安徽省安庆一中2015-2016学年高一(下)期中数学试卷(解析版)
- 格式:doc
- 大小:500.50 KB
- 文档页数:16
安徽省安庆市高一下数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共3题;共6分)1. (2分) (2017高一上·保定期末) 若tanα<0,cosα<0,则α的终边所有的象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分)函数f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段图象如图所示,则f(x)的解析式为()A .B .C .D .3. (2分)在△ABC中,若,则△ABC是()A . 等腰三角形B . 直角三角形C . 等腰或直角三角形D . 等腰直角三角形二、填空题 (共13题;共17分)4. (1分) (2017高一上·江苏月考) 函数的定义域为________.5. (1分) (2019高一上·金华期末) 已知角的顶点与原点重合,始边与x轴非负半轴重合,终边过点,则 ________.6. (1分) (2016高二上·温州期末) 圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为________.7. (1分) (2016高三上·桓台期中) 在三角形ABC中,acos(π﹣A)+bsin( +B)=0,则三角形的形状为________.8. (1分) (2017高一上·南昌月考) 计算:的结果是________.9. (1分)已知sin2α=,则cos2(α+)=________10. (1分)已知sinα+cosβ=,sinβ﹣cosα=,则sin(α﹣β)=________11. (1分)(2018·南京模拟) 设函数是偶函数,当x≥0时, = ,若函数有四个不同的零点,则实数m的取值范围是________.12. (1分)(2018·朝阳模拟) 已知,函数当时,函数的最大值是________;若函数的图象上有且只有两对点关于轴对称,则的取值范围是________.13. (1分)(2018·湖北模拟) 已知函数在区间上恰有三个零点,则的取值范围是________.14. (1分) (2016高一下·防城港期末) 若函数f(x)=(1+ tanx)cosx,0≤x<,则f(x)的最大值为________.15. (1分) (2020高三上·泸县期末) 若过点可作曲线的切线恰有两条,则的最小值为________16. (5分) (2017高一下·荔湾期末) 与﹣60°角的终边相同的角是()A . 300°B . 240°C . 120°D . 60°三、解答题 (共5题;共50分)17. (5分)(2017·南京模拟) 已知角α的终边上有一点p(1,2),(Ⅰ)求tan()的值;(Ⅱ)求sin(2 )的值.18. (10分)(2018高一下·长春期末) 在中,角所对的边分别为 ,且.(1)求 ;(2)若 ,求的周长.19. (10分)(2013·陕西理) 已知向量 =(cosx,﹣), =( sinx,cos2x),x∈R,设函数f (x)= .(1)求f(x)的最小正周期.(2)求f(x)在[0, ]上的最大值和最小值.20. (10分) (2017高一下·运城期末) 如图,在△ABC中,∠B= ,AB=8,点D在边BC上,且CD=2,cos∠ADC= .(1)求sin∠BAD;(2)求BD,AC的长.21. (15分) (2018高一下·珠海月考) 已知函数,直线是函数的图象的任意两条对称轴,且的最小值为 .(Ⅰ)求的值;(Ⅱ)求函数的单调增区间;(III)若f(α)=,求 sin()的值.参考答案一、单选题 (共3题;共6分)1-1、2-1、3-1、二、填空题 (共13题;共17分)4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共5题;共50分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、。
一、选择题1.(0分)[ID :12427]已知三棱锥A BCD -中,5AB CD ==,2==AC BD ,3AD BC ==,若该三棱锥的四个顶点在同一个球面上,则此球的体积为( ) A .32π B .24π C .6π D .6π2.(0分)[ID :12426]已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 3.(0分)[ID :12411]已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥4.(0分)[ID :12404]已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集。
