基于Fluent的管壳式换热器壳程流体流动与传热数值模拟(PDF X页)
- 格式:pdf
- 大小:568.40 KB
- 文档页数:5
基于FLUENT的管壳式换热器流场的数值模拟与分析鲍苏洋(南京工业大学机械与动力工程学院,南京210009)摘要:通过简化管壳式换热器模型,采用非结构网格划分,选用κ-ε湍流模型,应用CFD 软件FLUENT 对壳程流体流动和传热过程进行了数值模拟,得到了不同折流板间距情况下壳程流体温度场、压力场以及速度场的分布情况。
分析了折流板间距对壳程流体流场分布、换热器传热速率以及压力损失的影响,并得出了进口流速与传热量和压力损失之间的关系。
模拟结果与理论研究结果相符合,对管壳式换热器的设计和改进有一定的参考价值。
关键词:化工机械; 换热器; 数值模拟; 温度场; 速度场; 压力场Numerical Simulation and Analysis of Flow Field in Shell-and-Tube Heat Exchanger Based on FLUENTSuyang BAO( School of Mechanical and Power Engineering,Nanjing University of Technology,Nanjing 210009,China)Abstract: By simplified the model of shell-and-tube heat exchangers,adopted the unstructured mesh,chose the κ-εturbulence model to gain the static temperature field,velocity field and static pressure field distribution of shell by taking numerical simulation of the shell side turbulent flow and heat transfer process with the CFD software FLUENT at different baffle spacing.Analyzed the effect of baffle spacing on the distribution of shell fluid flow,heat transfer rate and pressure drop,also acquired the relationship between inlet velocity and heat transfer rate,pressure drop.The simulation results consistent with the theoretical results of shell-and-tube heat exchangers,which can be a reference for the design and improvement of shell-and-tube heat exchangers.Key words: chemical machinery; heat exchanger; numerical simulation; temperature field; velocity field; pressure field0 引言换热器是石油化工行业广泛应用的工艺设备,换热器不仅能够合理调节工艺介质的温度以满足生产工艺的需要,同时也是余热回收利用的有效设备[1]。
管壳式换热器壳程流体流动与换热的数值模拟摘要:为了研究纵向多螺旋流管壳式换热器壳程流体湍流流动与换热的工作机理,文中利用FLUENT软件,在壳程流体流速设定值不断改变的情况下,对纵向多螺旋流管壳式换热器壳程湍流流动与换热进行了三维数值模拟。
得到了多螺旋流管壳式换热器在不同的壳程流体流速下的温度场、速度场、质点迹线图、壳程传热膜系数分布图等。
根据模拟得到的结果,从多个方面对纵向多螺旋流管壳式换热器壳程湍流流动与强化传热进行了探讨。
模拟结果与实验结果进行了比较,二者误差约在±11%以内,吻合良好。
关键词:螺旋扭片;纵向多螺旋流管壳式换热器;三维数值模拟中图分类号:TK 124文献标识码:A文章编号:1005-9954(2009)09-0009-04应用计算流体力学模拟管壳式换热器无相变壳程流场,最早是在1974年提出,但由于当时受到计算机与计算流体力学条件的限制,研究进展缓慢[1]。
20世纪80年代以来,换热器数值模拟研究才有了较快的开展。
对于国内外换热器数值模拟研究,采用二维研究的较多[2]。
三维研究方面, 国内外学者也做了很多工作,特别是对复杂结构的管壳式换热器换热性能数值模拟研究,国外较多学者采用复杂结构的换热管或者管程内插物来模拟研究其对流体流动与换热的影响,例如:螺旋槽管、波纹管、内插螺旋纽带等。
然而,国外和国内的学者很少有人用数值模拟的方法去研究插入物插入管壳式换热器壳程而不是管程时其对换热器综合换热性能的影响。
