七年级数学 数轴、绝对值能力测试一
- 格式:doc
- 大小:100.00 KB
- 文档页数:2
人教版七年级上册数学数轴与绝对值的解答题1.有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空a _____0,b _____0,c ﹣b ______0,ab_____0. (2)化简:|a |+|b +c |﹣|c ﹣a |.2.如图,数轴上的三个点A ,B ,C 分别表示实数a ,b ,c .(1)如果点C 是AB 的中点,那么a ,b ,c 之间的数量关系是________; (2)比较4b -与1c +的大小,并说明理由; (3)化简:|2||1|||--+++a b c .3.阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 ,数轴上表示x 和-2的两点之间的距离是 ;(2)数轴上表示a 和1的两点之间的距离为6,则a 表示的数为 ;(3)若x 表示一个有理数,则|x +2|+|x -4|有最小值吗?若有,请求出最小值;若没有,请说明理由.4.已知b 是最大的负整数,且a 、b 、c 满足()21202a b c +++=,请回答下列问题: (1)请直接写出a 、b 、c 的值:=a _____,b =_____,c =______;(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点A 、B 、C 开始在数轴上运动,若点B 以每秒一个单位长度的速度向左运动,同时点A 、点C 都以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离为AB,点B与点C之间的距离为BC,请问:AB BC-的值是否随着t的变化而改变?若变化,请说明理由;若不变,请求出AB BC-的值.5.如图一,已知数轴上,点A表示的数为6-,点B表示的数为8,动点P从A出t>发,以3个单位每秒的速度沿射线AB的方向向右运动,运动时间为t秒()0(1)线段AB=__________.(2)当点P运动到AB的延长线时BP=_________.(用含t的代数式表示)(3)如图二,当3t=秒时,点M是AP的中点,点N是BP的中点,求此时MN的长度.(4)当点P从A出发时,另一个动点Q同时从B点出发,以1个单位每秒的速度沿射线向右运动,①点P表示的数为:_________(用含t的代数式表示),点Q表示的数为:__________(用含t的代数式表示).①存在这样的t值,使B、P、Q三点有一点恰好是以另外两点为端点的线段的中点,请直接写出t值.______________.6.数轴上与1A,B,点B,点A的距离与点A,点C(点C在点B的左侧)之间的距离相等,设点C表示的数为x,求代数式|x﹣2|的值.7.如图,周长为2个单位长度的圆片上的一点A与数轴上的原点O重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;①当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?8.解答下列各题(1)有8筐白菜,以每筐25千克为标准重量,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣1.5,﹣2,﹣2.5.回答下列问题:①与标准重量比较,8筐白菜总计超过多少千克或不足多少千克?①若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?(2)有理数a、b、c在数轴上的位置如图所示.①用“>”或“<”填空:a+b_____0,c﹣b______0;①|a+b|=_______,|c|=______,|c﹣b|=_______;①化简:|a+b|-|c|+|c﹣b|.9.如图,在数轴上点A、C、B表示的数分别是-2、1、12.动点P从点A出发,沿数轴以每秒3个单位长度的速度向终点B匀速运动;同时,点Q从点B出发,沿数轴以每秒2个单位长度的速度向终点A匀速运动,设点Q的运动时间为t秒.(1)AB的长为_______;(2)当点P与点Q相遇时,求t的值.(3)当点P与点Q之间的距离为9个单位长度时,求t的值.(4)若PC+QB=8,直接写出t点P表示的数.10.已知数轴上有两个点A:-3,B:1.(1)求线段AB的长;(2)若2m ,且m<0;在点B右侧且到点B距离为5的点表示的数为n.①求m与n;①计算2m+n+mn;11.在今年720特大洪水自然灾害中,一辆物资配送车从仓库O出发,向东走了4千米到达学校A,又继续走了1千米到达学校B.然后向西走了9千米到达学校C,最后回到仓库O.解决下列问题:(1)以仓库O为原点,以向东为正方向,用1个单位长度表示1千米,画出数轴.并在数轴上表示A、B、C的位置;(2)结合数轴计算:学校C在学校A的什么方向,距学校A多远?(3)若该配送车每千米耗油0.1升,在这次运送物资回仓的过程中共耗油多少升?12.如图,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向右移动4cm到达B点,然后再向右移动72cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点A沿数轴以每秒3cm匀速向右运动,经过多少秒后点A到点C的距离为3cm?(4)若点A以每秒1cm的速度匀速向左移动,同时点B、点C分别以每秒4cm、9cm的速度匀速向右移动.设移动时间为t秒,试探索:BA CB-的值是否会随着t的变化而改变?若变化,请说明理由,若无变化,请直接写出BA CB-的值.13.1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8(1)写出点A和点B表示的数;(2)写出与点B距离为9.5厘米的直尺左端点C表示的数;(3)在数轴上有一点D,其到A的距离为2,到B的距离为4,求点D关于原点点对称的点表示的数.14.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为a b -根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为________.(3)代数式8x +可以表示数轴上有理数x 与有理数________所对应的两点之间的距离;若85x +=,则x =________.15.从数轴上看:|a|表示数 a 的点到原点之间的距离,类似地|3|a -表示数 a 的点到表示数3的点之间的距离,|7||(7)|a a +=--表示数 a 的点到表示数–7的点之间的距离.一般地||-a b 表示数 a 的点到表示数 b 的点之间的距离.(1)在数轴上,若表示数x 的点与表示数–2 的点之间的距离为 3 个单位长度,则 x =_______.(2)利用数轴,求方程|5||4|9x x ++-=的所有整数解.16.在数学综合实践活动课上,小亮同学借助于两根小木棒m 、n 研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A 、B 、C 、D 在数轴上对应的数分别为a 、b 、c 、d ,已知()2510a b +++=,3c =,8d =.(1)求a 和b 的值:(2)小亮把木棒m 、n 同时沿x 轴正方向移动,m 、n 的速度分别为4个单位/s 和3个单位/s ,设平移时间为t (s ).①若在平移过程中原点O 恰好是木棒m 的中点,求t 的值;①在平移过程中,当木棒m 、n 重叠部分的长为3个单位长度时,求t 的值. 17.如图,在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足以下关系式:()2390a c ++-=,1b =.(1)a=______;c=______;(2)若将数轴折叠,使得A点与B点重合,则点C与数______表示的点重合;(3)若点P为数轴上一动点,其对应的数为x,当代数式x a x b x c-+-+-取得最小值时,此时x=______,最小值为______.18.已知有理数-16,-10,c在数轴上对应的点分别是A,B,C三点,BC-AB=4.(1)请在数轴上画出点A,B,并求B,C两点间的距离;(2)求AC中点表示的数19.