其中正确的是( )A .(1)(2)(3)B .(1)(4)C .(1)(2)(4)D .(2)(4)5.(0分)[ID :12382]已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为433,则球O 的半径为( ) A .3 B .1 C .2 D .46.(0分)[ID :12381]对于平面、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( ) A .若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα7.(0分)[ID :12373]已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ⊥n ,且n ∥βC .α⊥β,且m ∥αD .m ∥n ,且n ⊥β 8.(0分)[ID :12355]已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x 2y 5+=B .4x 2y 5-=C .x 2y 5+=D .x 2y 5-=9.(0分)[ID :12350]四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,72PA =,若该四棱锥的所有顶点都在同一球面上,则该球的表面积为( )A .812πB .814πC .65πD .652π 10.(0分)[ID :12343]在三棱锥P ABC -中,PA ⊥平面1202,2ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 长度最小值为3,则三棱锥P ABC -的外接球的表面积是( )A .92πB .92πC .18πD .40π11.(0分)[ID :12330]椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )A .312+B .31-C .22D .512- 12.(0分)[ID :12395]正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+2513.(0分)[ID :12390]已知实数,x y 满足250x y ++=,那么22x y +的最小值为( )A .5B .10C .25D .21014.(0分)[ID :12365]如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A .3πB 3C .4πD 3 15.(0分)[ID :12410]已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A .26 B .36 C .23 D .22二、填空题16.(0分)[ID :12458]已知圆22(1)16x y ++=,点(1,0),(1,0)E F -,过(1,0)E -的直线1l 与过(1,0)F 的直线2l 垂直且圆相交于,A C 和,B D ,则四边形ABCD 的面积的取值范围是_________.17.(0分)[ID :12519]已知点1232M N (,),(,),点F 是直线l:3y x =-上的一个动点,当MFN ∠最大时,过点M ,N ,F 的圆的方程是__________.18.(0分)[ID :12484]已知圆O :224x y +=, 则圆O 在点(1,3)A 处的切线的方程是___________.19.(0分)[ID :12464]如图,在△ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .20.(0分)[ID :12444]已知圆22:(2)1M x y +-=,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点,则动弦AB 的中点P 的轨迹方程为__________.21.(0分)[ID :12505]小明在解题中发现函数()32x f x x -=-,[]0,1x ∈的几何意义是:点(),x x []()0,1x ∈与点()2,3连线的斜率,因此其值域为3,22⎡⎤⎢⎥⎣⎦,类似地,他研究了函数()3x g x -=,[]0,1x ∈,则函数()g x 的值域为_____ 22.(0分)[ID :12495]正四棱锥S -ABCD 2S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为______.23.(0分)[ID :12437]在正方体1111ABCD A B C D -中,①BD 平面11CB D ②直线AD 与1CB 所成角的大小为60︒③1AA BD ⊥ ④平面11A BC ∥平面1ACD请把所有正确命题的序号填在横线上________.24.(0分)[ID :12432]如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.25.(0分)[ID :12435]已知直线1:1l y x =-上有两个点11(,)A x y 和22(,)B x y , 且12,x x 为一元二次方程2610x x -+=的两个根, 则过点,A B 且和直线2:1l x =-相切的圆的方程为______________.三、解答题26.(0分)[ID :12557]如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,ABE ∆是等腰直角三角形,AB AE =,FA FE =,45AEF ∠=︒.(1)设线段CD AE 、的中点分别为P M 、,求证://PM 平面BCE ;(2)求二面角F BD A --所成角的正弦值.27.(0分)[ID :12546]已知圆22:20M x y x a +-+=(1)若8a =-,过点(4,5)P 作圆M 的切线,求该切线的方程;(2)当圆22:(1)(23)4N x y ++-=与圆M 相外切时,从点(2,8)Q -射出一道光线,经过y 轴反射,照到圆M 上的一点R ,求光线从点Q 经反射后走到点R 所走过路线的最小值.28.