壳程换热管之间插入螺旋扭片,螺旋扭片的插入可以有效地改变壳程流体的流动形式,使壳程流体产生多股自螺旋流的复杂流动形态[3],有效提高换热管束壁面的流体速度,实现不同壳体半径处流体的充分混合,从而达到强化传热的目的。
本文利用FLUENT软件对这种新型纵向多螺旋流管壳式换热器的壳程湍流流动及换热进行了三维数值模拟,根据模拟结果并对这种利用螺旋扭片强化换热器壳程流体换热的机理进行了有益的探讨。
floefd 流动与传热仿真入门pdf FloEFD是一款用于流动与传热仿真的软件,可以帮助工程师在产品设计过程中预测和优化流动、传热和相关物理现象的性能。
本文将介绍FloEFD流动与传热仿真的基本概念、应用领域以及一些建模技巧。
流动与传热是很多工程领域中必不可少的研究对象,如汽车、飞机、电子设备、建筑物等,都需要对其流动和传热性能进行分析和改进。
FloEFD是一种基于计算流体力学(CFD)原理的仿真工具,可以在产品设计早期阶段就能够发现并解决潜在的问题,提高设计效率。
FloEFD的主要特点包括实时交互性、简化的边界条件设置、直观的结果可视化等。
它采用了直接嵌入CAD环境的工作方式,使得用户可以在CAD软件中进行流动与传热仿真,无需导入导出模型。
这种实时交互性的特点使得工程师能够快速分析设计方案的可行性,并优化设计,从而节省时间和成本。
FloEFD广泛应用于诸多行业,包括汽车制造、航空航天、电子器件、建筑设计等。
在汽车制造领域,FloEFD可以帮助工程师优化车身外形、散热系统和空气动力学性能。
在航空航天领域,FloEFD则可用于飞机外形优化和燃烧室设计。
在电子器件领域,FloEFD可以帮助工程师提高散热效率,降低设备温度。
在建筑设计领域,FloEFD则可以用于优化建筑物的通风和采暖系统。
在进行FloEFD的流动与传热仿真时,有几个关键的建模技巧需要注意。
首先,需要准确设置边界条件,包括固定边界条件(如壁面温度、壁面热通量)和流动边界条件(如入口速度、出口压力等)。
其次,在建模过程中,需要注意选择合适的格网密度,以保证仿真结果的准确性和计算效率。
此外,根据实际需要,还可以使用FloEFD提供的先进物理模型来考虑细节效应,如湍流、辐射传热等。
总之,FloEFD是一款功能强大的流动与传热仿真软件,具有实时交互性和直观的结果可视化,可以帮助工程师提高产品设计效率和性能。
它广泛应用于多个行业,并且具有一些关键的建模技巧,需要工程师在使用过程中仔细考虑。
摘要应用计算流体力学软件FLUENT对一小型管壳式换热器的流动与传热问题进φ×的换热管正方行了三维数值模拟。
单管程换热器直径为130 mm,12根201500形排列,折流板为30%缺口的弓形折流板,模拟了三种不同折流板间距的情况。
在模拟过程中采用雷诺应力湍流模型、压力速度耦合选用SIMPLEC格式,压力方程的离散选用Standard格式,其它方程的离散均选用QUICK格式。
两管程换热器直径为140 mm,其它参数值及模拟过程均采用与单管程相同的方式。
数值结果表明:减小折流板间距对总体传热系数的增加不太明显,但却显著增加了壳程的流动阻力。
应用Bell法对两管程换热器的数值模拟结果进行了校核,误差为9.37%,偏差稍大。
对单管程换热器的三种不同折流板间距的数值模拟结果校核,10块折流板的误差最大为7.22%,14、18块折流板的误差均在1%以内,吻合较好,表明数值模拟结果准确可靠。
为进一步应用数值模拟方法优化换热器的内部结构、提高换热器的整体性能打下了基础。
关键词:管壳式换热器,折流板数目,折流板间距,数值模拟AbstractThree-Dimension numerical study on the heat transfer and fluid flow of a smallshell-and tube heat exchanger is performed by using the commercial CFD softwarepackage FLUENT. The shell diameter of the Single-tube Heat Exchanger is 130 mm,φ×tubes arranged by square mode, segmental baffle with 30% which has twelve201500cut is used in this heat exchanger, three different baffle spacing is investigated. TheReynolds stress model for turbulent flow, SIMPLEC scheme for pressure-velocitycoupling, standard scheme for pressure equation discretization and QUICK scheme forother equation discretization are selected in this numerical study .The shell diameter ofthe Two-way heat exchanger