综合与实践:A、B、C三点在数轴上的位置如图所示,点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为,点B表示的数为;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);①t为何值时,P,Q两点重合;①请直接写出t为何值时,P,Q两点相距5个单位长度.20.阅读下面的材料:a-我们知道,在数轴上,||a表示有理数a对应的点到原点的距离,同样的道理,|2|表示有理数a 对应的点到有理数2对应的点的距离,例如,|52|3-=,表示数轴上有理数5对应的点到有理数2对应的点的距离是3. 请根据上面的材料解答下列问题:(1)数轴上有理数9-对应的点到有理数3对应的点的距离是_______;(2)|5|-a 表示有理数a 对应的点与有理数_______对应的点的距离;如果|5|2-=a ,那么有理数a 的值是_______;(3)如果|1||6|7-+-=a a ,那么有理数a 的值是_______.(4)代数式|1||6|-+-a a 的最小值是_________,此时有理数a 可取的整数值有______个.21.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道|4||40|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子|73|-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离.也就是说,在数轴上,如果点A 表示的数记为a ,点B 表示的数记为b ,则A ,B 两点间的距离就可记作||-a b .回答下列问题:(1)几何意义是数轴上表示数2的点与数3-的点之间的距离的式子是________;式子|5|+a 的几何意义是_______________________;(2)根据绝对值的几何意义,当|2|3-=m 时,m =________;(3)探究:|1||9|++-m m 的最小值为_________,此时m 满足的条件是________; (4)|1||9||16|++-+-m m m 的最小值为________,此时m 满足的条件是__________.22.A ,B 两个动点在数轴上做匀速运动,运动方向不变,它们的运动时间以及对应位置所对应的数记录如表.(1)m =_______;n =______;(2)A ,B 两点在第________秒时相遇,此时A ,B 点对应的数是__________; (3)在运动到多少秒时,A ,B 两点相距10个单位长度?23.在数轴上表示a 、0、1、b 四个数的点如图所示,已知OA =OB ,求|a +b |+|a b|+|a +1|+a 的值.24.点A 、B 在数轴上分别表示有理数a 、b ,点A 与原点O 两点之间的距离表示为AO ,则0AO a a =-=,类似地,点B 与原点O 两点之间的距离表示为BO ,则BO b =,点A 与点B 两点之间的距离表示为AB a b .请结合数轴,思考并回答以下问题:(1)填空:①数轴上表示1和3-的两点之间的距离是______. ①数轴上表示m 和1-的两点之间的距离是______.①数轴上表示m 和1-的两点之间距离是3,则有理数m 是______. (2)求满足246x x -++=的所有整数x 的和______.(3)已知31510412y x z x z y -+-+-=-+----.求x y z ++的最大值为______.25.实数a ,b ,c ﹣|a ﹣c26.【阅读】在数轴上,若点A 表示数a ,点B 表示数b ,则点A 与点B 之间的距离为ABa b .例如:两点A ,B 表示的数分别为3,-1,那么()314AB =--=.(1)若32x -=,则x 的值为 .(2)当x = (x 是整数)时,式子123x x -++=成立. (3)在数轴上,点A 表示数a ,点P 表示数p .我们定义: 当1p a -=时,点P 叫点A 的1倍伴随点, 当2p a -=时,点P 叫点A 的2倍伴随点, ……当p a n -=时,点P 叫点A 的n 倍伴随点.试探究以下问题:若点M 是点A 的1倍伴随点,点N 是点B 的2倍伴随点,是否存在这样的点A 和点B ,使得点M 恰与点N 重合,若存在,求出线段AB 的长;若不存在,请说明理由.27.如图,在数轴上有三个点A ,B ,C ,完成下列问题:(1)A 点表示的数是______,C 点表示的数是______;(2)将点B 向右移动6个单位长度到点D ,D 点表示的数是______;(3)在数轴上找点E ,使点E 到B ,C 两点的距离相等,E 点表示的数是______; (4)将点E 移动3个单位长度到F ,点F 所表示的数是______.28.如图,在数轴上有三个点A ,B ,C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到A ,C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.29.如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,且a 、c 满足()22100a c ++-=.若点A 与点B 之间的距离表示为ABa b ,点B 与点C 之间的距离表示为BC b c =-,点B 在点A 、C 之间,且满足2BC AB =.(1)=a ___________,b = ___________,c =___________.(2)动点M 从B 点位置出发,沿数轴以每秒1个单位的速度向终点C 运动,同时动点N 从A 点出发,沿数轴以每秒2个单位的速度向C 点运动,设运动时间为t 秒.问:当t 为何值时,M 、N 两点之间的距离为3个单位?30.如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8(1)点D 表示的有理数是______;表示原点的是点_______. (2)与点B 表示的有理数互为相反数的点是________.(3)图中的数轴上另有点M 到点A 、点G 距离之和为14,则这样的点M 表示的有理数是_______.31.已知点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且320a b ++-=,A 、B 之间的距离记为AB a b =-或b a -,请回答问题:(1)直接写出a ,b ,AB 的值,a =______,b =______,AB =______. (2)设点P 在数轴上对应的数为x ,若35x -=,则x =______.(3)如图,点M ,N ,P 是数轴上的三点,点M 表示的数为4,点N 表示的数为-1,动点P 表示的数为x .①若点P 在点M 、N 之间,则14x x ++-=______; ①若1410x x ++-=,则x =______;①若点P 表示的数是-5,现在有一蚂蚁从点P 出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M 、点N 的距离之和是8?32.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点. (1)点C 表示的数是 ;(2)若点A 以每秒2个单位的速度向左移动,同时C 、B 点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t 秒,①点C 表示的数是 (用含有t 的代数式表示); ①当t =2秒时,求CB -AC 的值;①试探索:CB -AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.33.如图,在数轴上点A表示的数为﹣6,点B表示的数为10,点M、N分别从原点O、点B同时出发,都向左运动,点M的速度是每秒1个单位长度,点N的速度是每秒3个单位长度,运动时间为t秒.(1)求点M、点N分别所对应的数(用含t的式子表示);(2)若点M、点N均位于点A右侧,且AN=2AM,求运动时间t;(3)若点P为线段AM的中点,点Q为线段BN的中点,点M、N在整个运动过程中,当PQ+AM=17时,求运动时间t.34.如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?A:;B:;C:;(2)A、B两点间的距离是,A、C两点间的距离是;(3)应怎样移动点B的位置,使点B到点A和点C的距离相等?35.