软件体系结构汇总
- 格式:ppt
- 大小:1.46 MB
- 文档页数:56
第一部分-------填空,选择,判断1.软件工程三个要素:方法、工具和过程2.软件元素:程序代码、测试用例、设计文档、设计过程、需求分析文档3.构件分类:关键字分类刻画分类法和超文本组织法4.软件体系结构技术反战经历四个阶段(1)无体系结构设计阶段----以汇编语言进行小规模应用程序开发(2)萌芽阶段-----以控制流图和数据流图构成软件结构为特征(3)初期阶段-----出现了从不同侧面描述系统的结构模型,UML(4)高级阶段-----描述系统的高层抽象结构,出现“4+1”模型5.软件体系结构模型:结构模型、框架模型、动态模型、过程模型和功能模型。
6.“4+1”视图模型从五个不同的视角,包括逻辑试图,进程试图,物理视图,开发视图和场景视图来描述软件体系结构。
逻辑视图主要支持系统的功能需求,是系统提供给最终用户的服务。
通过抽象,封装和继承,可以用对象模型来代表逻辑视图,用类图来描述逻辑视图;开发视图也称模块视图,主要侧重于软件模块的组织和管理,主要考虑软件内部的需求,如软件开发的容易性、软件的重用等,通过系统输入输出关系的模型图和子系统图来描述,提供给编程人员的;进程视图侧重于系统的运行特性,主要关注非功能性的需求,如系统的性能和可用性。
进程视图强调并发性、分布性、系统集成性和容错能力管道和过滤器风格、客户/服务器风格等适合进程视图,提供给系统集成人员的;物理视图主要考虑如何把软件映射到硬件上,它通常考虑系统性能、规模、可靠性等,解决系统拓扑结构、系统安装、通信问题,提供给系统工程人员的。
而场景是那些重要系统活动的抽象,它使四个视图有机联系起来,是最重要的需求抽象,它可以帮助设计者找到系统结构的构件和他们之间的作用关系。
总之,逻辑视图和开发视图描述系统的静态结构,而进程视图和物理视图描述系统的动态结构。
软件体系结构的核心模型由五中元素组成:构件、连接件、配置、端口和角色。
7. 软件体系结构的核心模型由五中元素组成:构件、连接件、配置、端口和角色。
10种常见的软件体系架构模式分析以及它们的用法、优缺点有没有想过要设计多大的企业规模系统?在主要的软件开发开始之前,我们必须选择一个合适的体系结构,它将为我们提供所需的功能和质量属性。
因此,在将它们应用到我们的设计之前,我们应该了解不同的体系结构。
根据维基百科中的定义:
架构模式是一个通用的、可重用的解决方案,用于在给定上下文中的软件体系结构中经常出现的问题。
架构模式与软件设计模式类似,但具有更广泛的范围。
在本文中,将简要地解释以下10种常见的体系架构模式,以及它们的用法、优缺点。
一. 分层模式
这种模式也称为多层体系架构模式。
它可以用来构造可以分解为子任务组的程序,每个子任务都处于一个特定的抽象级别。
每个层都为下一个提供更高层次服务。
一般信息系统中最常见的是如下所列的4层。
•表示层(也称为UI层)•应用层(也称为服务层)•业务逻辑层(也称为领域层)•数据访问层(也称为持久化层)
使用场景:•一般的桌面应用程序•电子商务Web应用程序
二. 客户端-服务器模式
这种模式由两部分组成:一个服务器和多个客户端。
服务器组件将为多个客户端组件提供服务。
客户端从服务器请求服务,服务器为这些客户端提供相关服务。
此外,服务器持续侦听客户机请求。
使用场景:•电子邮件,文件共享和银行等在线应用程序
三. 主从设备模式
这种模式由两方组成;主设备和从设备。
主设备组件在相同的从设备组件中分配工作,并计算最终结果,这些结果是由从设备返回的结果。
使用场景:•在数据库复制中,主数据库被认为是权威的来源,并且要与之同步•在计算。
软件工程中的软件体系结构在数字化时代,软件应用的范围越来越广泛,软件开发的规模和复杂度也在不断增加。
为了应对这些挑战,软件工程师们不断探索各种技术,其中之一就是软件体系结构。
