面的面积可以用公式πr²来计算,其中r是底面的半径;圆柱的体积可以用公式πr²h来计算,其中h是高度。
圆柱广泛应用于日常生活和工业领域。
例如,饮料罐、瓶子等常见的容器形状就是圆柱体,它们便于携带和储存。
此外,圆柱体的形状也被应用于建筑设计中,例如柱子的形状就是圆柱体的特例。
二、球体球体是由一个平面围绕着其上一条固定的轴旋转而成的立体。
球体的表面由无数个等半径的圆组成,这些圆都以一个公共中心为圆心。
球体的直径是通过球心同时与两个球面上的点相连而得到的线段。
球体的体积可以用公式4/3πr³来计算,其中r是球体的半径。
球体是一种非常常见的几何图形,它在科学、工程和日常生活中都有广泛应用。
例如,地球可以近似地看作一个球体,球体的性质和形状决定了地球的地理特征和气候变化。
在体育比赛中,很多运动都使用球体,比如足球、篮球等。
此外,球体也常用于工程设计中,例如建筑设计中的圆顶等。
三、长方体长方体是一种有六个矩形面的立体几何图形,它的六个面都是直角矩形,相互平行。
长方体的长、宽和高分别是相对应的三组平行边的长度。
长方体的体积可以用公式lwh来计算,其中l是长方体的长度,w是宽度,h是高度。
长方体的表面积可以用公式2lw + 2lh + 2wh来计算。
长方体是最常见的几何图形之一,它广泛应用于日常生活和工程领域。
比如,家庭中常见的电视、冰箱等家电通常采用长方体的形状设计,这样既方便使用又易于摆放。
简单几何体一. 棱柱1. 概念:2. 结构特征: (1) 两底面互相平行; (2)侧面是平行四边形; (3)侧棱互相平行3. 分类一:三棱柱、四棱柱、五棱柱⋯⋯ 分类二:斜棱柱、直棱柱、正棱柱 .直棱柱:侧棱与底面垂直的棱柱叫做直棱柱 . 正棱柱:底面是正多边形的直棱柱叫做正棱柱 . 平行六面体:底面是平行四边形的四棱柱叫做平行六面体二. 棱锥1. 概念:2. 结构特征: (1)有一个面是多边形 (包括三角形 ); (2)其余各面是有一个公共顶点的三角形3. 分类:一般棱锥、正棱锥 .正棱锥:底面为正多边形,公共顶点在底面的投影是底面中心的棱锥叫做正棱锥 正四面体:各面都是等边三角形的三棱锥叫做正四面体 .三. 棱台1. 概念:2. 结构特征: (1) 侧棱的延长线相交于一点; (2)侧面是梯形; (3)两底面互相平 行,两底面相似 .四. 圆柱1.概念:2.结构特征: (1)两底面互相平行; (2) 任意两条母线都平行; (3)母线与底面垂直; (4)轴截面为矩形; (5)侧面 展开图是矩形 .五. 圆锥1.概念:斜棱柱 直棱柱 正四棱柱 正六棱柱 平行六面体棱锥 正四棱锥正六棱锥 正四面体四棱台 正四棱台2.结构特征: (1)所有母线相交于一点; (2)旋转轴与底面垂直; (3) 轴截面为等腰三角形; (4)侧面展开图是扇 形.六 .圆台1.概念:2.结构特征: (1) 两底面互相平行; (2)母线的延长线相交于一点; (3)轴截面为等腰梯形; (4) 侧面展开图是扇 环.七.球体1.概念:2.结构特征: (1) 球面是曲面,不能展开成平面图形; (2)球面上任一点与球心的连线都是半径大圆:经过球心的截面去截球面所得的圆称为大圆 小圆:不经过球心的截面去截球面所得的圆称为小圆3. 球的截面的性质: (1) 球的截面是圆面;(2) 球心和截面圆心的连线垂直于截面; (3)球心到截面的距离 d 与球半径 R 及截面圆半径 r 的关系是 rR 2 d 2 .4. 两点间的球面距离:在球面上, 两点之间的最短路线,就是经过这两点的大圆在这两点间的一段劣弧的长 度,这个弧长叫做两点间的球面的距离 .OAO一、选择题1.如果一个圆锥的侧面展开图恰是一个半圆,那么这个圆锥轴截面三角形的顶角为 A .B .C . B .643 2.如图 8-22,用一个平面去截一个正方体,得到一个三棱锥 别为 S 1、 S 2、 S 3,则这个三棱锥的体积为 ( )3.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面 ( ) A .必定都不是直角三角形 B .至多有一个直角三角形 C .至多有两个直角三角形 D .可能都是直角三角形33B . R36.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1、S 2、S 3,则 ( )A . S 1< S 2< S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 27.图 8-23 中多面体是过正四棱柱的底面正方形 ABCD 的顶点 A 作截面 AB 1C 1D 1 而截得的,且B 1B=D 1D.