已知数轴上A、B两点表示的数分别为a、b,请回答问题:(1)①若a=3,b=2,则A、B两点之间的距离是;①若a=﹣3,b=﹣2,则A、B两点之间的距离是;①若a=﹣3,b=2,则A、B两点之间的距离是;(2)若数轴上A、B两点之间的距离为d,则d与a、b满足的关系式是;(3)若|3﹣2|的几何意义是:数轴上表示数3的点与表示数2的点之间的距离,则|2+5|的几何意义:;(4)若|a|<b,化简:|a﹣b|+|a+b|=.36.如图,①5﹣2①表示5和2的差的绝对值,也可以理解为5与2两数在数轴上所对应的两点之间的距离;①5+2①可以看做①5﹣(﹣2)①,表示5和﹣2的差的绝对值,也可以理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)①5﹣(﹣2)①= ;(2)①4—1①= ;(3)利用数轴找出所有符合条件的整数x,使得①x+2①=2,则x= ;(4)利用数轴找出所有符合条件的整数x,使得①x+2①+①x-1①=3,则x= .37.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和1的两点之间的距离是;数轴上表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离可以表示为|m﹣n|.那么,数轴上表示数x与5两点之间的距离可以表示为,表示数y与﹣1两点之间的距离可以表示为.(2)如果表示数a和﹣2的两点之间的距离是3,那么a=;(3)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(4)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是.38.阅读理解;我们知道」x丨的几何意义是在数轴上数x对应的点与原点的距离,即丨x丨=丨x-0丨,也就是说丨x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:丨x -y 丨表示在数轴上数x 、y 对应点之间的距离.在解题中,我们常常运用绝对值的几何意义.①解方程|x | = 2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为 x =±2.①在方程丨x -1丨=2中,x 的值就是数轴上到1的距离为2的点对应的数,所以该方程的解是x = 3或x = -1.知识运用:根据上面的阅读材料,求下列方程的解 (1)方程|x |= 5的解 (2)方程| x -2|= 3的解39.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,b 满足|a +3|+(b ﹣9)2=0,c =1.(1)a = ,b = ;(2)点P 为数轴上一动点,其对应的数为x ,则当x 时,代数式|x ﹣a |﹣|x ﹣b |取得最大值,最大值为 ;(3)点P 从点A 处以1个单位/秒的速度向左运动;同时点Q 从点B 处以2个单位/秒的速度也向左运动,在点Q 到达点C 后,以原来的速度向相反的方向运动,设运动的时间为t (t ≤8)秒,求第几秒时,点P 、Q 之间的距离是点B 、Q 之问距离的2倍?40.阅读下面一段文字:在数轴上点A ,B 分别表示数a ,b .A ,B 两点间的距离可以用符号AB 表示,利用有理数减法和绝对值可以计算A ,B 两点之间的距离AB .例如:当a =2,b =5时,AB =5-2=3;当a =2,b =-5时,AB =52--=7;当a =-2,b =-5时,AB =52---()=3,综合上述过程,发现点A 、B 之间的距离AB =b a -(也可以表示为a b -). 请你根据上述材料,探究回答下列问题:(1)表示数a 和-2的两点间距离是6,则a = ;(2)如果数轴上表示数a 的点位于-4和3之间,则43a a ++-= (3)代数式123a a a -+-+-的最小值是 .(4)如图,若点A ,B ,C ,D 在数轴上表示的有理数分别为a ,b ,c ,d ,则式子||||||a x x b x c x d -+++-++的最小值为 (用含有a ,b ,c ,d 的式子表示结果)参考答案:1.(1)<,>,>,< (2)b2.(1)2c =a +b (答案不唯一) (2)4-<b 1c +;理由见解析 (3)3a b c --- 3.(1)4,2x + (2)7或5- (3)有最小值,6 4.(1)2,-1,12- (2)不变,525.(1)14 (2)314-t (3)7(4)①36t -;8t + ①285秒或7秒或14秒67.(1)-2(2)①1或-3;①28或328.(1)①总计不足5千克;①出售这8筐白菜可卖507元 (2)①>,<;①a b +,c -,b c -;①2+a b 9.(1)14 (2)当t 为145秒时,点P 与点Q 相遇; (3)当t 为1秒或235秒时,点P 与点Q 间的距离为9个单位长度; (4)存在某一时刻使得PC +QB =8,此时点P 表示的数为235. 10.(1)4(2)①m =-2,n =6;①-10 11.(1)见解析(2)学校C 在学校A 的西边,距学校A 8千米;(3)1.8 12.(1)见解析 (2)152(3)经过32或72秒后点A 到点C 的距离为3cm (4)BA CB -的值不会随着t 的变化而变化,12BA CB -= 13.(1)A 表示-3,B 表示3 (2)-6.5 (3)1 14.(1)5; (2)7x ; (3)-8;-3或-13; 15.(1)1或-5(2)x =-5,-4,-3,-2,-1,0,1,2,3,4. 16.(1)5a =-,1b =- (2)①3s 4t =;①t =7s 或10s 17.(1)3-,9 (2)11- (3)1,1218.(1)画图见解析,10 (2)AC 中点表示的数为-8或-18. 19.(1)10-;2(2)①104t -+;62t +;①8;①112或21220.(1)12; (2)5,3或7; (3)0或7; (4)5,6.21.(1)23+或2(3)--;数轴上表示数a 的点与数2的点之间的距离.(3)10,19m-≤≤(4)17,9m= 22.(1)-13,4-(2)32,72(3)14或11423.024.(1)①4;①|m+1|;①2或-4(2)-7(3)925.026.(1)5或1(2)-2、-1、0、1(3)存在这样的点A和点B,使得点M恰与点N重合,线段AB的长为3或1 27.(1)-2,3(2)1(3)-1(4)-4或228.(1)1-(2)0.5(3)3-或7-29.(1)-2,2,10;(2)1或730.(1)2,C;(2)D;(3)-5或9.31.(1)-3,2,5(2)8或-2(3)①5;①-3.5或6.5;①2.5秒或10.5秒(2)①−1+t;①0;①CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.33.(1)点M、点N分别所对应的数分别为t-,103t-;(2)4t=;(3)t=1或18 34.(1)6-,1,4;(2)7,10;(3)将点B向左移动2个单位35.(1)①1,①1,①5;(2)d=|a﹣b|;(3)数轴上表示数2的点与表示数﹣5的点之间的距离;(4)2b36.(1)7;(2)3;(3)0或—4;(4)—2,—1,0,137.(1)2,5,|x−5|,|y+1|;(2)1或−5;(3)6(4)1,938.(1)5x=±;(2)5x=或1-39.(1)﹣3,9;(2)≥9,12;(3)125秒或367秒.40.(1)4和-8;(2)7;(3)2;(4)c d b a+--。
七年级数学上册数轴、绝对值培优训练一、阅读与思考数学是研究数和形的学科,在数学里数和形是有密切联系的。
我们常用代数的方法来处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种数与形之间的相互作用叫数形结合,是一种重要的数学思想。
运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有力工具,主要体现在以下几个方面:1、利用数轴能形象地表示有理数;2、利用数轴能直观地解释相反数;3、利用数轴比较有理数的大小;4、利用数轴解决与绝对值相关的问题。
二、知识点反馈1、利用数轴能形象地表示有理数;例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .42、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。
