求函数定义域、值域、解析式的方法
- 格式:doc
- 大小:287.50 KB
- 文档页数:6
高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。
解:要使函数有意义,则必须满足x 2 2x 15 0①11 或 x>5。
3且x 11} {x |x 5}。
1例2求函数y '定义域。
*16 x 2解:要使函数有意义,则必须满足sinx 0 ① 16 x 2 0② 由①解得2k x 2k ,k Z ③ 由②解得4x4④由③和④求公共部分,得4 x 或 0 x故函数的定义域为(4, ] (0,]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。
(1)已知f(x)的定义域,求f [g(x)]的定义域。
(2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。
例3已知f(x)的定义域为[—2, 2],求f (x 23 x 3,故函数的定义域是{x |x(2)已知f [g(x)]的定义域,求f(x)的定义域。
其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求g(x)的值域,即所求f(x)的定义域。
例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。
解:因为 1 x 2,2 2x 4,3 2x 1 5。
即函数f(x)的定义域是{x 13 x 5}。
三、逆向型即已知所给函数的定义域求解析式中参数的取值范围。
特别是对于已知定义域为 R ,求参数的范围问题通常是转化为恒成立问题来解决。
例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。
分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项例1求函数y,x 2 2x 15 |x 3| 8 的定义域。
课题7:函数的概念(一)一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。
表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A=∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。
显然,值域是集合B 的子集。
(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;(2)二次函数2y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。
(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。
(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3)满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。
符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。
高一数学求函数的定义域与值域的常用方法求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
求函数定义域(1)函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;(2)常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;(3) 如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;(4)对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;(5)分段函数的定义域是各个区间的并集;(6)含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;(7)求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
求函数的定义域与值域的常用方法在数学中,函数的定义域和值域是非常重要的概念。
定义域是指函数可以接受的输入值的集合,而值域则是函数能够取得的输出值的集合。
正确确定函数的定义域和值域是解决函数相关问题的关键,下面我们将详细介绍求函数定义域和值域的常用方法。
一、函数的定义域的常用方法:1. 显式定义法:对于一些常见的函数,我们可以直接根据其表达式来确定其定义域。
例如,对于一元多项式函数f(x)=ax^n+bx^m+...+c,其定义域可以是实数集或者区间。
2.隐式定义法:对于一些函数可能没有明确的表达式,或者函数的定义域和表达式没有直接的关系,我们可以根据函数的特性和性质来确定其定义域。
例如,对于分式函数f(x)=1/(x-1),我们可以得知分母不能为0,所以其定义域是实数集减去1的那部分实数。
3.已知条件法:有时候我们可以根据函数在一些点的取值情况来确定其定义域。
例如,对于一个连续函数f(x),如果我们知道在一些区间上f(x)恒大于0,那么可以确定该区间为函数的定义域。
4.集合运算法:当函数的定义域可以表示为多个区间或集合的并、交、差等运算时,我们可以利用这些运算来求解函数的定义域。
例如,对于函数f(x)=√(x+1)-√(x-1),我们可以先求出√(x+1)和√(x-1)的定义域,然后求出它们的交集。
二、函数的值域的常用方法:1.考察函数表达式法:对于一些常见的函数,我们可以观察其表达式,根据其中的字母、常数等特性来确定其值域的范围。
例如,对于平方函数f(x)=x^2,我们可以观察到平方函数的输出恒为非负数,所以其值域是[0,+∞)。
2.定义域与函数性质法:当我们已经确定了函数的定义域后,可以根据函数的性质来确定其值域。
例如,对于连续函数f(x)在一些区间上单调增加或者单调减少,我们可以确定函数在该区间上取值范围。
3.极限与极大极小值法:利用函数的极限性质、导数等衍生性质来确定函数的值域。
例如,对于函数f(x)=x^3-3x+2,我们可以求出其导数为f'(x)=3x^2-3,然后根据导数的符号确定函数的单调性和极值点,从而确定其值域。
常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。
定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。
在解析式中,定义域和值域可以通过不同的方法进行求解。
下面是常见的函数解析式定义域和值域求解方法总结。
一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。
2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。
3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。
4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。
5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。
6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。
7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。
二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。
2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。
例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。
3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。
4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。
5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。
常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。
函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。
定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。
常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。
下面将逐个介绍这些函数解析式的定义域和值域的求法。
1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。
线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。
2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。
对于一般的二次函数,定义域是实数集,即(-∞, +∞)。
值域则取决于二次函数的开口方向和开口点的位置。
-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。
-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。
3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。
指数函数的定义域是实数集,即(-∞,+∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,指数函数的值域为(0,+∞)。
-当a>1时,指数函数的值域为(0,+∞)。
-当a=1时,指数函数的值域为{1}。
4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。
