管壳式热交换器的热力计算
- 格式:ppt
- 大小:2.08 MB
- 文档页数:31
毕业设计(论文)管壳式换热器的建模、换热计算和CFD模拟专业年级2007级热能与动力工程专业学号姓名******** 杨郭指导教师刘巍评阅人刘庆君二零一一年六月中国南京任务书课题名称:管壳式换热器的建模、换热计算与CFD模拟课题类型:毕业论文任务书内容:1、英文资料的翻译5千个汉字字符以上(要求和热动、空调、能源、环境、新能源等本专业有关的内容,可以是英文著作、设备使用手册、英文文献检索、英文专利文献、网上专题介绍等实用性的、将来工作中可遇到的相关题材的文章,最好不要是科普类、教学类的英文)2、使用的原始资料(数据)及设计技术要求:2.1.管壳式换热器,热交换功率100kW,200kW。
2.2.温度进口350~500℃,出口温度150~200℃,流速可变;温度进口100~150℃,出口温度300~450℃,流速可变。
其总流阻损失应在满足规定要求。
2.3.换热器材料可选,几何尺寸可变;工作介质可选择(空气、水、氟利昂) 2.4.换热器外壁面绝热保温; 2.5.采用CFD模拟计算与能量分析,对系统进行相关工况的模拟;3、设计内容:3.1. 学习和消化设计任务书,按照设计任务书的设计内容,拟定工作内容和计划,拟定出设计和计算的每个过程中应该遵循设计要求与规定。
3.2.查找和收集有关管壳式换热器的历史和现状资料,查找相关管壳式换热器的运用案例,及其相关的技术条件和运行要求。
3.3.以科技文献检索,包括期刊、专利、设计标准、产品标准、设计手册、产品样本,寻找和熟悉相关的分析计算软件;熟悉设计工具软件、电脑等;3.4.根据已知参数,用ProE设计出符合要求的管壳式换热器,并学习如何导入相关软件进行网格设计;3.5.进行管壳式换热器CFD网格设计,用fluent软件对管壳式换热器进行变工况运行能量分析;3.5.分析计算换热器的流阻损失,其结果的合理性,分析提高换热效率主要手段和改进的方向。
3.6.输出的计算文件包括:3.6.1.完整的毕业设计任务书3.6.2.符合要求的算模型的结构、尺寸; 3.6.3.换热计算的过程、表格,计算结果的结论等等; 3.6.4.规定状态的CFD模拟结果和能量分析图; 3.6.5.毕业设计论文; 3.7.把所作的工作、学习的体会、方案的选择过程、计算方案过程等写在过程手册中,写好毕业设计论文。
换热器热量及面积计算一、热量计算1、一般式Q=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q 为换热器的热负荷, kj/h 或 kw ;W 为流体的质量流量, kg/h;H 为单位质量流体的焓, kj/kg ;下标 c 和 h 分别表示冷流体和热流体,下标 1 和 2 分别表示换热器的进口和出口。
2、无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;T为冷流体的温度,℃。
二、面积计算1、总传热系数K管壳式换热器中的K 值如下表:冷流体热流体总传热系数 K,w/(m2. ℃)水水850-1700水气体17-280水有机溶剂280-850 水轻油340-910 水重油60-280有机溶剂有机溶剂115-340 水水蒸气冷凝1420-4250 气体水蒸气冷凝30-300水低沸点烃类冷凝455-1140 水沸腾水蒸气冷凝2000-4250 轻油沸腾水蒸气冷凝455-1020 注:1w=1J/s=3.6kj/h=0.86kcal/h1kcal=4.18kj2、温差(1)逆流热流体温度 T:T1→T2冷流体温度 t :t2 ←t1温差△ t :△ t1 →△ t2△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )(2)并流热流体温度 T:T1→T2冷流体温度 t :t1 →t2温差△ t :△ t2 →△ t1△t m=(△ t2- △t1 )/ ㏑(△ t2/ △t1 )3、面积计算S=Q/(K. △t m)三、管壳式换热器面积计算S=3.14ndL其中, S 为传热面积 m2、n 为管束的管数、 d 为管径, m;L 为管长,m。
四、注意事项冷凝段:潜热(根据汽化热计算)冷却段:显热(根据比热容计算)。
第一章换热器简介及发展趋势1.1 概述在化工生产中,为了工艺流程的需要,常常把低温流体加热或把高温流体冷却,把液态汽化或把蒸汽冷凝程液体,这些工艺过程都是通过热量传递来实现的。