2、利用数轴能直观地解释相反数;例2:如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。
拓广训练:1、在数轴上表示数a 的点到原点的距离为3,则._________3=-a2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。
3、利用数轴比较有理数的大小;例3:已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。
(用“<”号连接) 拓广训练:1、 若0,0><n m 且n m >,比较m n n m n m n m --+--,,,,的大小,并用“>”号连接。
例4:已知5<a 比较a 与4的大小拓广训练:1、已知3->a ,试讨论a 与3的大小2、已知两数b a ,,如果a 比b 大,试判断a 与b 的大小4、利用数轴解决与绝对值相关的问题。
初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。
2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
2)一般地①正数大于0,0大于负数,正数大于负数。
②两个负数,绝对值大的反而小。
小试牛刀:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱=a,则a。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x<y<0,那么︱x︱︱y︱。
7.︱x-1︱=3,则x =。
8.若︱x+3︱+︱y-4︱=0,则x+y=。
9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。
10.︱x︱<л,则整数x=。
11.已知︱x︱-︱y︱=2,且y=-4,则x=。
12.已知︱x︱=2,︱y︱=3,则x+y=。
13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。
14. 式子︱x+1︱的最小值是,这时,x值为。
15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。
2022-2023人教版七年级数学上册第一单元数轴、相反数与绝对值常考易错习题检测(带答案)一.选择题(共10小题)1.在数轴上表示下列四个数中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.62.如图,在数轴上,点A、B分别表示数a、b,且a+b=0,若AB=8,则点A表示的数为()A.﹣4B.0C.4D.83.如图,在数轴上,若点A,B表示的数分别是﹣2和10,点M到点A,B距离相等,则M表示的数为()A.10B.8C.6D.44.﹣2022的相反数是()A.2022B.﹣2022C.D.5.在3、0、﹣4、﹣2四个数中最小的数是()A.3B.0C.﹣4D.26.﹣的绝对值是()A.﹣B.﹣C.D.7.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦8.若a为有理数且|a﹣1|=4,则a的取值是()A.5B.±5C.5或﹣3D.±39.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<010.有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④二.填空题(共7小题)11.如图所示,直径为单位1的圆从表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,则A点表示的数是.12.点A、B在数轴上对应的数分别为﹣3和2,则线段AB的长度为.13.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N 同时出发,经过秒,点M、点N分别到原点O的距离相等.14.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.15.绝对值不大于3的所有整数有个,它们的和是.16.若|a|=2,|b|=4,且|a﹣b|=b﹣a,则a+b=.17.请你将32,(﹣2)3,0,|﹣|,﹣这五个数按从大到小排列:.三.解答题(共6小题)18.画出数轴,并解答下列问题:(1)在数轴上表示下列各数:5,3.5,﹣2,﹣1;(2)在数轴上标出表示﹣1的点A,写出将点A沿数轴平移4个单位长度后得到的数.19.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为3,点B到点C的距离为8,设点A、B、C所对应的数的和是m.(1)若以A为原点,则数轴上点B所表示的数是;若以B为原点,则m=;(2)若原点O在图中数轴上,且点B到原点O的距离为4,求m的值.20.化简下列各数:①+(﹣3);②﹣(+5);③﹣(﹣3.4);④﹣[+(﹣8)];⑤﹣[﹣(﹣9)].21.先画数轴并在数轴上表示﹣3、﹣|﹣2|、﹣(﹣1)、0、+4、|﹣3|各数的点,再用“<”把这些数连接起来.22.若|x+3|与|y+2|互为相反数,求x+y的值.23.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵|﹣2|=2,|1.3|=1.3,|﹣0.4|=0.4,|0.6|=0.6,又∵2>1.3>0.6>0.4,∴离原点最近的是﹣0.4,故选:C.2.【解答】解:∵a+b=0,∴b=﹣a,又∵AB=8,∴b﹣a=8.∴﹣a﹣a=8.∴a=﹣4,即点A表示的数为﹣4.故选:A.3.【解答】解:由题意得:AB=10﹣(﹣2)=10+2=12,∵点M到点A,B距离相等∴MB=12÷2=6,∴10﹣6=4,∴点M表示的数是:4,故选:D.4.【解答】解:﹣2022的相反数是2022,故选:A.5.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣2<0<3,∴在﹣、0、﹣4、﹣2四个数中,最小的数为﹣4.故选:C.6.【解答】解:根据绝对值的定义,得=.故选:C.7.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最低的液体是液态氦.故选:D.8.【解答】解:∵|a﹣1|=4,∴a﹣1=4或a﹣1=﹣4,解得:a=5或a=﹣3.故选:C.9.【解答】解:由数轴可知,a<0<b,|a|<|b|,∴0<﹣a<b,故选:A.10.【解答】解:①根据数轴可以知道:﹣2<a<﹣1,∴1<﹣a<2,∴0<﹣a﹣1<1,符合题意;②∵﹣2<a<﹣1,∴﹣1<a+1<0,∴0<|a+1|<1,符合题意;③∵﹣2<a<﹣1,∴1<|a|<2,∴﹣2<﹣|a|<﹣1,∴0<2﹣|a|<1,符合题意;④∵1<|a|<2,∴<|a|<1,符合题意.故选:D.二.填空题(共7小题)11.【解答】解:由直径为单位1的圆从数轴上表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与﹣1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是π﹣1,故答案为:π﹣1.12.【解答】解:∵点A、B在数轴上对应的数分别为﹣3和2,∴AB=2﹣(3)=5.故答案为:5.13.【解答】解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.14.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.15.【解答】解:绝对值不大于3的所有整数有±3±2±10,共7个,和为:(+3)+(﹣3)+(+2)+(﹣2)+(+1)+(﹣1)+0=0,故答案为:7,0.16.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.17.【解答】解:如图所示,故32>|﹣|>0>﹣>(﹣2)3.故答案为:32>|﹣|>0>﹣>(﹣2)3.三.解答题(共6小题)18.【解答】解:(1)如图所示,(2)如图所示:将点A平移4个单位长度后得到的数是3或﹣5.19.