软件体系结构是一个抽象的框架,描述了一个软件系统的组成部分,它们之间的关系和通信方式,以及系统的行为。
在本文中,我们将深入探讨软件体系结构的概念、类型、优缺点和设计原则等重要内容。
软件体系结构的概念软件体系结构是软件系统的架构,它是一个抽象的、高级别的视角,描述了系统的组成部分、相互关系和行为模式。
一般来说,软件体系结构由以下元素组成:1. 模块:代码的意义单位,通常包含一组相关的操作和数据结构。
2. 组件:带有接口的模块,可以与其他组件进行交互和通讯。
3. 连接器:支持组件之间通讯和合作的构建块。
4. 数据:系统中的各种信息,包括文本、图像、声音等。
5. 环境:软件系统运行所依赖的硬件、操作系统和其他外部条件等。
软件体系结构需要注意的重点包括:1. 模块细分:将系统拆分成若干个小模块,每个模块都有自己的职责和功能。
2. 接口设计:设计良好的接口可以提供高效、可靠的组件通讯。
3. 模块复用:通过复用现有组件和模块,可以降低开发成本和时间。
软件体系结构的类型软件体系结构可以分为多种类型,下面将介绍几种常见的。
1. 分层式结构分层式结构是将系统分为若干层次的结构,每个层次都具有特定的功能和职责。
分层式结构最大的特点是分离了应用程序逻辑和界面,将系统的不同部分独立起来,使得开发更容易和灵活。
2. 客户端/服务器结构客户端/服务器结构是一种典型的分布式系统结构,它将应用逻辑和数据存储划分为服务器端和客户端两个部分。
客户端通过网络连接到服务器获取或存储数据,并在本地计算机上运行应用逻辑。
3. MVC结构MVC(模型-视图-控制器)是一种用于用户界面设计的软件体系结构。
在MVC结构中,模型是应用程序的核心组成部分,处理数据和业务逻辑,视图负责渲染用户界面,控制器负责协调视图和模型之间的通讯。
一、什么是软件系统结构软件体系结构也称为软件构架(有时简称构架),是系统的一个或多个结构,它包括:软件的组成元素(组件),这些元素(组件)的外部可见特性,以及这些元素(组件)之间的相互关系。
含义:(1)系统由一个或多个结构组成,其中任何一个结构并不能与构架等同。
(2)每个系统都有一个体系结构。
(3)软件体系结构是系统的抽象。
(4) 构架定义了软件元素以及各元素间的交互关系。
(5) 以往作为体系结构传递的线框图,事实上并等同于体系结构。
二、构架商业周期(ABC)1.构架由什么决定?构架是否由系统需求决定?×软件构架是技术、商业和社会因素共同作用的结果。
2. 构架从哪里来?(影响构架的因素)影响构架的因素主要包括:❑系统涉众(stakeholder)、主要有:管理者:成本要低,人人都得干活营销人员:特性突出、投放市场快、成本低、可与同类产品相匹敌。终端用户:行为、性能、安全性、可靠性、易用性。维护人员:可修改性强。客户:成本低、及时交付、不要频繁修改。❑开发组织・组织内对现存构架的重用・对某个基础设施进行长期的商业投资以实现某些战略目标・开发组织本身的机构也会影响构架的形成❑构架师的素质和经验构架师先前的一些经验、教育、培训以及所接触到过的成功构架模式都会影响到他们对某种构架的选择。
❑技术环境当前技术发展水平代表了某个时代的构架师的普遍素质和经验,对架构有很大的影响力。
❑其它因素其它如社会、法律、人文环境等都会对构架产生影响。
3.构架的反影响力・构架会影响开发组织的结构・构架会影响开发组织的目标・构架会影响客户对下一个系统的要求・构建系统的过程丰富了整个开发团队的经验,从而将影响设计师对后继系统的设计・一些系统会影响并实际改变软件工程的环境,也就是系统开发人员学习或实践的技术环境。
4.构架的商业周期软件构架是技术、商业和社会等诸多因素作用的结果,而软件构架的存在反过来又会影响技术、商业和社会环境,从而影响未来的软件构架。