进行热量传递的设备称为换热设备或换热器。
换热器是通用的一种工艺设备,他不仅可以单独使用,同时又是很多化工装置的组成部分。
在化工厂中,换热器的投资约占总投资的10%——20%,质量约为设备总质量的40%左右,检修工作量可达总检修工作量的60%以上。
由此可见,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
在其他方面如动力、原子能、冶金、轻工、制造、食品、交通、家电等行业也有着广泛的应用。
70年代的世界能源危机,有力地促进了传热强化技术的发展,为了节能降耗,提高工业生产经济效益,要求开发适用于不同工业过程要求的高效能换热设备[1]。
这是因为,随着能源的短缺(从长远来看,这是世界的总趋势),可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。
所以,这些年来,换热器的开发与研究成为人们关注的课题,最近,随着工艺装置的大型化和高效率化,换热器也趋于大型化,向低温差设计和低压力损失设计的方向发展。
同时,对其一方面要求成本适宜,另一方面要求高精度的设计技术。
当今换热器技术的发展以CFD(Computational Fluid Dynamics)、模型化技术、强化传热技术及新型换热器开发等形成了一个高技术体系[3]。
当前换热器发展的基本趋势是:继续提高设备的传热效率,促进设备结构的紧凑性,加强生产制造的标准化系列化和专业化,并在广泛的范围内继续向大型化的方向发展。
各种新型高效紧凑式换热器的应用范围将得到进一步扩大。
在压力、温度和流量的许可范围内,尤其是处理强腐蚀性介质而需要使用贵重金属材料的场合下,新型紧凑式换热器将进一步取代管壳式换热器。
总之,为了适应工艺发展的需要,今后在强化传热过程和换热设备方面,还将继续探索新的途径。
列管式换热器的设计计算列管式(管壳式)换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。
若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。
例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。
这只是个模板,你还要自己修改数据,其中有些公式显示不出来。
不明白的问我。
一.设计任务和设计条件某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。
已知混和气体的流量为227301㎏/h,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。
物性特征:混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容=3.297kj/kg℃热导率=0.0279w/m粘度循环水在34℃下的物性数据:密度=994.3㎏/m3定压比热容=4.174kj/kg℃热导率=0.624w/m℃粘度二.确定设计方案1.选择换热器的类型两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。
2.管程安排从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。
但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。
三.确定物性数据定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。
故壳程混和气体的定性温度为T= =85℃管程流体的定性温度为t= ℃根据定性温度,分别查取壳程和管程流体的有关物性数据。
对混合气体来说,最可靠的无形数据是实测值。
若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。
混和气体在35℃下的有关物性数据如下(来自生产中的实测值):密度定压比热容=3.297kj/kg℃热导率=0.0279w/m粘度=1.5×10-5Pas循环水在34℃下的物性数据:密度=994.3㎏/m3定压比热容=4.174kj/kg℃热导率=0.624w/m℃粘度=0.742×10-3Pas四.估算传热面积1.热流量Q1==227301×3.297×(110-60)=3.75×107kj/h =10416.66kw2.平均传热温差先按照纯逆流计算,得=3.传热面积由于壳程气体的压力较高,故可选取较大的K值。