【解答】解:(1)∵点A到点B的距离为3,A为原点,∴数轴上点B所表示的数是3,B为原点,∴数轴上点B所表示的数是0,点A表示的数是﹣3,点C表示的数是8,∴m=﹣3+0+8=5,故答案为:3,5;(2)∵点A到点B的距离为3,点B到点C的距离为8,点B到原点O的距离为4,∴当O在B的左边时,A、B、C三点在数轴上所对应的数分别为1、4、12,∴m=1+4+12=17,当O在B的右边时,A、B、C三点在数轴上所对应的数分别为﹣7、﹣4、4,∴m=﹣7﹣4+4=﹣7,综上所述:m的值为﹣7或17.20.【解答】解:①+(﹣3)=﹣3;②﹣(+5)=﹣5;③﹣(﹣3.4)=3.4;④﹣[+(﹣8)]=﹣(﹣8)=8;⑤﹣[﹣(﹣9)]=﹣(+9)=﹣9.21.【解答】解:﹣|﹣2|=﹣2,﹣(﹣1)=1,+4=4,|﹣3|=3,在数轴上表示各数,如图:排列为:﹣3<﹣|﹣2|<0<﹣(﹣1)<|﹣3|<+4.22.【解答】解:∵|x+3|与|y+2|互为相反数,∴|x+3|+|y+2|=0,∴|x+3|=0,|y+2|=0,即x+3=0,y+2=0,∴x=﹣3,y=﹣2.∴x+y=﹣3+(﹣2)=﹣5,即x+y的值是﹣5.23.【解答】解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0。
2.2数轴、相反数、绝对值同步练习一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.下列数轴表示正确的是()A.B.C.D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣34.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣25.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣16.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣58.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.616.﹣3的相反数是()A.3B.C.﹣3D.﹣17.的相反数是()A.﹣2017B.2017C.D.18.若m是﹣6的相反数,则m的值是.19.﹣8的相反数是.如果﹣a=2,则a=.20.已知m﹣2的相反数是5,那么m3的值等于.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣22.|﹣2|等于()A.2B.﹣2C.D.0 23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3 24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3 26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a 27.当x<1时,化简:|x﹣1|=.28.若|x﹣2|=2,则x﹣1=.29.如果|x﹣3|=5,那么x=.30.如果b与5互为相反数,则|b+2|=.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.32.已知a是2的相反数,计算|a﹣2|的值.33.已知|a﹣1|=2,求﹣3+|1+a|值.2.2数轴、相反数、绝对值同步练习参考答案与试题解析一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.2.下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.4.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【解答】解:点P表示的数是﹣2+4=2.故选:C.5.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.6.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【解答】解:AB=4﹣(﹣6)=10.故选:D.7.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣5【解答】解:∵点O是线段AB的中点,∴AO=BO,∵AB=20,∴AO=BO=AB=10,根据距离公式|0﹣a|=10,∴a=﹣10,故选:C.8.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是﹣2.【解答】解:设点C表示的数为x,则AC=x﹣(﹣10)=x+10,BC=4﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+10﹣(4﹣x)=2.解得:x=﹣2.故答案为:﹣2.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是6.【解答】解:表示数﹣5和表示数﹣11的两点之间的距离是:|(﹣5)﹣(﹣11)|=6,故答案为:6.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是2,﹣6.【解答】解:数轴上点A表示的数为﹣2,距离点A4个单位长度的点有两个,它们分别是﹣2+4=2,﹣2﹣4=﹣6,故答案为:2,﹣6.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为1或9.【解答】解:∵点A表示﹣3,AC=4,∴C表示的数是﹣3+4=1或﹣3﹣4=﹣7,即x=1或x=﹣7,∵A,B所表示的数分别是﹣3、+7,点M是AB的中点,∴M表示的数是(﹣3+7)÷2=2,∴CM=|1﹣2|=1或CM=|﹣7﹣2|=9,故答案为:1或9.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:﹣20;点B表示的数是:100.(2)A,B两点间的距离是120个单位,线段AB中点表示的数是40.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.【解答】解:(1)∵点A在原点左侧且距原点20个单位,∴点A表示的数是﹣20,∵点B在原点右侧且距原点100个单位,∴点B表示的数是100,故答案为:﹣20;100.(2)∵点A表示的数是﹣20,点B表示的数是100,∴A、B两点间的距离为100﹣(﹣20)=120,线段AB中点表示的数是100﹣120÷2=40,故答案为:120;40.(3)设两只蚂蚁经过x秒相遇,4x+6x=120,解得:x=12,﹣20+4x=28,∴点C表示的数是28.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.【解答】解:(1)点B向右移动5个单位长度后,点B表示的数为1;三个点所表示的数中最小的数是是点A,为﹣1.(2)点D到A,C两点的距离相等;故点D为AC的中点.D表示的数为:0.5.(3)当点E在A、B时,EA=2EB,从图上可以看出点E为﹣3,∴点E表示的数为﹣3;当点E在点B的左侧时,根据题意可知点B是AE的中点,∴点E表示的数是﹣7.综上:点E表示的数为﹣3或﹣7.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.6【解答】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.16.﹣3的相反数是()A.3B.C.﹣3D.﹣【解答】解:∵互为相反数的两个数相加等于0,∴﹣3的相反数是3.故选:A.17.的相反数是()A.﹣2017B.2017C.D.【解答】解:﹣的相反数为,故选:D.18.若m是﹣6的相反数,则m的值是6.【解答】解:∵m是﹣6的相反数,∴m=6.故答案为:6.19.﹣8的相反数是8.如果﹣a=2,则a=﹣2.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.20.已知m﹣2的相反数是5,那么m3的值等于﹣27.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,∴m3=(﹣3)3=﹣27.故答案为:﹣27.