已知截面 AB 1C 1D 1与底面 ABCD 成 30°的二面角, AB=1 ,则这个多面体的体积为 ( )66AB .C .238. 设地球半径为 R ,在北纬 30°圈上有甲、乙两地, A3 . πRB . 3 πRC .36D.6 46它们的经度差为120°, 那么这两地间的纬线之长为 ( ) 2.在这个三棱锥中,除截面外的三个面的面积分 A .V=2 S 1S 2S 33B .V= 2S 1S 2S 3C .V=2S 1 S 2 S3D .V = S 1S 2 S34.长方体的三个相邻面的面积分别为积为 2,3,6, 这个长方体的顶点都在同一个球面上,则这个球面的表面A .2 5.把一个半径为 半径为 ( )B .56 πC . 14πD .64 πR 的实心铁球熔化铸成两个小球(不计损耗 ),两个小球的半径之比为 1∶2,则其中较小球 C .325R5DπR.2πR9.如图 8-24,在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个面都接触上,经过棱锥的一条侧棱和高作截面,正确的截面图形是 (10.如图 8-25,在三棱柱的侧棱 A 1A 和 B 1B 上各有一动点 P ,Q ,且满足 A 1P=BQ ,过 P 、Q 、 C三点的截 面把棱柱分成两部分,则其体积之比为 ( )A .3∶1B .2∶1C . 4∶ 111.如图 8-26,下列四个平面形中,每个小四边形皆为正方形,其中可以沿两个 正方形的相邻边折叠围成一个立方体的图形是 ( )12.已知 A 、B 、C 、D 为同一球面上的四点,且连接每点间的线段长都等于 离等于 ( )2,则球心 O 到平面 BCD 的距A .666B .C .D .6 12 18、填空题13.命题 A :底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥 .命题 A 的等价命题 B 可以是:底面为正三角形,且的三棱锥是正三棱锥 .14.如图 8-27,在三棱锥 S —ABC 中, E 、F 、G 、H 分别是棱 SA 、SB 、BC 、AC 的中点,截面 EFGH 将三棱锥分割为两个几何体 AB —EFGH 、SC —EFGH ,其 体积分别是 V 1、 V 2,则 V 1∶ V 2的值是 .15.已知三棱锥的一条棱长为 1,其余各条棱长皆为 2,则此三棱锥的体16.已知正四棱柱的体积为定值 V ,则它的表面积的最小值为三、解答题17.正四棱台上、下底面边长分别为 a 和 b,上、下底面积之和等于侧面积,求 棱台体积 .18.一个正三棱柱的三视图如图所示,求这个正三棱柱的表面积 .19.如图 8-29,半球内有一内接正方体,正方体的一个面在半球的底面圆内, 若正方体的一边长为 6 ,求半球的表面积和体积20.用一块钢锭浇铸一个厚度均匀, 且全面积为 2 平方米的正四棱锥形有盖容 器(如图 8-30),设容器的高为 h 米,盖子边长为 a 米.(1)求 a 关于h的函数解析式;V 最大?求出V 的最大值.(2) 设容器的容积为V 立方米,则当h 为何值时,(求解本题时,不计容器的厚度)【综合能力训练】1.C2.B3.D4.C5.B6.A7.D8.A9.B 10.B 11.C 12.B 13.侧棱相等 /侧棱与底面所成角相等 / ⋯⋯14.1∶1 15. 611 16.63 V 2 17.解: V=ab(a 2+ab+b 2).3(a b)18: 解析:由三视图知正三棱柱的高为2 cm, 由侧视图知正三棱柱的底面三边形的高为cm.设底面边长为 a ,则 ∴a=4.∴正三棱柱的表面积 S=S 侧 +2S 底=3×4×2+2 × ×4× =8(3+ )(cm)19.解 设球的半径为 r,过正方体与半球底面垂直的对角面作截面 α,则 α截半球面得半圆,得一矩形,且矩形内接于半圆,如图所示,则矩形一边长为 6 ,另一边长为 2 · 6 =23 ,∴r 2=( 6 )2+( 3 ) 2=9,∴ r=3,故 S 半球=2π2r +π2r =27π,23V 半球= π3r =18 π,即半球的表面积为 27 π,体积为 18 π.3注:本题是正方体内接于半球问题,它与正方体内接于球的问题是有本质差别的,请注意比较20.解 (1)设 h ′为正四棱锥的斜高,21a 24 h'a 2,由已知得 2h 2 1a 2 h'2 ,答案: 8(3+ )(cm).