换流器热量及面积计算公式换流器(也称为热交换器或换热器)是一种设备,用于将热量从一个介质传递给另一个介质,从而实现热能的转移。
在工业和建筑领域,换流器广泛应用于空调系统、冷却塔、石油炼化等领域。
换流器的热量和面积计算是设计换流器时必不可少的一步。
下面将介绍两种常用的换流器热量和面积计算公式。
1.热量换算公式:换热器的热量计算通常使用传热的基本公式:Q=U×A×ΔTm其中,Q表示换热器的热量传输量(单位为热量单位/时间,如瓦特或千瓦),U是换热系数(单位为热导率乘以传热面积除以传热距离),A是传热面积(单位为平方米),ΔTm是温度差(单位为摄氏度或开尔文)。
热传导系数(U)是换热器设计的重要参数,它代表了换热介质的传热特性。
根据具体的换热器类型和传热介质,U的计算方法有所不同。
以下是一些常用的U计算方法:-对于管壳式换热器:U=1/[(1/h1)+(ΣRi)+(1/h2)]其中,h1和h2分别是冷介质和热介质的对流传热系数,ΣRi是壳程内的热阻总和。
-对于板式换热器:U=1/[(1/h1)+(1/h2)+(ΣRi)]其中,h1和h2分别是冷介质和热介质的对流传热系数,ΣRi是板内的热阻总和。
需要注意的是,这里的对流传热系数(h)和壳程或板内的热阻(Ri)通常需要通过实验或文献资料获得。
-对于其他类型的换热器,需要根据具体的情况选择相应的换热系数计算方法。
2.面积计算公式:换热器的面积计算方法与热量计算有关,可以根据热量换算公式中的公式进行求解。
假设我们已经知道了换热量(Q)、热传导系数(U)和温度差(ΔTm),则面积(A)可以通过如下公式计算:A=Q/(U×ΔTm)这个公式也可以反过来使用,即通过已知的面积和热传导系数来计算热量:Q=U×A×ΔTm需要注意的是,这里的单位需要保持一致。
如果使用的是国际单位制(如瓦特、米、摄氏度等),则公式中的计算结果也是以国际单位制表示的。
管壳式换热器热力计算管壳式换热器是一种常见的换热设备,广泛应用于化工、石油、电力等行业中。
它由管束(包括管子和管板)和壳体组成,并通过管板将管子固定在壳体上。
在换热过程中,热媒流体在管内流动,冷媒流体在壳侧流动,两种流体通过壳体和管道之间的壳壳换热器进行热量传递。
因此,热力计算对于管壳式换热器的设计和运行至关重要。
管壳式换热器的热力计算主要包括确定整个系统的热量传递量和热阻。
其中,热量传递量是指在单位时间内通过换热器的热量,而热阻则是指媒体在传递热量过程中所遇到的阻力。
在进行热力计算时,需要根据具体的工况参数,采用一定的算法和理论来计算热量传递量和热阻。
首先,需要确定管壳式换热器的传热面积。
传热面积是传热的关键因素,它决定了热量传递的效率。
传热面积的计算公式为:A=π*D*L*N其中,A表示传热面积,D表示管子的外径,L表示管子的有效长度,N表示管子的数量。
然后,需要计算传热系数。
传热系数是指在单位时间内传递的热量和温度差之间的比值。
计算传热系数需要考虑媒体的物性参数,包括流体的粘度、导热系数、比热容等。
传热系数的计算公式为:U = 1 / (1 / hi + δ / λ + 1 / ho)其中,U表示传热系数,hi表示内层传热系数,δ表示管道壁厚度,λ表示管道壁材料的导热系数,ho表示外层传热系数。
接下来,需要确定壳侧和管侧流体的温度差。
壳侧流体的温度差可以通过流体的进出口温度差来计算,管侧流体的温度差可以通过管内流体进行热力平衡计算得到。
最后,根据所得的参数,可以计算热量传递量和热阻。
热量传递量的计算公式为:Q = U * A * ΔTlm其中,Q表示热量传递量,ΔTlm 表示对数平均温差。
而热阻的计算公式为:R=1/U*A其中,R表示热阻,U表示传热系数,A表示传热面积。
通过以上的热力计算,可以确定管壳式换热器的传热性能和热力参数,为正确选择和设计换热器提供依据。
