管壳式换热器传热计算示例(终 ) - 用于合并
- 格式:docx
- 大小:2.43 MB
- 文档页数:9
式中:T 1=200℃T 2=150℃Cp,h =J/(kg ℃)m h =kg/sWd=0.01905m αo =40W/(m 2.℃)r o =0.0005(m 2.℃)/W A o /A i =1.117302053λw =48W/(m .℃)本计算表格是基于《换热器设计手册》(钱颂文主编)中相关公式进行的计算Q=KA Δt mQ-热负荷,WK-总传热系数,W/(m 2.℃)A-换热器传热面积,m 2Δt m -进行换热的两流体之间的平均温度差,℃其中总传热系数K的计算公式如下:热负荷Q的计算热流体进口温度冷流体进热流体出口温度冷流体出热流体比热冷流体热流体质量流量冷流体质热负荷Q=64800总传热系数K的计算换热管外径管壁管外流体传热膜系数管内流体传管外流体污垢热阻管内流体换热管的外表传热面积与内表传热面积之比换热管的外表与换热器管内和管外的平均传热面积之比管壁材料的导热系数7.885W/(m 2.℃)Δt 2=150℃Δt 1=125℃0.833Δt 2=175℃Δt 1=100℃0.571Δt m =137.5Δt m =137.5Δt m =137.1203737Δt m =134.020522总传热系数K=1、当换热器冷热流体逆向流动时较大端温差较小端温差Δt 1/Δt 2=2、当换热器冷热流体并向流动时较大端温差较小端温差Δt 1/Δt 2=3、确定平均温度差(1)当Δt 1/Δt 2 <2 时且逆向流动时(2)当Δt 1/Δt 2 <2 时且并向流动时(3)当Δt 1/Δt 2 >2 时且逆向流动时(4)当Δt 1/Δt 2 >2 时且并向流动时4、确定温度修正系数(1)对于单壳程、双管程或者2n管程的管壳式换热器P=0.171428571R=1.6666666670.9861.15m 2换热面积A=5、根据P、R值查图,确定对应温度修正系数温度修正系数 F T =t 1=25℃t 2=55℃Cp,c =1200J/(kg ℃)m c =1.8kg/s δ=0.002m αi =45W/(m 2.℃)r i =0.0005(m 2.℃)/W A o /A m =1.055402流体进口温度流体出口温度冷流体比热流体质量流量管壁厚度流体传热膜系数内流体污垢热阻的外表传热面积与换热器管内和管外的平均传热面积之比算。
管壳式换热器又称列管式换热器列管式换热器的设计和选用的计算步骤设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。
由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力。
根据传热速率基本方程:当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器结构决定的。
可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
◎初选换热器的规格尺寸◆ 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重新计算。
◆ 计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 估。
◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。
◎计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。
或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。
这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
◎核算总传热系数分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。
如果相差较多,应重新估算。
◎计算传热面积并求裕度根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。
即裕度为20%左右,裕度的计算式为:某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下:表4-18 设计条件数据试设计选择适宜的列管换热器。
解:(1) 传热量Q 及釜液出口温度a. 传热量Q以原料液为基准亦计入5%的热损失,按以下步骤求得传热量Q 。
管壳式换热器选型计算书编写:张景富西安协力动力科技有限公司二零一零年九月十三日一、换热器的工艺计算及工艺条件现在从一台管壳式换热器工艺计算过程来体现工艺条件内容: 1.设计参数 壳程:工作介质:蒸汽、水 Ps=0.2Mpa 蒸汽流量135m 3/h 进口温度:135℃ 出口温度:90℃ 管程:工作介质:含碱水 Pt=0.3Mpa 水流量300m 3/h 进口温度:80℃ 出口温度:110℃ 液体比重:1.25 比热:0.85~0.86 2.