(0分)[ID :12619]如图,三棱柱111ABC A B C -中,平面11AAC C ⊥平面11AA B B ,平面11AAC C ⊥平面ABC ,12AB AC AA ===,点P 、M 分别为棱BC 、1CC 的中点,过点B 、M 的平面交棱1AA 于点N ,使得AP ∥平面BMN .(1)求证:AB ⊥平面11AAC C ;(2)若四棱锥B ACMN -的体积为32,求1A AC ∠的正弦值. 29.(0分)[ID :12618]如图,矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在直线上.求:(1) AD 边所在直线的方程;(2) DC 边所在直线的方程.30.(0分)[ID :12616]如图所示的等腰梯形ABCD 中,//AB CD ,12AB AD BC CD a ====,E 为CD 中点.若沿AE 将三角形DAE 折起,并连接DB ,DC ,得到如图所示的几何体D-ABCE ,在图中解答以下问题:(1)设G 为AD 中点,求证://DC 平面GBE ;(2)若平面DAE ⊥平面ABCE ,且F 为AB 中点,求证:DF AC ⊥.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.B3.C4.C5.C6.C7.D8.B9.B10.C11.B12.A13.A14.A15.A二、填空题16.【解析】【分析】由题可知而过的弦过圆心时最长与垂直时最短据此则可以确定四边形的面积的取值范围【详解】由题知直线过圆心故设圆心到直线的距离为则所以所以四边形的面积;故答案为:【点睛】本题主要考查直线与17.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C(2a)当∠MFN最大时过点MNF的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN<9018.【解析】【分析】先求出kOA=从而圆O在点处的切线的方程的斜率由此能出圆O在点处的切线的方程【详解】kOA=∴圆O在点处的切线的方程的斜率∴圆O在点A处的切线的方程整理得即答案为【点睛】本题考查圆的19.【解析】中因为所以由余弦定理可得所以设则在中由余弦定理可得故在中由余弦定理可得所以过作直线的垂线垂足为设则即解得而的面积设与平面所成角为则点到平面的距离故四面体的体积设因为所以则(1)当时有故此时因20.【解析】【分析】转化条件点三点共线即可得到点满足的条件化简即可得解【详解】由圆的方程可知圆心半径为设点点三点共线可得由相似可得即联立消去并由图可知可得故答案为:【点睛】本题考查了圆的性质和轨迹方程的21.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得22.【解析】如图过S作SO1⊥平面ABCD由已知=1在Rt△SO1C中∵SC=∴∴O1S=O1A=O1B=O1C=O1D故O1是过SABCD点的球的球心∴球的半径为r=1∴球的体积为点睛:与球有关的组合23.①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④【详解】对于①如下图所示由于则四边形为平行四边形则面面所以平面故①正确;24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程25.或【解析】【分析】由题意可知所以中点坐标为圆心在直线的中垂线上故过圆心满足直线设圆心的坐标为由圆与直线相切故由弦长公式可得圆心到直线的距离为由勾股定理可知解得:当时;当时得解【详解】上有两个点和为一三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】作出三棱锥A BCD -的外接长方体AEBF GDHC -,计算出该长方体的体对角线长,即可得出其外接球的半径,然后利用球体体积公式可计算出外接球的体积.【详解】作出三棱锥A BCD -的外接长方体AEBF GDHC -,如下图所示:设DG x =,DH y =,DE z =,则2223AD x z =+=,2224DB y z =+=,2225DC x y =+=,上述三个等式相加得()222222234512AD BD CD x y z ++=++=++=, 2226x y z ++=62R =, 因此,此球的体积为34663ππ⨯=⎝⎭. 故选:C.【点睛】本题考查三棱锥外接球体积的计算,将三棱锥补成长方体,利用长方体的体对角线作为外接球的直径是解题的关键,考查空间想象能力与计算能力,属于中等题. 2.B解析:B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.考点:空间点线面位置关系.3.C解析:C【解析】由题设,,αβ⊥ 则A. 若m α⊂,则m β⊥,错误;B. 若m α⊂,n β⊂,则m n ⊥错误;D. 若m αβ⋂=,n m ⊥,当n β⊄ 时不能得到n α⊥,错误.故选C.4.C解析:C【解析】【分析】根据题意,对每一个选项进行逐一判定,不正确的只需举出反例,正确的作出证明,即可得到答案.【详解】如图(1)所示,在平面内不可能由符合题的点;如图(2),直线,a b 到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图(3),直线,a b 所在平面与已知平面平行,则符合题意的点为一条直线, 综上可知(1)(2)(4)是正确的,故选C.【点睛】本题主要考查了空间中直线与平面之间的位置关系,其中熟记空间中点、线、面的位置关系是解答此类问题的关键,着重考查了空间想象能力,以及推理与论证能力,属于基础题. 5.C解析:C【解析】【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题.