在实际应用中,还需要考虑到其他因素,如压力损失、换热器的结构、材料选择等。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2;过冷水的粘度μ1=0.3704×10-6 Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s=0.032m(按GB151,取1.25d0);管束中心排管的管数按4.3.1.1所给的公式确定:取20根;壳体径:m 取Di=0.7m;长径比:布管示意图l/D i=3/0.9=3.3 ,合理选定弓形折流板弓形折流板弓高:折流板间距:m折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm折流板直径由GB151-2014可确定为 0.6955m 7)壳程换热系数计算壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:m/s ;壳程质量流速:kg m 2/s ;壳程当量直径:m ;壳程雷诺数:; 切去弓形面积所占比例按 h/D i =0.2查图4-32得为0.145壳程传热因子查 图3-24得为j s =20 管外壁温度假定值 t w1′=45℃ 壁温过冷水粘度 Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r 2=0.000344m 2.℃/w 管壁热阻r 忽略 总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数:;管沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s; (依据ρw2<3300取 w=1.822m/s) 进出口管处压降(依据 3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图 3-34)管束压降(公式3-129):Pa;取进出口质量流速: kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
管壳式换热器传热设计说明书设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。
2、设计计算过程:(1)热力计算1)原始数据:过冷却水进口温度t1′=145℃;过冷却水出口温度t1〞=45℃;过冷却水工作压力P1=0.75Mp a(表压)冷水流量G1=80000kg/h;冷却水进口温度t2′=20℃;冷却水出口温度t2〞=50℃;冷却水工作压力P2=0.3 Mp a(表压)。
改为冷却水工作压力P2=2.5 Mp2)定性温度及物性参数:冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃;冷却水的密度查物性表得ρ2=992.9 kg/m3;冷却水的比热查物性表得C p2=4.174 kJ/kg.℃冷却水的导热系数查物性表得λ2=62.4 W/m.℃冷却水的粘度μ2=727.5×10-6 Pa·s;冷却水的普朗特数查物性表得P r2=4.865;过冷水的定性温度 ℃;过冷水的密度查物性表得ρ1=976 kg/m3;过冷水的比热查物性表得C p1=4.192kJ/kg.℃;过冷水的导热系数查物性表得λ1=0.672w/m.℃;过冷水的普朗特数查物性表得P r2 ;过冷水的粘度μ1=0.3704×10-6Pa·s。
过冷水的工作压力P1=1.5 Mp a(表压)3)传热量与水热流量取定换热器热效率为η=0.98;设计传热量:过冷却水流量:;4)有效平均温差逆流平均温差:根据式(3-20)计算参数p、R:参数P:参数R:换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=0.83;有效平均温差:5)管程换热系数计算:附录10,初定传热系数K0=400 W/m.℃;初选传热面积:m2;选用φ25×2.5无缝钢管作换热管;管子外径d0=0.025 m;管子内径d i=0.025-2×0.0025=0.02 m;管子长度取为l=3 m;管子总数:取720根管程流通截面积:m2管程流速:m/s 管程雷诺数:湍流管程传热系数:(式3-33c)6)结构初步设计:布管方式见图所示:管间距s =0.032m (按GB151,取1.25d 0); 管束中心排管的管数按4.3.1.1所给的公式确定:取20根; 壳体内径:m 取Di =0.7m ;长径比:l/D i =3/0.9=3.3,合理选定弓形折流板弓形折流板弓高: 折流板间距: m 折流板数量:折流板上管孔直径由GB151-2014可确定为 0.0254mm 折流板直径由GB151-2014可确定为 0.6955m7)壳程换热系数计算 壳程流通面积:根据式(3-61)中流体横过管束时流道截面积046.0032.0025.016.0233.01o i c1=⎪⎪⎭⎫ ⎝⎛-⨯=⎪⎪⎭⎫ ⎝⎛-=s d BD A m 2壳程流速:布管示意图m/s;壳程质量流速:kg m2/s;壳程当量直径:m;壳程雷诺数:;切去弓形面积所占比例按h/D i=0.2查图4-32得为0.145 壳程传热因子查图3-24得为j s=20管外壁温度假定值t w1′=45℃壁温过冷水粘度Pa.s粘度修正系数:根据式(3-62)计算壳程换热系数:8)传热系数计算:水侧污垢热阻:r2=0.000344m2.