工艺计算冷源:q=300m 3 比重:γ=1.25g/cm 3 比热c=0.86J/kg ·℃ T1=135℃ T2=135℃ t1=80℃ t2=110℃ 取a c =2000kcal/㎡·h ·℃ a h =10000kcal/㎡·h ·℃ 换热管规格:φ19×1 其内径d1=0.017m 外径d2=0.019m 中径dm=0.018m 壁厚δ=0.001m金属导热系数λ=17.0 w/m ·h ·℃=17.0/1.16222=14.6 kcal/㎡·h ·℃ (1)传热系数K取传热系数K=1400kcal/㎡·h ·℃ (2)平均温差Δt m (按逆流状态计算)(3)传热面积FC 4.1680-90110-135ln 80)-90(110)-135(1221ln )12()21(lnt 2121︒=-=-----=∆∆∆-∆=∆t T t T t T t T t t t t m 2m 42116.4140080)-(11086.01250300tm K t1)-(t2c q F =⨯⨯⨯⨯=∆⨯⨯⨯⨯=γC h m kcal d dm d dm K h c ︒=+⨯+⨯=++=2/7.14436.14001.010000019.0018.02000017.0018.012111λδαα(4)管子根数n (管长L=6m )(5)程数N 单程流速管壳换热器中换热管内水的流速为0.7~1.5m/s N=1.5/0.313=4.79,可以选择Ⅳ程标准DN1000 Ⅳ程换热器,φ19×1的管子,n=1186根,L=6000mm 传热面积F=425㎡推荐设备材质:管程316L 壳程16MnR (6)换热器壁温的计算a.壳程的壁温:由于有保温,可以取蒸汽的平均温度 Tm=1/2(135+90)=112.5℃b.换热管的壁温估算:热流侧Tm=112.5℃ 冷流侧tm=1/2(80+110)=95℃ 换热管的壁温:(7)换热器接管的计算 (a )壳程蒸汽进口 蒸汽流速一般取15~20m/s进蒸汽截面A=135/(15×3600)=2.5×10-3㎡ 接管内径进汽管取φ76×4(DN65) (b )管程进出管管程流动的是含微量碱的水溶液,当P ≤0.6Mpa 时,其流速为1.5~2.5m/s11736019.04212F n =⨯⨯=⨯⨯=ππL d sm nd /313.01173017.04300/36004q221=⨯⨯=⨯⨯=ππωCa a t t c c m t ︒=+⨯+⨯=++=6.10920001000020009510000112.5a a T n n m mAd 564.0105.2443=⨯⨯==-ππ进出管流通截面A=300/(2.5×3600)=0.0333㎡ 接管内径取φ219×6(DN200) 3.提条件设计参数表及管口表设计数据注:管程材质为不锈钢316L ,管板材质为16MnR/316L ,φ1130,b=52。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2;过冷水的粘度μ1=0.3704×10-6 Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s=0.032m(按GB151,取1.25d0);管束中心排管的管数按4.3.1.1所给的公式确定:取20根;壳体径:m 取Di=0.7m;长径比:布管示意图l/D i=3/0.9=3.3 ,合理选定弓形折流板弓形折流板弓高:折流板间距:m折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:m/s ;壳程质量流速:kg m 2/s ;壳程当量直径:m ;壳程雷诺数:; 切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃ 壁温过冷水粘度 Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r 2=0.000344m 2.℃/w 管壁热阻r 忽略 总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数:;管沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图 3-34)管束压降(公式3-129):Pa;取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
式中:T 1=98℃T 2=74℃Cp,h =0.3J/(kg ℃)m h =100834kg/sWd=0.01905m αo =40W/(m 2.℃)r o =0.0005(m 2.℃)/W A o /A i =1.0112λw =48W/(m .℃)本计算表格是基于《换热器设计手册》(钱颂文主编)中相关公式进行的计算Q=KAΔt mQ-热负荷,WK-总传热系数,W/(m 2.℃)热负荷Q的计算热流体进口温度冷流体进A-换热器传热面积,m 2Δt m -进行换热的两流体之间的平均温度差,其中总传热系数K的计算公式如下:热流体质量流量冷流体质热负荷Q=20832000热流体出口温度冷流体出热流体比热冷流体管外流体污垢热阻管内流体换热管的外表传热面积与内表传热面积之比换热管的外表与换热器管内和管外的平均传热面积之比总传热系数K的计算换热管外径管壁管外流体传热膜系数管内流体传管壁材料的导热系数17.05W/(m 2.℃)Δt 2=51℃Δt 1=47℃0.922Δt 2=71℃Δt 1=27℃0.38Δt m =49Δt m =49Δt m =48.97277702Δt m =45.5089394P=0.2816901411、当换热器冷热流体逆向流动时较大端温差较小端温差Δt 1/Δt 2=总传热系数K=3、确定平均温度差(1)当Δt 1/Δt 2 <2 时且逆向流动时(2)当Δt 1/Δt 2 <2 时且并向流动时(3)当Δt 1/Δt 2 >2 时且逆向流动时2、当换热器冷热流体并向流动时较大端温差较小端温差Δt 1/Δt 2=(4)当Δt 1/Δt 2 >2 时且并向流动时4、确定温度修正系数(1)对于单壳程、双管程或者2n管程的管壳式换热器R=1.20.9825462m 2温度修正系数换热面积A=5、根据P、R值查图,确定对应温度修正系物料摩尔比比热容t 1=27℃H2O 27.42.02H243.6114.2t 2=47℃CH40.253.72N215.51.12Cp,c =2100J/(kg ℃)Ar 0.2 1.2CO210.861.1m c =496kg/s CO 2.181.12混合气体7.075276δ=0.000211m αi =45W/(m 2.℃)r i =0.0005(m 2.℃)/W A o /A m =1.005569计算定性温度在292℃流体进口温度混合气体粘度、比热计算公式流体质量流量流体出口温度冷流体比热内流体污垢热阻的外表传热面积与换热器管内和管外的平均传热面积之比管壁厚度流体传热膜系数的计算292℃时的物性数据粘度密度导热系数0.01920.01420.08990.1630.01810.7170.030.0282 1.2510.02280.0363 1.7820.01730.0272 1.9760.01370.0278 1.250.02260.0225。