一、引言1.1 课程背景软件体系结构是软件工程的一个重要分支,它涉及软件系统的整体结构设计和组织管理。
本课程旨在帮助学生了解软件体系结构的基本概念、原则、方法和工具,提高他们分析和设计复杂软件系统的能力。
1.2 课程目标通过本课程的学习,学生应掌握软件体系结构的基本概念、原则和常见的体系结构风格;了解软件体系结构的设计方法和工具;学会分析现有软件体系结构,评估其优劣;能够运用所学知识设计适用于不同场景的软件体系结构。
二、课程内容2.1 软件体系结构基本概念软件体系结构的定义软件体系结构与软件设计的关系软件体系结构的组成元素软件体系结构的基本原则2.2 常见软件体系结构风格组件级体系结构面向对象体系结构面向过程体系结构事件驱动体系结构数据流体系结构三、软件体系结构设计方法3.1 设计方法概述软件体系结构设计方法的目标和任务设计方法的基本步骤3.2 设计方法和工具面向对象设计方法设计模式架构描述语言(ADL)软件体系结构评估方法四、软件体系结构评估4.1 评估方法概述评估的目的和意义评估方法分类4.2 评估方法和工具定性评估方法定量评估方法评估工具介绍五、实例分析与实践5.1 实例分析分析现有软件体系结构实例评估现有软件体系结构的优劣5.2 实践项目设计一个简单的软件体系结构使用评估方法对设计出的软件体系结构进行评估本课程的教学方式包括课堂讲解、案例分析、实践项目和小组讨论。
通过这些教学方式,学生可以更好地理解和掌握软件体系结构的知识,提高分析和设计软件系统的能力。
六、软件体系结构的设计模式6.1 设计模式的概念设计模式的定义设计模式与软件体系结构的关系6.2 常见的设计模式创建型设计模式结构型设计模式行为型设计模式6.3 设计模式的应用与实践设计模式的选用原则设计模式的应用案例分析七、软件体系结构的演化7.1 软件体系结构演化的概念软件体系结构演化的原因软件体系结构演化的过程7.2 软件体系结构演化的方法与策略软件体系结构演化的方法软件体系结构演化的策略软件体系结构演化的案例分析软件体系结构演化的工具与技术八、软件体系结构的开源框架8.1 开源框架的概念开源框架的定义开源框架与软件体系结构的关系8.2 常见软件体系结构开源框架常用开源框架介绍开源框架的选择与使用8.3 开源框架的实践与应用开源框架的案例分析开源框架的整合与定制九、软件体系结构的评估与优化9.1 软件体系结构评估的概念软件体系结构评估的目的软件体系结构评估的方法9.2 软件体系结构优化的概念软件体系结构优化的目标软件体系结构优化的方法9.3 软件体系结构评估与优化的实践与应用软件体系结构评估与优化的案例分析10.1 课程回顾课程主要内容的回顾10.2 软件体系结构的发展趋势软件体系结构在未来的发展软件体系结构面临的挑战与机遇10.3 课程建议与展望学生对课程的建议与反馈课程未来的改进方向通过本课程的学习,学生不仅能够掌握软件体系结构的基本概念、方法和工具,还能够了解软件体系结构的设计模式、演化、开源框架以及评估与优化等方面的知识。
软件体系结构知识点完整首先,软件体系结构的设计目标是确保软件系统具有良好的可维护性、可扩展性、可重用性和可演化性。
为了达到这些目标,需要考虑以下几个重要的知识点:1.架构风格和模式:软件体系结构可以采用不同的架构风格和模式,如客户/服务器架构、分层架构、微服务架构等。
每种架构风格和模式都有其适用的场景和优缺点,开发人员需要根据具体需求选择适合的架构。
2.组件和接口:软件系统通常由多个组件构成,每个组件负责特定的功能。
组件之间通过接口进行通信和交互。
设计良好的组件和接口可以提高系统的模块化程度,便于测试、维护和重用。
3.数据管理:软件系统通常需要对一定量的数据进行管理和存储。
在软件体系结构设计中,需要考虑数据的组织方式、访问方式和持久化方式。
常见的数据管理技术包括关系型数据库、非关系型数据库和缓存等。
4.并发和分布式处理:现代软件系统通常需要处理大量的并发请求,并且可能分布在不同的机器上。