对数函数的定义域是正实数集,即(0, +∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,对数函数的值域为(-∞,+∞)。
-当a>1时,对数函数的值域为(-∞,+∞)。
5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的定义域是实数集,即(-∞,+∞)。
值域则取决于具体的三角函数类型。
-正弦函数的值域为[-1,1]。
-余弦函数的值域为[-1,1]。
函数解析式求解常用的方法1. 根据已知点的坐标求解:这是最常见的方法之一,假设已知函数通过点(x1, y1)、(x2, y2)、(x3, y3)等,可以根据这些点的坐标关系列出方程组,然后通过求解方程组的方法得到函数解析式。
例如,已知函数通过点(1, 3)和(2, 5),可以列出方程y=mx+b,然后代入已知点的坐标求解出m和b的值,从而得到函数的解析式。
2. 根据已知函数特点求解:有些函数具有特定的性质和规律,可以通过观察和推导来求解函数解析式。
例如,对于线性函数y=kx+b,可以通过观察斜率k和截距b的特点来确定函数的解析式。
类似地,对于二次函数、指数函数、对数函数等,也可以通过观察其特点来求解函数解析式。
3. 根据函数的定义域和值域求解:定义域是指函数的自变量的取值范围,值域是指函数的因变量的取值范围。
通过分析函数的定义域和值域的特点,可以得到函数解析式的一些限制条件。
例如,对于反三角函数y=sin^(-1)x,其定义域为[-1, 1],值域为[-π/2,π/2],因此函数的解析式必须满足这些条件。
4.根据已知函数的导数求解:导数是函数在其中一点的变化率,通过求解函数的导数可以得到函数的变化趋势和特点。
对于已知函数的导数,可以通过积分的方法求解出函数的解析式。
例如,对于导数为f'(x)的函数f(x),可以通过积分来求解出函数f(x)的解析式。
这是一种比较常用的方法,尤其对于复杂的函数,通过求导和求积分可以得到函数的解析式。
总之,求解函数解析式的方法有很多种,根据不同的函数特点和已知条件选择合适的方法可以更快地得到函数的解析式。
在实际应用中,还可以结合数值计算和图形分析等方法来求解函数解析式,以便更加全面地了解函数的性质和特点。
一. 求函数的解析式一.待定系数法:在已知函数解析式的构造时,可用待定系数法。
1.已知()f x 是一次函数,且[x ]9x 8f f ()=+,求()f x2.已知二次函数()f x 满足:2(1)(1)24f x f x x x ++-=-,求()f x二.配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
1.已知 2()1f x x =-,求2()f x x +2. 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 3.已知3311()f x x x x +=+,求()f x 4.()x f cos 1-=2sin x ,求()f x5.若函数x x x f 2)1(2-=+,则)3(f = .三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
1. 已知x x x f 2)1(+=+,求)1(+x f2 .已知f ⎪⎭⎫ ⎝⎛+x 11=21x — 1,求()f x四、构造方程组消元法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
1. 设,)1(2)()(x xf x f x f =-满足求)(x f 2.()f x 满足:12()()1f x f x x-=+求()f x 3.()f x 满足:()2()32f x f x x --=+,求()f x4、设函数()f x 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求()f x 的解析式.函数的定义域和值域1.求下列函数的定义域:)13lg(13)(2++-=x x x x f y .2. 函数=y R ,则k 的取值范围是( )3.已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。
函数定义域值域的求解方法
专题一:【求定义域】:
1、求下列函数的定义域:
⑴33
y x =
+-
(2) 函数y=
2122--+-+x x x
x
的定义域是( )
(3) 函数6
542
-+--=
x x x y 的定义域是( )
2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1
(2)
f x
+的定义域为 。
专题二:【求值域】:
函数的值域是函数三要素之一,求函数的值域是深入学习函数的基础,它常涉及多种知识的综合应用,下面通过例题讲解,多方探寻值域的途径。
一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)
例1.求函数2+=x y 的值域。
二、配方法(是求二次函数值域的基本方法,如2
()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)
例2.求函数2
42y x x =-++([1,1]x ∈-)的值域。
三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)
例4.求函数125
x
y x -=+的值域。
四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如
y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
例4
.求函数2y x =
五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+
=k x
k
x y 的值域(k x <<0时为减函数;k x >时为增函数)) 例5
.求函数y x =
六、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)
例6.求函数11-++=x x y 的值域。
专题三:【求解析式】:
一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f
二、 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()
g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221
)1(x
x x x f +=+
)0(>x ,求 ()f x 的解析式
三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要
注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f
四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x x
f x f x f =-满足求)(x f
五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行
赋值,使问题具体化、简单化,从而求得解析式。
例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f
练习巩固:
1.函数y=112
2-+
-x x 的定义域是___________
2.函数y=x
x x --22
4的定义域为
3.设函数y=f(x) 的定义域是[0,2], 则f(x-1)的定义域是_______
4、 求下列函数的值域
(1)223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷31
1
x y x -=+ (5)x ≥
⑸
y = ⑹ 22
5941x x y x +=-+
⑺31y x x =-++ ⑻2y x x =-
⑼ y = ⑽ 4y =
⑾y x = (12)22++-=x x y ;
(13)5
48
2+-=
x x y .
5.求解析式:
1)已知函数2
(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2)已知()f x 是二次函数,且2
(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3)已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
求下列函数的单调区间:
1. ⑴ 2
23y x x =++ ⑵223y x x =-++ ⑶ 2
61y x x =--
2、函数()f x 在[0,)+∞上是单调递减函数,则2
(1)f x -的单调递增区间是
3、函数236
x
y x -=
+的递减区间是 ;函数236x y x -=+的递减区间是
4. 下列函数中,在区间
上为增函数的是( ).
A .
B .
C .
D .
5.函数 的增区间是( )。
A .
B .
C .
D .
6. 在
上是减函数,则a 的取值范围是( )。
A .
B .
C .
D .
7.设偶函数)(x f 的定义域为R ,当[)+∞∈,0x 时,)(x f 是增函数,则),2(-f )(πf ,)3(-f 的大小关
系是 ( )
A )2()3()(->->f f f π
B )3()2()(->->f f f π
C )2()3()(-<-<f f f π
D )3()2()(-<-<f f f π
8.已知偶函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1
()3
f 的x 取值范围是 A .(
13,23) B .(∞-,23) C .(12,23) D .⎪⎭
⎫ ⎝⎛+∞,32 9.函数
,当
时,是增函数,当
时是减函数,则
f(1)=_____________ 10.求函数 的单调递减区间.
11.讨论函数322+-=ax x f(x)在(-2,2)内的单调性。
12、求函数12)(2--=ax x x f 在区间[ 0 , 2 ]上的最值
13、若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。