式中:T 1=406.8℃T 2=263.2℃Cp,h=2823.617J/(kg ℃)m h =0.1466kg/sWd=0.025m αo =40W/(m 2.℃)r o =0.0005(m 2.℃)/W A o /A i =1.010101λw =48W/(m .℃)换热管的外表传热面积与内表传热面积之比换热管的外表与换热器管内和管外的平均传热面积之比管壁材料的导热系数总传热系数K的计算换热管外径管壁管外流体传热膜系数管内流体传管外流体污垢热阻管内流体热流体比热冷流体热流体质量流量冷流体质热负荷Q=55727.77564其中总传热系数K的计算公式如下:热负荷Q的计算热流体进口温度冷流体进热流体出口温度冷流体出本计算表格是基于《换热器设计手册》(钱颂文主编)中相关公式进行的计算Q=KA Δt mQ-热负荷,WK-总传热系数,W/(m 2.℃)A-换热器传热面积,m 2Δt m -进行换热的两流体之间的平均温度差,℃26.62W/(m 2.℃)Δt 2=156.8℃Δt 1=153.5℃0.979Δt 2=297.1℃Δt 1=13.2℃0.044Δt m =155.15Δt m =155.15Δt m =155.1441506Δt m =91.17324918(4)当Δt 1/Δt 2 >2 时且并向流动时4、确定温度修正系数(1)对于单壳程、双管程或者2n管程的管壳式换热器较小端温差Δt 1/Δt 2=3、确定平均温度差(1)当Δt 1/Δt 2 <2 时且逆向流动时(2)当Δt 1/Δt 2 <2 时且并向流动时(3)当Δt 1/Δt 2 >2 时且逆向流动时1、当换热器冷热流体逆向流动时较大端温差较小端温差Δt 1/Δt 2=2、当换热器冷热流体并向流动时较大端温差总传热系数K=P=0.472231572R=1.0235210260.9813.77m 2换热面积A=5、根据P、R值查图,确定对应温度修正系数温度修正系数 F T =t 1=109.7℃t 2=250℃Cp,c =1943.27J/(kg ℃)m c =0.2044kg/s δ=0.00025m αi =45W/(m 2.℃)r i =0.0005(m 2.℃)/W A o /A m =1.005025的外表传热面积与换热器管内和管外的平均传热面积之比管壁厚度流体传热膜系数内流体污垢热阻冷流体比热流体质量流量流体进口温度流体出口温度算的计算。
管壳式换热器热力计算管壳式换热器是一种常见的换热设备,广泛应用于化工、石油、电力等行业中。
它由管束(包括管子和管板)和壳体组成,并通过管板将管子固定在壳体上。
在换热过程中,热媒流体在管内流动,冷媒流体在壳侧流动,两种流体通过壳体和管道之间的壳壳换热器进行热量传递。
因此,热力计算对于管壳式换热器的设计和运行至关重要。
管壳式换热器的热力计算主要包括确定整个系统的热量传递量和热阻。
其中,热量传递量是指在单位时间内通过换热器的热量,而热阻则是指媒体在传递热量过程中所遇到的阻力。
在进行热力计算时,需要根据具体的工况参数,采用一定的算法和理论来计算热量传递量和热阻。
首先,需要确定管壳式换热器的传热面积。
传热面积是传热的关键因素,它决定了热量传递的效率。
传热面积的计算公式为:A=π*D*L*N其中,A表示传热面积,D表示管子的外径,L表示管子的有效长度,N表示管子的数量。
然后,需要计算传热系数。
传热系数是指在单位时间内传递的热量和温度差之间的比值。
计算传热系数需要考虑媒体的物性参数,包括流体的粘度、导热系数、比热容等。
传热系数的计算公式为:U = 1 / (1 / hi + δ / λ + 1 / ho)其中,U表示传热系数,hi表示内层传热系数,δ表示管道壁厚度,λ表示管道壁材料的导热系数,ho表示外层传热系数。
接下来,需要确定壳侧和管侧流体的温度差。
壳侧流体的温度差可以通过流体的进出口温度差来计算,管侧流体的温度差可以通过管内流体进行热力平衡计算得到。
最后,根据所得的参数,可以计算热量传递量和热阻。
热量传递量的计算公式为:Q = U * A * ΔTlm其中,Q表示热量传递量,ΔTlm 表示对数平均温差。
而热阻的计算公式为:R=1/U*A其中,R表示热阻,U表示传热系数,A表示传热面积。
通过以上的热力计算,可以确定管壳式换热器的传热性能和热力参数,为正确选择和设计换热器提供依据。