软件体系结构设计需要考虑如何有效地处理并发请求和如何进行分布式部署,以提高系统的性能和可扩展性。
5.安全和可靠性:软件系统面临各种安全和可靠性风险,如数据丢失、数据泄露和系统故障等。
软件体系结构设计需要考虑如何采取措施保障系统的安全和可靠性,如进行数据备份、访问控制和错误处理等。
6.软件系统的分层:软件体系结构通常采用分层的结构,将系统划分为不同的层次,每个层次负责不同的功能。
常见的分层结构有表示层、业务逻辑层和数据访问层等。
分层结构可以提高系统的可维护性和可扩展性。
7.影响因素和约束:软件体系结构设计还需要考虑相关的影响因素和约束,如成本、时间、技术限制等。
这些因素和约束将直接影响软件体系结构的设计和实施。
总结起来,软件体系结构是软件设计的重要组成部分,它涉及到架构风格和模式的选择、组件和接口的设计、数据管理、并发和分布式处理、安全和可靠性等多个方面。
了解这些知识点对于设计出高质量、可维护和可扩展的软件系统至关重要。
1、构件就是核心与基础,重用就是必需得手段。
2、软件重用就是指在两次或多次不同得软件软件开发过程中重复使用相同或相近软件元素得过程。
3、软件元素包括程序代码、设计文档、设计过程、需求分析文档甚至领域知识。
4、把可重用得元素称作软构件,简称为软构件。
5、可重用软件元素越大,就说重用得粒度越大。
6、构件就是指语义完整、语法正确与有可重用价值得单位软件,就是软件重用过程中可以明确辨识得系统;结构上,它就是语义描述、通信接口与代码实现得复合体。
7、面向对象技术达到类级重用,以类为封装得单位。
8、构件模型就是对构件本质特征得抽象描述。
三个主要流派,分别就是OMG(对象管理组织)得CORBA(通用对象请求代理结构)、Sun得EJB与Microsoft得DOM(分布式构件对象模型)。
9、获取构件得四个途径:(1)从现有构件中获得符合要求得构件,直接使用或作适应性修改,得到可重用构件。
(2)通过遗留工程,将具有潜在重用价值得构件提取出来,得到可重用构件。
(3)从市场上购买现成得商业构件,即COTS构件。
(4)开发符合要求得构件。
10、构件分类方法三大类:关键字分类、刻面分类法、超文本组织方法11、构件检索方法:基于关键字得检索、刻面检索法、超文本检索法与其她检索方法。
12、减少构件修改得工作量,要求工作人员尽量使构件得功能、行为与接口设计更为抽象画、通用化与参数化。
13、构件组装技术:基于功能得组装技术、基于数据得组装技术与面向对象得组装技术。
14、软件体系结构得定义:软件体系结构为软件系统提供了一个结构、行为与属性得高级抽象,由构成系统得元素得描述、这些元素得相互作用、指导元素集成得模式以及这些模式得约束组成。
软件体系结构不仅指定了系统得组织结构与拓扑结构,并且显示了系统需求与构成系统得元素之间得对应关系,提供了一些设计决策得基本原理。
软件体系结构得意义:(1)体系结构就是风险承担者进行交流得手段;(2)体系结构就是早期设计决策得体现--①软件体系结构明确了对系统实现得约束条件②软件体系结构决定了开发与维护组织得组织结构③软件体系结构制约着系统得质量属性④通过研究软件体系结构可能预测软件得质量⑤软件体系结构使推理与控制更改更简单⑥软件体系结构有助于循序渐进得原型设计⑦软件体系结构可以作为培训得基础;(3)软件体系结构就是可传递与可重用得模型。
软件体系结构软件体系结构是指软件系统中各个组件之间的关系和结构的抽象描述。
它是构建软件系统的基础,对软件系统的设计和开发起着重要的指导作用。
本文将从软件体系结构的定义、目标和应用领域等方面对其进行详细的介绍。
一、软件体系结构的定义软件体系结构是指软件系统中各个组件之间的关系和结构的抽象描述,它包括软件系统的静态结构和动态行为。