α截正方体4解得a= (h>0). h21(2)V= 1 ha2= 2h(h>0) ,3 3(h21)113(h ) h易得V=因为h+ 1≥2 hh=2 ,所以1 V≤ ,61等号当且仅当h=1,即h=1时取得.故当h=1米时,V 有最大值,V 的最大值为1立方米.6f(x)=ax 2+bx + c(a ≠0是) 偶函数,那么 g(x)=ax 3+bx 2+cx( )已知 f(x)=x5+ax 3+bx -8,且 f(-2)=10,那么 f(2)等于 (则 f(x)在(-∞,0)上有 ( )A .最小值- 5B .最大值- 5C .最小值- 1D .最大值- 3x 2 27.函数 f(x)的奇偶性为 _____ .1 x 28.若 y = (m - 1)x 2+ 2mx + 3 是偶函数,则 m = .19.已知 f(x)是偶函数, g(x)是奇函数,若 f(x) g(x) ,则 f(x)的解析式为 __________x110.已知函数 f(x)为偶函数,且其图象与 x 轴有四个交点,则方程 f(x)=0 的所有实根之和为 . 11.设定义在 [-2,2]上的偶函数 f(x)在区间[0,2]上单调递减,若 f(1-m)<f(m),求实数 m 的取值范围.12.已知函数 f(x)满足 f(x + y)+ f( x - y)= 2f( x) ·f( y)(x R ,y R),且 f(0) ≠,0试证 f(x)是偶函数. 13.已知函数 f(x)是奇函数,且当 x >0 时,f(x)=x 3+2x 2—1,求 f(x)在 R 上的表达式.14. f(x)是定义在 (-∞,- 5] [5,+ ∞)上的奇函数,且 f(x)在[5,+∞)上单调递减,试判断 f(x)在 (-∞,- 5]上的单调性,并用定义给予证明 .15.设函数 y =f(x)(x R 且 x ≠ 0对) 任意非零实数 x 1、 x2满足 f(x1·x 2)= f(x 1)+f(x 2),求证 f (x)是偶函数.奇偶性练习 1.已知函数 2. A .奇函数已知函数 A . 1 a , a 3 ,B .偶函数C .既奇又偶函数D .非奇非偶函数f(x)=ax 2+bx + 3a +b 是偶函数,且其定义域为 b =0 B .a =- 1,b =0 C .a =1,b =0 [a -1,2a ],则 ( ) D .a =3,b =0 3. 2 已知 f(x)是定义在 R 上的奇函数,当 x ≥0时, f(x)= x2则 f(x)在 R 上的表达式是 ( A . y =x(x -2) B .y =x(|x |-1)C .y =|x |(x -2)D .y =x(|x |- 2)4. A . - 26 B .- 18C .- 10D .10 5. 函数 f(x) 1 x 2 x 1 是( 1 2 x 1 x2xA .偶函数B .奇函数C .非奇非偶函数D .既奇又偶函数6.若 (x) ,g(x)都是奇函数, f (x) a bg(x) 2在(0,+ ∞)上有最大值 5,奇偶性练习 参考答案1.解析: f(x)= ax 2+bx +c 为偶函数, (x) x 为奇函数,∴g(x)=ax 3+bx 2+cx =f(x)·(x)满足奇函数的条件. 答案: A22.解析:由 f(x)=ax 2+bx +3a +b 为偶函数,得 b =0.又定义域为 [a -1,2a],∴ a -1=2a ,∴ a 1 .答案: A .33.解析:由 x ≥0时, f(x)=x 2-2x ,f(x)为奇函数,∴当 x < 0 时, f(x)=- f(- x)=- (x 2+ 2x)=- x 2-2x =x(-x -2).(x 0),即 f(x)=x(|x|-2)(x 0), 4.解f(x)+8=x 5+ax 3+bx 为奇函f(-2)+8=18,∴f(2)+8=-18,∴f(2)=-26.答案: A 5.解析:此题直接证明较烦,可用等价形式 f(-x)+f(x)=0. 答案: B 6.解析: (x) 、 g(x)为奇函数,∴ f(x) 2 a (x) bg(x)为奇函数. 又 f(x)在(0,+ ∞)上有最大值 5,∴ f(x)- 2有最大值 3.∴f(x)-2在(-∞,0)上有最小值- 3,∴f(x)在(-∞,0)上有最小值- 1. 答案: C 7.答案:奇函数8.答案: 0 解析:因为函数 y = (m -1)x 2+2mx +3 为偶函数,∴f (- x)= f(x),即(m - 1)(- x)2+ 2m(- x)+ 3= (m — 1)x 2+ 2mx + 3,整理得 m =0.1 1 1 1 1 1 f(x) g(x) x 11,得 f(x)12(x 11 x 1 1) x 21 1.