在实际应用中,还需要考虑到其他因素,如压力损失、换热器的结构、材料选择等。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度 ℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2 ;过冷水的粘度μ1=0.3704×10-6Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子内径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s 管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s =0.032m (按GB151,取1.25d 0); 管束中心排管的管数按4.3.1.1所给的公式确定:取20根; 壳体内径:m 取Di =0.7m ;长径比:l/D i =3/0.9=3.3,合理选定弓形折流板弓形折流板弓高: 折流板间距: m 折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm 折流板直径由GB151-2014可确定为 0.6955m7)壳程换热系数计算 壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫ ⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:布管示意图m/s;壳程质量流速:kg m2/s;壳程当量直径:m;壳程雷诺数:;切去弓形面积所占比例按h/D i=0.2查图4-32得为0.145 壳程传热因子查图3-24得为j s=20管外壁温度假定值t w1′=45℃壁温过冷水粘度Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r2=0.000344m2.℃/w管壁热阻r忽略总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管内壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数: ;管内沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s;(依据ρw2<3300取w=1.822m/s) 进出口管处压降(依据3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图3-34)管束压降(公式3-129):Pa;取进出口质量流速:kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa (表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h 。
2、 设计计算过程: (1)热力计算1)原始数据:过冷却水进口温度t 1′=145℃; 过冷却水出口温度t 1〞=45℃;过冷却水工作压力P 1=0.75Mp a (表压) 冷水流量G 1=80000kg/h ; 冷却水进口温度t 2′=20℃; 冷却水出口温度t 2〞=50℃;冷却水工作压力P 2=0.3 Mp a (表压)。
改为 冷却水工作压力P 2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t 2=( t 1′+ t 1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m 3; 冷却水的比热查物性表得C p2=4.174 kJ/kg.℃ 冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6Pa·s; 冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度t 1=(t 1−t 1′′)==77.5℃;过冷水的密度查物性表得ρ1=976 kg/m 3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃; 过冷水的导热系数查物性表得λ1=0.672w/m.℃; 过冷水的普朗特数查物性表得P r2=2.312;过冷水的粘度μ1=0.3704×10-6Pa·s。
过冷水的工作压力 P 1=1.5 Mp a (表压) 3)传热量与水热流量取定换热器热效率为η=0.98; 设计传热量:Q 0=G 1·C p1·(t 1−t 1′′)η×10003600⁄=80000×4.174×(50−20)×10003600⁄=2727013 W过冷却水流量:G 2=Q 0C p 2·(t 2′′−t 2′)=3600×7513334.187×1000×(40−30)=93676 t/ℎ ;4)有效平均温差 逆流平均温差:∆t count=(t 1′−t 2′′)−(t 1′′−t 2′)ln t 1′−t 2′′t 1′′−t 2′=(90−50)−(65−20)ln 90−5065−30=42.45 ℃根据式(3-20)计算参数p 、R:参数P :P=t2′′−t2′t1′−t2′=50−2090−20=0.429参数R:R=t1′−t1′′t2′′−t2′=90−6550−20=0.833换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:∆t m=Ψ∆t N=0.92×42.45=40.2 ℃5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:A0=Q0K0·∆t m =751333400×40.2=169.59 m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子内径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:n=A0π·d0·l =169.59π×0.025×3=720取720根管程流通截面积:A t=n t2·π4·d i2=3522·π4·0.022=0.11309m2管程流速:w2=G2ρ 2·a2×3600=93676976×0.11309×3600=0.23575m/s管程雷诺数:Re2=ρ 2·w2·dμ2=976×0.23575×0.02370.4×10−6=12423≫104湍流管程传热系数:(式3-33c)α2=3605·(1+0.015t2)w20.8(100d