is 140 mm,other parameter values and simulation are usedwith single-tube process in the same way.The numerical results show that the overall heat transfer coefficient increasesrelatively small by decreasing the baffle spacing, but the shell drag increasessignificantly. The numerical result of the two-way heat exchanger is checked by Bellmethod ,and the deviation is 9.37%.The numerical result of the three different bafflespacing is checked by Bell method, and their maximal deviation is 7.22%, 14、18 baffledeviation are within 1% , in a good agreement, which justify the numerical result. Thenumerical method can be utilized further to optimize the internal structure and enhancingthe overall performance of the heat exchanger.Key words: shell-and-tube heat exchanger, numerical simulation, FLUENT, Bellmethod目录第一章 前 言 (1)1.1 选题背景 (1)1.2 研究意义 (1)1.3 文献综述 (2)1.3.1 换热器的分类方式 (2)1.3.2 管壳式换热器的优、缺点 (6)1.3.3 换热器换热强化的方法 (6)1.3.4 管壳式换热器的研究方法 (8)1.3.5 换热器数值模拟的发展现状 (8)1.3.6 研究的基本内容、拟解决的主要问题 (10)第二章 数值计算的方法及过程 (11)2.1 概述 (11)2.1.1 数值计算工况概况 (11)2.2 Gambit 建模操作过程 (12)2.2.1 用FLUENT 程序求解问题的步骤 (12)2.2.2 GAMBIT 建模过程 (13)2.3 Fluent软件模拟四种工况网格划分情况 (21)2.4 Fluent 软件的操作过程 (23)第三章 数值模拟结果与校核 (37)3.1 管壳式换热器的计算及其传热性能分析 (37)3.1.1 顺流换热器的计算 (38)3.1.2 顺流和逆流换热器的对数平均温差 (40)3.1.3 换热器的热计算 (40)3.1.4 换热器的传热性能分析 (41)3.2 14块折流板管壳式换热器传热性能的比较 (43)3.3 14块折流板的校核计算 (47)第四章 结论与展望 (54)4.1 结论 (54)4.2 对进一步研究的展望 (54)参考文献 (56)致 谢 (58)研究成果 (58)声 明 (59)第一章前言1.1 选题背景随着全球能源和环境危机的凸显,节能减排日益成为各国能源与环境战略制定和能源相关行业研发应用的重要考虑因素。
管壳式换热器流动及传热的数值模拟(最全)word资料1管壳式换热器流动及传热的数值模拟尤琳,山东豪迈化工技术摘要:本文以管壳式换热器为例, 辅以有限元软件进行流场模拟, 通过合理简化模型和设置合理的进出口边界条件, 对流体的流动和传热进行数值模拟, 得到相应的速度、压力、温度分布云图, 对管壳式换热器的设计和改进有一定的参考价值。
引言换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空及其他许多工业部门广泛使用的一种通用工艺设备。
在化工厂中, 换热器的约占总的 10%~20%;在炼油厂中,该项约占总的 35%~40%。
换热器不仅能够合理调节工艺介质的温度以满足工艺流程的需要, 也是余热、废热回收利用的有效装置。
鉴于换热器在工业生产中的重要作用及其能耗较大的现状, 改进和提高换热器的性能及传热效率成为节能降耗的重要途径, 将产生重要的经济效益和社会效益。
1换热器介绍1.1换热器分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构形式也不同,按照传热原理分类,可分为:间壁式换热器、蓄热式换热器、流体连接间接式换热器、直接接触式换热器、复式换热器;按照用途分类,包括:加热器、预热器、过热器、蒸发器; 按照结构分, 可分为浮头式换热器、固定管板式换热器、U 形管板换热器、板式换热器等。
间壁式换热器举例蓄热式换热器举例直接接触式换热器举例1.2换热器研究及发展动向(1物性模拟研究换热器传热与流体流动计算的准确性, 取决于物性模拟的准确性。