【详解】解:根据题意作出图形:设球心为O ,球的半径r .SC OA ⊥,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和.2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯=三棱锥三棱锥三棱锥,2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.6.C解析:C【解析】【分析】【详解】 若由线面垂直的判定定理知,只有当和为相交线时,才有 错误; 若此时由线面平行的判定定理可知,只有当在平面 外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若//αβ,a αγ⋂=,b βγ=,则//a b 为真命题, 正确; 若此时由面面平行的判定定理可知,只有当、为相交线时,才有//,D βα错误.故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系. 7.D解析:D【解析】【分析】根据所给条件,分别进行分析判断,即可得出正确答案.【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立;//m n 且n β⊥⇒m β⊥,故D 成立;故选:D【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.8.B解析:B【解析】【分析】【详解】因为线段AB 的垂直平分线上的点(),x y 到点A ,B 的距离相等, 所以22(1)(2)x y -+-22(3)(1)x y =-+-.即:221244x x y y +-++- 229612x x y y =+-++-,化简得:425x y -=.故选B .9.B解析:B【解析】【分析】根据题意可知,该四棱锥的外接球即为其所在长方体的外接球,根据公式即可求得.【详解】根据题意,为方便说明,在长方体中找出该四棱锥如图所示:由图可知在长方体中的四棱锥P ABCD -完全满足题意,故该四棱锥的外接球即是长方体的外接球,故外接球半径222722294R ⎛⎫++ ⎪⎝⎭==,故该球的表面积为28144S R ππ==. 故选:B . 【点睛】 本题考查四棱锥外接球的问题,关键的步骤是将问题转化为求长方体的外接球. 10.C解析:C【解析】【分析】首先确定三角形ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =, 所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC 为等腰三角形.所以:23BC =在ABC 中,设外接圆的直径为2324r ==, 则:2r =,所以:外接球的半径R ==, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】 本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用.11.B解析:B【解析】【分析】根据椭圆的定义可知12||||2PF PF a +=,又1PF 恰好与圆2F 相切于点P ,可知2||PF c =且12PF PF ⊥,即可列出方程求椭圆的离心率.【详解】由1PF 恰好与圆2F 相切于点P ,可知2||PF c =,且 12PF PF ⊥,又12||||2PF PF a +=,可知1||2PF a c =-,在12Rt PF F ∆中,222(2)4a c c c -+=,即2222a ac c -=所以2220,(0,1)e e e +-=∈,解得212e -==, 故选:B【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,圆的切线的性质,属于中档题. 12.A解析:A【解析】【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4, 所以1122,25,42EF BE C F BC ====所以所求截面的周长为2+5故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.13.A解析:A【解析】22x y +(,)x y 到坐标原点的距离,又原点到直线250x y ++=的距离为225521d ==+22x y +5 A.14.A解析:A【解析】【分析】设BC 的中点是E ,连接DE ,由四面体A′BCD 的特征可知,DE 即为球体的半径.【详解】设BC 的中点是E ,连接DE ,A′E,因为AB =AD =1,BD =2 由勾股定理得:BA⊥AD 又因为BD⊥CD,即三角形BCD 为直角三角形 所以DE 为球体的半径32DE = 234()32S ππ== 故选A【点睛】 求解球体的表面积、体积的问题,其实质是求球体的半径,解题的关键是构造关于球体半径R 的方程式,构造常用的方法是构造直角三角形,再利用勾股定理建立关于半径R 的方程.15.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴116133OO =-=, ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623436S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.二、填空题16.