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣【解答】解:﹣9的绝对值是9,故选:A.22.|﹣2|等于()A.2B.﹣2C.D.0【解答】解:|﹣2|等于2,故选:A.23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3【解答】解:∵2<a<3,∴a﹣3<0,2﹣a<0,∴原式=3﹣a+a﹣2=1.故选:B.24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.【解答】解:|﹣|=,的相反数是﹣.故选:B.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a【解答】解:任何数的绝对值都是非负数,所以|a|≥0.故选:A.27.当x<1时,化简:|x﹣1|=1﹣x.【解答】解:∵x<1,∴x﹣1<0,∴原式=﹣(x﹣1)=1﹣x.28.若|x﹣2|=2,则x﹣1=3或﹣1.【解答】解:∵|x﹣2|=2,∴x﹣2=+2,或x﹣2=﹣2,∴x=4或x=0,当x=4时,x﹣1=4﹣1=3,当x=0时,x﹣1=0﹣1=﹣1.故答案为:3或﹣1.29.如果|x﹣3|=5,那么x=8或﹣2.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.30.如果b与5互为相反数,则|b+2|=3.【解答】解:∵b与5互为相反数,∴b=﹣5,∴|b+2|=|﹣5+2|=|﹣3|=3.故答案为:3.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.32.已知a是2的相反数,计算|a﹣2|的值.【解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.33.已知|a﹣1|=2,求﹣3+|1+a|值.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3。
初中数学试卷1.2数轴、相反数与绝对值专题一绝对值的非负性1.小明、小亮、小花、小倩四人是一个学习小组的同学,下面是该小组学习有理数的绝对值时进行的小组讨论:小明说:“﹣a的绝对值是它的相反数a”;小亮说:“如果有理数a的绝对值是它本身,那么a一定是正数”;小花说:“如果a为有理数,那么﹣|a|一定是负数”;小倩说:“你们说得都不对”.你认为这四位同学中谁说错了?谁说对了?错的该怎样改正?2.若a、b、c都是有理数,且|a﹣1|+|b+2|+|c﹣4|=0,求a+|b|+c的值.3.探究题(1)比较下列各式的大小:|﹣2|+|3| |﹣2+3|;|﹣3|+|﹣5| |(﹣3)+(﹣5)|;|0|+|﹣5| |0+(﹣5)|;…(2)通过(1)的比较,请你分析,归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(3)根据(2)中你得出的结论,求当|x|+5=|x﹣5|时,求x的取值范围.专题二数轴、相反数与绝对值的“大融合”4.已知有理数a与b互为相反数,有理数c到原点的距离为1,有理数d为绝对值最小的数,求式子2013(a+b)+c+2013d的值.5.如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G 表示8.(1)点B表示的有理数是,表示原点的是点是.(2)图中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是.(3)若将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数.6.一个有理数x在数轴上对应的点为A,将A点向左移动3个单位长度,再向左移动2个单位长度,得到点B,点B所对应的数和点A对应的数的绝对值相等,求点A的对应的数x是多少?【知识要点】1.规定了原点、正方向和单位长度的直线叫作数轴.任何有理数都可以用数轴上唯一的一个点来表示.2.如果两个数只有符号不同,那么其中的一个数叫作另一个数的相反数.0的相反数是0.3.一个数的绝对值等于数轴上表示这个数的点与原点的距离.正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.一般地,如果a表示一个数,则:(1)当a(2)当a=0(3)当a a和-a中非负数的那一个.【温馨提示】(针对易错)1.画数轴时必须具备三要素:原点、正方向和单位长度.2.任何一个数都有相反数,两个互为相反数的绝对值相等.3.一个数的绝对值是一个非负数,在求一个数的绝对值时,不能只是去掉绝对值符号,一定要考虑绝对值符号内的式子表示的数是正数还是负数.【方法技巧】1.求一个数的相反数,在这个数的前面加上负号即可.2.求一个数的绝对值时,先分清这个数是正数、0还是负数,再按照相应的情况“对号入座”,即去掉绝对值后是否添上负号.3.几个非负数之和等于零,其中每一个数都等于零.参考答案1.解:小明、小亮、小花都说错了.只有小倩是对的.小明说错了,因为﹣a的绝对值应该分情况进行讨论,小亮说错了,因为﹣a的绝对值等于本身的数除了正数还有0;小花说错了,因为﹣|﹣a|不一定是负数,还可能是0,即﹣|﹣a|≤0.故小倩是对的.2.解:因为|a﹣1|+|b+2|+|c﹣4|=0,所以|a﹣1|=0,|b+2|=0,|c﹣4|=0,所以a=1,b=﹣2,c=4,所以a+|b|+c=1+2+4=7.3.解:(1)因为|﹣2|+|3|=5,|﹣2+3|=1,所以|﹣2|+|3|>|﹣2+3|.因为|﹣3|+|﹣5|=8,|(﹣3)+(﹣5)|=8,所以|﹣3|+|﹣5|=|(﹣3)+(﹣5)|.因为|0|+|﹣5|=5,|0+(﹣5)|=5,所以|0|+|﹣5|=|0+(﹣5)|.故答案为>,=,=.(2)根据(1)中规律可得出:|a|+|b|≥|a+b|.(3)因为|﹣5|=5,所以|x|+5=|x|+|﹣5|=|x+(﹣5)|=|x﹣5|.所以x<0.即当|x|+5=|x﹣5|时,x<0.4.解:因为有理数a与b互为相反数,所以a+b=0.因为有理数c到原点的距离为1,所以c=1 或c=-1.因为有理数d为绝对值最小的数,所以d=0.所以当c=1时,原式=2013×0+1+0=1;当c=-1时,原式=2013×0+(-1)+0=-1.所以原式的值为1或-1.5.(1) ﹣2,C;(2) ﹣4.5或8.5;(3) ﹣2;F 【解析】(1)因为数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G表示8,所以AG=|8+4|=12,所以相邻两点之间的距离==2,所以点B表示的有理数是﹣4+2=﹣2,点C表示的有理数﹣2+2=0.故答案为﹣2,C;(2)设点M表示的有理数是m,则|m+4|+|m﹣8|=13,所以m=﹣4.5或m=8.5.故答案为﹣4.5或8.5;(3)若将原点取在点D,因为每两点之间距离为2,所以点C表示的有理数是﹣2.因为点B与点F在原点D的两侧且到原点的距离相等,所以此时点B与点F表示的有理数互为相反数.6.解:由题意得:点A对应的数为x,则点B所对应的数x﹣3﹣2=x﹣5,又点B所对应的数和点A对应的数的绝对值相等,|x|=|x﹣5|,所以x=2.5.。