℃/w管壁热阻r忽略总传热系数:传热系数比值,合理9)管壁温度计算:管外壁热流密度:W/m2.℃根据式(3-94a)计算管外壁温度:℃误差较核:℃,误差不大;10)管程压降计算:根据式(3-94b)计算管内壁温度:℃;壁温下水的粘度:Pa·s;粘度修正系数:;查图3-30得管程摩擦系数:管程数: ;管内沿程压降计算依据式(3-112):Pa (W=w.ρ)回弯压降:Pa;取进出口管处质量流速:W N2=1750 ㎏/㎡·s;(依据ρw2<3300取w=1.822m/s) 进出口管处压降(依据3-113):;管程结垢校正系数:;管程压降:11)壳程压降计算:壳程当量直径:m;雷诺数:;查得壳程摩擦系数:λ1=0.08;(图3-34)管束压降(公式3-129):Pa;取进出口质量流速:kg/m2·s;( ρw2<2200 取W N2=1000 ㎏/㎡·s) 进出口管压降:Pa;取导流板阻力系数:;导流板压降:Pa壳程结垢修正系数:;(表3-12)壳程压降:Pa;管程允许压降:[△P2]=35000 Pa;(见表3-10)壳程允许压降:[△P1]=35000 Pa;△P2<[△P2]△P1<[△P1]即压降符合要求。
换热器热量及面积【2 】盘算一.热量盘算1.一般式Q=Q c=Q hQ=W h(H h,1- H h,2)= W c(H c,2- H c,1)式中:Q为换热器的热负荷,kj/h或kw;W为流体的质量流量,kg/h;H为单位质量流体的焓,kj/kg;下标c和h分离表示冷流体和热流体,下标1和2分离表示换热器的进口和出口.2.无相变化Q=W h c p,h(T1-T2)=W c c p,c(t2-t1)式中:c p为流体平均定压比热容,kj/(kg.℃);T为热流体的温度,℃;t为冷流体的温度,℃.3.有相变化a.冷凝液在饱和温度下分开换热器,Q=W h r=W c c p,c(t2-t1)式中:W h为饱和蒸汽(即热流体)冷凝速度(即质量流量)(kg/s)r为饱和蒸汽的冷凝潜热(J/kg)b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热Q=W h[r+c p,h(T s-T w)]=W c c p,c(t2-t1)式中:c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃)二.面积盘算1.总传热系数K管壳式换热器中的K值如下表:注:1w=1J/s=3.6kj/h=0.86kcal/h1kcal=4.18kj2.温差(1)逆流热流体温度T:T1→T2冷流体温度t:t2←t1温差△t:△t1→△t2△t m=(△t2-△t1)/㏑(△t2/△t1)(2)并流热流体温度T:T1→T2冷流体温度t:t1→t2温差△t:△t2→△t1△t m=(△t2-△t1)/㏑(△t2/△t1)对数平均温差,两种流体在热交流器中传热进程温差的积分的平均值.( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热.) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型盘算所以出来一个相瞄精确的数值,当△T1/△T2>1.7时用公式:△Tm=(△T1-△T2)/㏑(△T1/△T2).假如△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2二种流体在热交流器中传热进程温差的积分的平均值.逆流时△T1=T1-t2 △T2=T2-t1顺流时△T1=T1-t1 △T2=T2-t2个中:T1 ——热流进口温度℃T2——热流出口温度t1——冷流进口温度t2——冷流出口温度ln——天然对数3.面积盘算S=Q/(K.△t m)三.管壳式换热器面积盘算S=3.14ndL个中,S为传热面积m2.n为牵制的管数.d为管径,m;L为管长,m. 注:冷凝段为潜热,依据汽化热盘算;冷却段为显热,依据比热容盘算.。