因此, 物性模拟一直为传热界重点研究课题之一, 特别是两相流物性的模拟, 这恰恰是与实际工况差别的体现。
实验室模拟实际工况很复杂, 准确性主要体现与实际工况的差别。
纯组分介质的物性数据基本上准确, 但油气组成物的数据就与实际工况相差较大, 特别是带有固体颗粒的流体模拟更复杂。
为此, 要求物性模拟在试验手段上更加先进,测试的准确率更高。
从而使换热器计算更精确,材料更节省。
管壳式换热器壳程流动与传热的数值模拟与验证郭崇志;林桥【期刊名称】《化工进展》【年(卷),期】2011(030)010【摘要】针对目前管壳式换热器中微小流路建模和分析的缺失,采用"分段建模,整体综合"的模拟方法成功地开发了小间隙流路A和E的建模技术,建立了既包含主体流路(B、C),也包含微小泄漏流道(A、E)的全流路管壳式换热器流动与传热模型,得到了与实际换热器相适应的几何模型。
通过应用CFD软件Fluent进行分段模型的流动与传热研究,对各流道在折流空间中对传热和流动的影响进行了分析讨论。
同时,采用整体综合技术,将数值模拟获得的局部流动与传热数据综合整理得到了换热器传热和阻力系数的整体法关联式。
并将模拟结果与几种著名的壳程计算方法(Donohue、Kern和Bell-Delaware,流路分析)进行了对比,结果发现数值模拟与Bell-Delaware法和流路分析法的结果吻合良好,最大偏差小于20%。
%In order to make up the drawback of small gap modeling and analysis in current shell tube heat exchanger numerical simulation on fluid flow and heat transfer,the full fluid flow and heat transfer mode,which contains the main flow stream of B,C and small leakage flow stream of A and E,is developed by the simulation method of "segmented modeling and comprehensive synthesis" that successfully incorporate the small leakage flow stream of A and E paths.The full fluid flow and heat transfer mode are consistent with the actual heat exchanger.The fluid flow and heat transfer is studied in the segmentation model by using CFD software;and theinfluence of these flow passages in the baffle space on the fluid flow and heat transfer are also discussed.Data of local flow and heat transfer from numerical simulation are further processed comprehensively to get the integrated correlation performance of heat transfer and pressure drop in heat exchanger.The numerical results are compared with several famous formulas,such as method of Donohue,Kern,Bell-Delaware and Flow Stream Analysis.It is shown that the simulation results are well agreed with Bell-Delaware and Flow Stream Analysis Method,the maximum deviation is less than 20%.【总页数】10页(P2131-2140)【作者】郭崇志;林桥【作者单位】华南理工大学机械与汽车工程学院,广东广州510640;华南理工大学机械与汽车工程学院,广东广州510640【正文语种】中文【中图分类】TQ051.1【相关文献】1.折流板结构对管壳式换热器壳程流动与传热的影响 [J], 胡岩;孙中宁2.FLUENT软件对管壳式换热器壳程流体数值模拟方法可行性的验证 [J], 王艳云;李志安;刘红禹;宿萌;孟令一;吕春红3.管壳式换热器壳程流体流动与传热数值模拟 [J], 付磊;曾燚林;唐克伦;贾海洋4.基于Fluent的管壳式换热器壳程流体流动与传热数值模拟 [J], 栾艳春;陈义胜;庞赟佶5.管壳式换热器壳程流体流动与传热数值模拟研究 [J], 吴昊鹏因版权原因,仅展示原文概要,查看原文内容请购买。