1.2 数轴、相反数与绝对值一、选择题1.以下说法正确的选项是()A. ﹣3 的倒数是B.﹣2 的绝对值是﹣ 2C. ﹣(﹣ 5)的相反数是﹣ 5D. x 取随意实数时,都存心义2.以下各式正确的选项是()A. ﹣|﹣3|=3B. +(﹣ 3)=3C. ﹣(﹣ 3)=3D. ﹣(﹣ 3)=﹣33.如图,检测 4 个足球,此中超出标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最靠近标准的是()A. B. C.D.4.如图 ,四个实数 m,n,p,q 在数轴上对应的点分别为M,N,P,Q,若 p+m=0,则 m,n,p,q 四个实数中 ,绝对值最小的一个是()A. pB. qC. mD. n5.已知 a,b 两数在数轴上对应的点如下图,以下结论正确的选项是()A. a+b>0B. a>bC. ab<0 D. b﹣a>06.实数在数轴上对应点的地点如下图,则必有()A. B. C.D.7.若|a|=5,|b|=3,那么 a?b的值是()A. 15B.﹣15 C. 15±D.以上都不对8.有理数﹣ l 的绝对值是()A. 1B.﹣l C. l D±.29.已知 |a|=5,b3=﹣ 27,且 a>b,则 a﹣b 值为()A. 2B.﹣2 或8 C. 8 D.﹣210.若 a 为有理数,以下结论必定正确的选项是()A. a>﹣ aB. a>C. |a|=aD.2≥0a11.已知 |x+y|+(x﹣y+5)2=0,那么 x 和 y 的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣12.以下说法正确的选项是()①有理数包含正有理数和负有理数②相反数大于自己的数是负数③数轴上原点双侧的数互为相反数④两个数比较,绝对值大的反而小A. ②B.①③C.①②D.②③④二、填空题13.的倒数的相反数是 ________.14.A 为数轴上表示 -1 的点,将点 A 沿数轴向右平移 3 个单位到点 B,则点 B 所表示的数为 ________.15.-2和它的相反数之间的整数有________个.16.如图,在数轴上,点A,B 分别在原点 O 的双侧,且到原点的距离都为 2 个单位长度,若点 A 以每秒 3 个单位长度,点 B 以每秒 1 个单位长度的速度均向右运动,当点 A 与点 B 重合时,它们所对应的数为 ________.17.绝对值不大于 5 的全部整数和为 ________18.数轴上表示数- 5 和表示- 14 的两点之间的距离是 ________.19.在数轴上 A 点表示-,B点表示,则离原点较近的点是________.20.假如 a、b 互为倒数, c、d 互为相反数,且 m=-1,则代数式 2ab-(c+d)+m2=________;21.实数 m,n 在数轴上对应点的地点如下图,化简:|m-n|=________22.-4 的绝对值是 ________三、解答题23.某邮递员依据邮递需要,先从 A 地向东走 3 千米,而后折回向西走了 10 千米.又折回向东走 6 千米,又折回向西走 5.5 千米.现规定向东为正,问该邮递员此时在 A 地的哪个方向?与 A 地相距多少千米?要求:用有理数加法运算,并将这一问题在数轴表示出来.24.实数 a,b,c 在数轴上的地点如下图,化简|c|﹣|a|+|﹣b|+|﹣a|.25.已知 |a﹣3|+|b﹣4|=0,求的值.26.在一条不完好的数轴上从左到右有点A,B,C,此中 AB=2 ,BC=1,如图所示,设点 A,B,C 所对应数的和是p.(1)若以 B 为原点,写出点 A,C 所对应的数,并计算 p 的值;若以 C 为原点,p又是多少?(2)若原点 O 在图中数轴上点 C 的右侧,且 CO=28,求 p.参照答案一、选择题1.【答案】 C【分析】:A、﹣3的倒数是﹣,故A选项不切合题意;B、﹣ 2 的绝对值是 2,故 B 选项不切合题意;C、﹣(﹣ 5)的相反数是﹣ 5,故 C 选项切合题意;D、应为 x 取随意不等于 0 的实数时,都存心义,故D选项不切合题意.故答案为: C.【剖析】乘积为 1 的两个数互为倒数;正数与0 的绝对值为它自己,负数的绝对值为它的相反数;在一个数前加一个负号,它就是这个数的相反数;分式的分母不可以为 0.2.【答案】 C【分析】 A. 原式 =-3;A 不切合题意; B.原式 =-3,B 不切合题意; C.原式 =3,C 切合题意; D.原式 =3, D 不切合题意;故答案为: C.【剖析】 A.依据绝对值性质来剖析; B.依据正负得负来剖析; C.依据负负得正来剖析; D.依据负负得正来剖析;3.【答案】 A【分析】:∵ |+0.9|=0.9,|+1.2|=1.2,|﹣2.4|=2.4,|+2.8|=2.8,0.9<1.2<2.4<2.8,∴从轻重的角度看,最靠近标准的是﹣0.9.故答案为: A.【剖析】先求出各数的绝对值可得|+0.9|=0.9,|+1.2|=1.2,|﹣2.4|=2.4,|+2.8|=2.8,再比较大小可得0.9<1.2<2.4<2.8,因此从轻重的角度看,最靠近标准的是﹣0.9.4.【答案】 D【分析】:∵ p+m=0,∴p和 m 互为相反数, 0 在线段 PM 的中点处,∴四个数中绝对值最小的一个是 n故答案为: D【剖析】依据 p+m=0,p 和 m 互为相反数, 0 在线段 PM 的中点处,依据绝对值的意义,可得出点N 离原点的距离近来,即可求解。
第一章有理数 1.2 数轴、相反数和绝对值1. 下列各式中,不成立的是( )A.|-6|=6 B.-|6|=-6 C.|-6|=|6| D.-|-6|=62. 数轴是( )A.规定了原点,正方向和单位长度的一条直线 B.一条射线C.有原点、正方向的直线 D.有单位长度的直线3. 下列说法错误的是( )A.所有有理数都可以用数轴上的点表示B.在数轴上表示1的点和-1的点的距离是1C.数轴上原点表示的数是0D.在数轴上原点左边的点表示的数是负数4. 下列说法正确的是( )A.正数与负数互为相反数 B.符号不同的两数互为相反数C.0没有相反数 D.-a与a互为相反数5. 下列是四位同学画出的数轴,其中正确的是( )6. 如图,数轴上点M和点N表示的数分别是( )A.1.5和-2.5 B.2.5和-1.5 C.-1.5和2.5 D.1.5和2.5 7. a,b,c在数轴上的位置如图,a,b,c表示的数是( )A .a ,b ,c 都是负数B .a ,b ,c 都是正数C .a ,b 是正数,c 是负数D .a ,b 是负数,c 是正数8. 数轴上到原点的距离为2的点所表示的数是( )A .-2B .2C .±2D .不能确定9.化简-(-113)的结果是( ) A .113 B .-113 C .-34 D.3410. 下列说法中正确的是( )A .没有一个数的相反数是它本身B .整数的相反数必为整数C . -(+3)的相反数是-3D . +(-6)的相反数是-611. 一个数a 的相反数表示为______.12. 如图,数轴上点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是____.13. 若|x|=5,则x的值是14. -(-2)表示________的相反数,故其结果是____.15. 若a=-3,则-a=____;若-a=-(-5),则a=____.16. 在数轴上,把表示2的对应点移动5个单位后,得到的对应点所表示的数是17. 下列说法中:①若a=10,则-a=-10;②若a是负数,则-a 必是正数;③如果a是负数,则-a在原点的左边;④若a与b互为相反数,则a,b对应的点一定在原点的两侧.其中正确的是(填序号)18. 在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的数为____.19. 如图,小明不慎将墨水滴在数轴上,则被墨水盖住的整数有____个.20. 化简:(1)-(+4)=_______;+(-π)=_______;(2)-(-1.5)=_______;-[+(-5)]=____.21. 化简:(1)+[-(+0.3)](2)-[+(-212)]22. 若x +4与-6互为相反数,求x 的值.23. 如图,点A 表示-4,点B 表示-3.(1)标出数轴上的原点0;(2)指出点C表示的数;(3)有一点D(但不是点C),它到原点的距离等于点C到原点的距离,那么点D表示什么数?并标出点D.答案:1---10 DABDC CDCAB11. -a12. 213. ±514. -2 215. 3 -516. 7或-317. ①②18. -5或-119. 820. (1) -4 -π(2) 1.5 521. (1) 解:原式=-0.3(2) 解:原式=21222. 解:原式=x =223. 解:(1)(2)点C 表示的数是5(3)点D 表示-5,如图。