答案: f(x) x 211 10.答案: 0 11.答案: 1 m 212.证明:令 x =y =0,有 f(0)+f(0)= 2f(0) f ·(0),又 f(0) ≠,0∴可证 f(0)=1.令 x =0, ∴f(y)+ f(-y)=2f(0) ·f(y) f(- y)= f( y),故 f(x)为偶函数. 9.解析:由 f(x) 是偶函数, g(x)是奇函数,可得 f(x) g(x)1 x 1 1 ,联立 (x) x(x 2) x( x 2) 答案: D13.解析:本题主要是培养学生理解概念的能力.f(x)=x3+2x2-1.因为f(x)为奇函数,∴ f(0)=0.当x<0 时,-x>0,f(-x)=(-x)3+2(-x)2-1=-x3+2x2-1,∴f(x)=x3-2x2+1.x32x21 (x 0),因此, f (x) 0 (x 0),x32x21 (x 0). 点评:本题主要考查对奇函数概念的理解及应用能力.14.解析:任取x1<x2≤-5,则-x1>-x2 ≥-5.因为f(x)在[5,+∞]上单调递减,所以f(-x1)<f(-x2) f(x1)<-f(x2) f(x1)>f(x2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x1,x2 R 且不为0 的任意性,令x1=x2=1代入可证,f(1)=2f(1),∴f(1)=0.又令x1=x2=-1,∴ f[-1×(-1)]=2f(1)=0,∴f (-1)=0.又令x1=-1,x2=x,∴ f(-x)=f(-1)+f(x)=0+f(x)=f(x),即f(x)为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,然后再结合x1=x2=1,x1=x2=- 1 或x1=x2=0 等,具体题目要求构造出适合结论特征的式子即可.。
高中数学 简单几何体各类几何体分类归纳(棱柱、棱锥)注:图形表示均为手动绘制!(请参照课本)(请参照课本)几何体类型几何体名称 图形表示性质特征棱柱棱柱① 有两个面...互相平行;互相平行; ② 其余各面都是四边形...; ③ 每相邻两个四边形的公共..边都互相平行且相等.........; ④ 侧面都是平行四边形;侧面都是平行四边形; ⑤ 两个底面与平行于底面的截面是全等的多边形;截面是全等的多边形; ⑥ 过不相邻的两条侧棱的截面是平行四边形面是平行四边形 ⑦ 柱体(棱柱、圆柱)的体积公式是V 柱体=Sh斜棱柱斜棱柱侧棱不垂直于底面侧棱不垂直于底面直棱柱直棱柱侧棱垂直于底面侧棱垂直于底面正棱柱正棱柱① 侧棱垂直于底面;侧棱垂直于底面; ② 底面是正多边形....棱柱棱柱三棱柱三棱柱底面是三角形底面是三角形四棱柱四棱柱底面是四边形底面是四边形五棱柱五棱柱 ………… 底面是五边形底面是五边形…………平行六面体平行六面体底面是平行四边形底面是平行四边形直平行六面体直平行六面体① 底面是平行四边形........; ② 侧棱与底面垂直;侧棱与底面垂直; ③ 特殊的平行六面体特殊的平行六面体长方体长方体① 底面是矩形.....; ② 侧棱与底面垂直;侧棱与底面垂直; ③ 特殊的平行六面体;特殊的平行六面体; ④ 一条对角线的长的平方等于一个顶点上三条棱的长的平方和 正方体正方体① 各棱长都相等;各棱长都相等; ② 侧棱与底面垂直;侧棱与底面垂直; ③ 特殊的平行六面体特殊的平行六面体棱锥棱锥① 有一个面是多边形;有一个面是多边形; ② 其余各面是有一个公共顶点的三角形;三角形; ③ 如果棱锥被平行于底面的平面........所截,那么截面和底面相似.......,并且它们面积的比等于截得的棱..........锥的高与已知棱锥的高的平方.............比.; ④ 锥体(锥体、圆锥)的体积公式是:V 锥体=Sh三棱锥三棱锥底面是三角形底面是三角形四棱锥四棱锥底面是四边形底面是四边形 五棱锥五棱锥…………底面是五边形底面是五边形…………正棱锥正棱锥① 底面是正多边形;底面是正多边形; ② 顶点在底面内的射影是底面的中心;中心; ③ 各侧棱相等;各侧棱相等; ④ 各侧面都是全等的等腰三角形;各侧面都是全等的等腰三角形; ⑤ 各等腰三角形底边上的高(斜高)相等;高)相等; ⑥ 棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;的射影组成一个直角三角形; ⑦ 棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形的射影也组成一个直角三角形。