静态结构是指软件系统中组件的组织方式和相互之间的关系,动态行为是指软件系统中组件的交互方式和相互之间的通信方式。
二、软件体系结构的目标软件体系结构的目标是实现软件系统的可重用性、可维护性、可扩展性和可伸缩性。
可重用性是指软件系统中的组件能够被多次使用,可维护性是指软件系统中的组件能够被轻松地修改和维护,可扩展性是指软件系统能够根据需求进行功能的扩展,可伸缩性是指软件系统能够根据需求进行性能的扩展。
三、软件体系结构的应用领域软件体系结构广泛应用于各个领域的软件系统开发,特别是大型跨平台和分布式系统的开发。
在金融领域,软件体系结构被应用于交易系统和风险管理系统的开发;在电子商务领域,软件体系结构被应用于在线购物系统和支付系统的开发;在物流领域,软件体系结构被应用于供应链管理系统和运输管理系统的开发。
四、软件体系结构的基本原则软件体系结构的设计应遵循以下基本原则:1. 模块化:将软件系统分为独立的模块,每个模块只负责特定的功能,通过接口进行通信和交互。
2. 松耦合:各个模块之间的依赖应尽量降低,避免模块之间的紧密耦合,以提高系统的灵活性和可维护性。
3. 高内聚:模块内部的各个元素之间应紧密关联,功能相关的元素应放在同一个模块中,以提高系统的内聚性。
4. 分层:将软件系统分为多个层次,每个层次负责不同的功能,上层层次通过接口调用下层层次的功能。
5. 可伸缩性:系统的设计应考虑未来的扩展需求,能够根据需求进行功能和性能的扩展。
六、软件体系结构的设计方法软件体系结构的设计方法有很多种,常用的有面向对象的体系结构设计方法、服务导向的体系结构设计方法和领域驱动设计方法。
一、填空题1软件体系结构核心模型由构件、连接件、配置组成。
作用于这些要素或连接关系上的限制条件:约束,质量-性能2.sa风格具有已经被熟知的特性,并且可以复用3."4+ 1”视图模型从5个不同的视角包括:逻辑视图、进程视图、物理视图、开发视图和场景视图来描述软件体系结构。
4.在层次系统中,两种通用的分层方法分别是(严格分层和松散分层)5.在三层cs结构中,中间层可能是什么类型的服务器:应用服务器6.解释器的三种策略:(1)传统解释器(2)基于字节码的解释器(3)JIT(即时)编译器7.构件作为一个封装的实体,只能通过(接口)和外部环境交互,构件内部所实现的功能是以(服务)形式体现出来8.在数据流风格中,用(数据字典)定义了相应的数据流图表达拓扑结构9.在分层系统中,由上而下的信息和控制通常被描述成(请求),由下而上的方式被描述成(通知)10.在分层系统的设计过程中,需要定义每层之间的接口,接口的类型包括:(黑盒接口和白盒接口)11.三层cs体系风格是由什么构成的:表示层、功能层、数据层二、选择题1.表示业务逻辑和工作流,应该采用的uml图是什么:活动图2._对象,_子程序,_构件,_包,这些哪一个是独立可交付的功能单元,外界通过接口访问它提供的服务:基于构件开发中的构件3.同步调用消息和异步调用消息(下列哪句话是真的,哪句话是假的)4.某游戏公司预开发一个大型多人技术战略游戏,针对这个目标,公司应该采用什么样的架构风格合适:解释器5.三层cs体系结构中,什么是最重要的构件:中间件6.在uml提供的图中,哪种图用于描述系统与外部系统及用户之间的交互:用例图7.在c/s系统中,数据库服务器的(功能)任务:安全性要求访问并发性的控制前端的客户应用程序的全局数据完整性备份和恢复8.与cs体系结构相比,bs体系结构的不足之处:BS体系结构缺乏对动态页面的支持能力,没有集成有效的支持能力9.在rup(软件开发过程生命周期的图表)中,采用4+1视图模型来描述软件系统的体系结构,在这个模型中,最终用户侧重于逻辑视图,系统工程师侧重于哪种视图:部署视图10.如果对银行的atm常用功能进行建模,用什么图来表示这个系统的功能需求:逻辑视图三、名词解释1.软件体系结构风格:是描述某一特定应用领域中系统组织方式的惯用模式。