第1章有理数——数轴与绝对值综合专题训练(一)1.如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.2.已知:数轴上表示数a的点A与表示数﹣2的点之间的距离为3,表示数b的点B与表示数2的点之间的距离为6,点A、点B分别表示什么数?A、B两点之间的距离是多少?3.如图,数轴上的三点A、B、C分别表示有理数a、b、c.则:a﹣b0,a+c0,b﹣c0.(用<或>或=号填空)你能把|a﹣b|﹣|a+c|+|b﹣c|化简吗?能的话,求出最后结果.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.5.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.6.在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.7.如图,在数轴上点A表示数a,点C表示数c且|a+10|+(c﹣20)2=0 (1)求a、c的值;(2)已知点D为数轴上一动点,且满足CD+AD=32,直接写出点D表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C的速度分别为每秒3个单位长度、每秒4个单位长度,运动时间为t 秒.①若点A 向右运动,点C 向左运动,AB =BC ,求t 的值;②若点A 向左运动,点C 向右运动,2AB ﹣m ×BC 的值不随时间变化而改变,请求出m 的值.8.已知A ,B 两点在数轴上分别示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a ﹣b |.已知数轴上A ,B 两点对应的数分别为﹣1,3,P 为数轴上一动点,A ,B 两点之间的距离是 .设点P 在数轴上表示的数为x ,则点P 与﹣4表示的点之间的距离表示为若点P 到A ,B 两点的距离相等,则点P 对应的数为若点P 到A ,B 两点的距离之和为8,则点P 对应的数为现在点A 以2个单位长度/秒的速度向右运动,同时点B 以0.5个单位长度/秒的速度向右运动,当点A 与点B 之间的距离为3个单位长度时,求点A 所对应的数是多少?9.对于数轴上的A 、B 、C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A 、B 、C 所表示的数分别为1、3、4,则点B 是点A 、C 的“至善点”.(1)若点A 表示数﹣2,点B 表示数2,下列各数、0、1、6所对应的点分别C 1、C 2、C 3、C 4,其中是点A 、B 的“至善点”的有 (填代号);(2)已知点A 表示数﹣1,点B 表示数3,点M 为数轴上一个动点:①若点M 在点A 的左侧,且点M 是点A 、B 的“至善点”,求此时点M 表示的数m ; ②若点M 在点B 的右侧,点M 、A 、B 中,有一个点恰好是其它两个点的“至善点”,求出此时点M 表示的数m .10.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.11.思考下列问题并在横线上填上答案.(1)数轴上表示﹣3的点与表示4的点相距个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是.(4)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是,最小距离是.(5)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,经过秒三个点聚于一点,这一点表示的数是,点C在整个运动过程中,移动了个单位.12.邮递员骑摩托车从邮局出发,向东走了3千米到达小明家,继续向东走了1.5千米到达小亮家,然后向西走了9.5千米到达小刚家,最后回到邮局.(1)若以邮局为原点O,以向东方向为正方向,用1个单位长度表示1千米,你在数轴上表示出小刚家,小明家和小亮家的位置.(2)小刚家距离小明家有多远?(3)如果邮递员所骑的摩托车油耗为4升/百公里,摩托车行驶的路程消耗了多少升油?13.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为(2)当t=时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.14.已知:|b|=1,b>0,且a,b,c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a,b,c的值(2)a,b,c在数轴上所对应的点分别为A、B、C,在上标出A、B、C(3)点P为一移动的点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(写出化简过程).15.一只蚂蚁从原点O出发,它先向左爬行3个单位长度到达A点,再向左爬行2个单位长度到达B点,再向右爬行7个单位长度到达C点.(1)写出A、B、C三点表示的数,并将它们的位置标注在数轴上;(2)根据C点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?。
七年级数学试题(数轴,相反数,绝对值) 班级___________姓名____________
一、填空题
1.-2的相反数是 ,0.5的相反数是 ,0的相反数是 。
2.如果a 的相反数是-3,那么a = . 如果-a = -4,则a = 3. ―(―2)= . 与―[―(―8)]互为相反数 4.如果 a,b 互为相反数,那么a + b = , 5. a+5的相反数是3,那么, a = .
6.如果 a 的相反数是最大的负整数,b 的相反数是最小的正整数,则 a + b = .
7.一个数的相反数大于它本身,那么,这个数是 .一个数的相反数等于它本身,这个数是 ,一个数的相反数小于它本身,这个数是 . 8. 数轴上表示 -3的点离开原点的距离是_______个单位长度;数轴上与原点相距3个单位长度的点有________个,它们表示的数是_________。
9. a - b 的相反数是 .
10. 一个点从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单
位长度,最后到达的终点所表示的数是 。
11. ______7.3=-; ______0=;
______3.3=--; ______75.0=+-.
______31=+
;______45=--;______3
2
=-+. 12.当a a -=时,0______a ;当0>a 时,______=a 13.在数轴上,绝对值为4,且在原点左边的点表示的有理数为_________ 14.
7=x ,则______=x ; 7=-x ,则______=x .
15. 如果3>a ,则 ______3=-a ,______3=-a .
16. 已知两个数 55
6 和 2
83
-,这两个数的相反数的和是_________ 17. 已知m 是6的相反数,n 比m 的相反数小2,则 m n + 等于_________ 18.互为相反数两数和为 ,互为倒数两数积为 19.把数5-,5.2,2
5-
,0,21
3用“<”号从小到大连起来:
20.绝对值大于1而小于4的整数有 个,分别是________________________
二、选择题
1.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长
度,这时点所对应的数是—————— ( )
A.-3
B.-1
C.-2
D.-4 2.下列几组数中是互为相反数的是 —————— ( ) A ―17 和 0.7 B 13 和 ―0.333 C ―(―6) 和 6 D ―14
和 0.25
3.一个数在数轴上所对应的点向左移6个单位后,得到它的相反数的点,则这个数是( )
A 3
B - 3
C 6
D -6 4.一个数是7,另一个数比它的相反数大3.则这两个数的和是 ———— ( ) A -3 B 3 C -10 D 11
5. 把数轴上表示2的点移动5个单位后,所得的对应点表示的数是————( )
A .7
B .-3
C .7或-3
D .不能确定 6. 下列说法中正确的是……………( )
A .a -一定是负数
B .只有两个数相等时它们的绝对值才相等
C .若b a =则a 与b 互为相反数
D .若一个数小于它的绝对值,则这个数是
负数
7. 给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只
有正数; ③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等. 正确的有…( )
A .0个
B .1个
C .2个
D .3个 8.下列说法正确的是 ——————( ) A .整数就是自然数
B .0不是自然数
C .正数和负数统称为有理数
D .0是整数而不是正数 9.下列说法正确的是 —————— ( )
A.同号两数相加,其和比加数大
B.异号两数相加,其和比两个加数都小
C.两数相加,等于它们的绝对值相加
D.两个正数相加和为正数,两个负数相加和为负数 10.若a a 22-=,则 a 一定是( )
A 、正数
B 、负数
C 、正数或零
D 、负数或零
三、解答题 把下列数表示在数轴上:+2,-1.5,0.5,0,-3.5,4,31
3。