i)0.2=3605(1+0.015×77.5)×0.235750.8(100×0.02)0.2=1186W/(m2•°C)6)结构初步设计: 布管方式见图所示:管间距s =0.032m (按GB151,取1.25d 0);管束中心排管的管数按4.3.1.1所给的公式确定:N c =1.1√N t =1.1·√720=29 取20根; 壳体内径:D i =s (N c −1)+4d 0=0.032×28+4×0.025=0.9 m 取Di =0.7m ; 长径比: l/D i =3/0.9=3.3 ,合理选定弓形折流板弓形折流板弓高: h =0.2D i =0.2×0.9=0.18m 折流板间距: B =D i /3=0.9/3=0.3m折流板数量: n B =l B ⁄−1=(3/0.9)−1=12 折流板上管孔直径由GB151-2014可确定为 0.0254mm折流板直径由GB151-2014可确定为 0.6955m7)壳程换热系数计算 壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:w 1=G 1/3600ρ 1·f 1=120003600⁄992.9×0.046=0.0.4865 m/s ;壳程质量流速:W 1=ρ 1·w 1=992.9×0.4865=483.05kg m 2/s ; 壳程当量直径: D e =D i 2−N t ·d 02N t ·d 0=0.92−720×0.0252720×0.025=0.02m ;壳程雷诺数: Re 2=ρ 2·w 2·d μ2=992.9×0.4865×0.02370.4×10−6=26082;切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145 壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃壁温过冷水粘度μw1=0.549×10−3 Pa.s布管示意图粘度修正系数:ϕ1=(μ1μw1)0.14=(0.3704×0.54910−3)0.14=0.9206根据式(3-62)计算壳程换热系数:α1=λ1d e ·p r 13⁄·ϕ·js =0.6240.0307×2.31213⁄×0.9324×20=7588)传热系数计算:水侧污垢热阻:r 2=0.000344m 2.℃/w 管壁热阻r 忽略 总传热系数:K j =11α1+r 1+r 2d 0d i +1α2d 0d i=11758+0.000344+0.000344(0.0250.02)+13407.5(0.0250.02)=460W m 2⁄℃传热系数比值K j K 0⁄=460400⁄=1.15,合理 9)管壁温度计算: 管外壁热流密度: q 0=Q 0N t πd 0l=2727013720×π×0.025×3=16074W/m 2.℃根据式(3-94a)计算管外壁温度:t w1=t 1−q 1(1α1+r 1)=77.5−16074(1758+0.000344)=43.03℃误差较核:t w1−t w1′=50−50.54=−0.54 ℃,误差不大; 10)管程压降计算:根据式(3-94b)计算管内壁温度:t w2=t 2+q 1d 0d i(1α2+r 2)=35+160740.0250.02(11186+0.000344)=58.8℃ ;壁温下水的粘度:μw2=486×10−6 Pa·s; 粘度修正系数: ϕ2=(μ2μw2)0.14=(727.7×10−6486×10−6)0.14=1.05;查图3-30得管程摩擦系数:λ2=0.0078 管程数 :N t =2;管内沿程压降计算依据式(3-112):∆p i =(W222ρ)(l·N t d n)(λ2ϕ2)=(0.23575×976)22×976·3×40.02·0.0781.058=599.8Pa (W=w.ρ)回弯压降: ∆p b =W 222ρ2·4·n =(0.23575×976)22×976·2·4=216Pa ;取进出口管处质量流速:W N2=1750 ㎏/㎡·s ; (依据ρw 2<3300取 w=1.822m/s)进出口管处压降(依据 3-113):∆p n2=W n222ρ2×1.5=175022×976×1.5=2353.4;管程结垢校正系数:ϕd2=1;管程压降:∆p2=(∆p i+∆p b)ϕd2+∆p N2=(599.8+216)×1+2310.7=3452.82 Pa11)壳程压降计算:壳程当量直径:d e=D i2−N t·d02D i+N t·d0=0.92−720×0.02520.9+720×0.025=0.019m;雷诺数:Re1=W1d eμ1=483.08×0.190.7275×10−3=12616;查得壳程摩擦系数:λ1=0.08;(图 3-34) 管束压降(公式3-129):∆p i=W122ρ1·D i(n b+1)d e·λ1ϕ1=483.0822×992.9·0.9×100.019·0.080.9206=4837Pa;取进出口质量流速:W N1=1000 kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:∆p N1=W N122ρ1·1.5=100022×992.9×1.5=335.7Pa;取导流板阻力系数:ξd=5; 导流板压降:∆p d=W N122ρ1·ξp=100022×992.9×5=2517.87Pa壳程结垢修正系数:ϕd=1.38;(表3-12)壳程压降:∆p l=∆p0ϕd+∆p d+∆p N1=4837×1+2517.9+335.7=7690.7Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。