【解析】【分析】由题可知而过的弦过圆心时最长与垂直时最短据此则可以确定四边形的面积的取值范围【详解】由题知直线过圆心故设圆心到直线的距离为则所以所以四边形的面积;故答案为:【点睛】本题主要考查直线与解析:⎡⎤⎣⎦【解析】【分析】由题可知8AC =,而过(1,0)F 的弦BD 过圆心时最长,与EF 垂直时最短,据此则可以确定四边形ABCD 的面积的取值范围.【详解】由题知,直线1l 过圆心(1,0)E -,故8AC =,设圆心(1,0)E -到直线2l 的距离为d ,则02d EF ≤≤=,所以BD ⎡⎤=⎣⎦,所以四边形ABCD 的面积12S AB CD ⎡⎤=⋅⋅∈⎣⎦;故答案为:⎡⎤⎣⎦.【点睛】本题主要考查直线与圆相交时的弦长、面积问题,解题关键是明确:过圆内一点的作弦,弦过圆心时最长,与最长的弦垂直时弦最短.17.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C (2a )当∠MFN 最大时过点MNF 的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN <90解析:22(2)(1)2x y -+-=【解析】【分析】【详解】试题分析:根据题意,设圆心坐标为C (2,a ),当∠MFN 最大时,过点M ,N ,F 的圆与直线y=x-3相切.=,∴a=1或9,a=1时,,∠MCN=90°,∠MFN=45°,a=9时,r=MCN <90°,∠MFN <45°,则所求圆的方程为22(2)(1)2x y -+-=考点:圆的标准方程18.【解析】【分析】先求出kOA=从而圆O 在点处的切线的方程的斜率由此能出圆O 在点处的切线的方程【详解】kOA=∴圆O 在点处的切线的方程的斜率∴圆O 在点A 处的切线的方程整理得即答案为【点睛】本题考查圆的30y +-=【解析】【分析】先求出kOA ,从而圆O 在点(处的切线的方程的斜率k = ,由此能出圆O在点A 处的切线的方程. 【详解】k OA =O 在点(处的切线的方程的斜率k =,∴圆O 在点A (处的切线的方程1y x =-) ,30y +-=.30y +-=.【点睛】本题考查圆的切线方程的求法,属中档题. 19.【解析】中因为所以由余弦定理可得所以设则在中由余弦定理可得故在中由余弦定理可得所以过作直线的垂线垂足为设则即解得而的面积设与平面所成角为则点到平面的距离故四面体的体积设因为所以则(1)当时有故此时因解析:12【解析】 ABC ∆中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠==.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以23AC =. 设AD x =,则023t <<,23DC x =-.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅2234x x =-+. 故2234BD x x =-+.在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2222PD PB BD x x x BPD PD PB x +-+--+∠===⋅⋅⋅, 所以30BPD ∠=.过P 作直线BD 的垂线,垂足为O .设PO d =则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 2112342sin 3022x x d x -+=⋅, 解得2234d x x =-+.而BCD ∆的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=⋅=. 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-+ 21(23)6234x x x x -=-+设22234(3)1t x x x =-+=-+023x ≤≤12t ≤≤.则231x t -=-(1)当03x ≤≤时,有2331x x t ==- 故231x t =-此时,V = 21414()66t t t t-=⋅=-. 214()(1)6V t t=--',因为12t ≤≤, 所以()0V t '<,函数()V t 在[1,2]上单调递减,故141()(1)(1)612V t V ≤=-=.(2x <≤x x =-=故x =此时,V = 21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 20.【解析】【分析】转化条件点三点共线即可得到点满足的条件化简即可得解【详解】由圆的方程可知圆心半径为设点点三点共线可得由相似可得即联立消去并由图可知可得故答案为:【点睛】本题考查了圆的性质和轨迹方程的 解析:2271416x y ⎛⎫+-= ⎪⎝⎭(2)y < 【解析】【分析】转化条件点P 、M 、Q 三点共线、2MQ PM BM ⋅=即可得到点P 满足的条件,化简即可得解.【详解】由圆的方程可知圆心()0,2,半径为1.设点(),P x y ,(),0Q a ,点P 、M 、Q 三点共线, 可得22y x a-=-, 由相似可得2MQ PM BM ⋅=即1=,联立消去a 并由图可知2y <,可得()2271()2416x y y +-=<. 故答案为:()2271()2416x y y +-=< 【点睛】本题考查了圆的性质和轨迹方程的求法,考查了转化能力和运算能力,属于中档题. 21.【解析】【分析】根据斜率的几何意义表示函数图象上的点与点连线的斜率数形结合即可求解【详解】为点与点连线的斜率点在函数图像上在抛物线图象上的最大值为最小值为过点与图象相切的切线斜率设为切线方程为代入得解析:3[2]4+ 【解析】【分析】根据斜率的几何意义,()g x =表示函数y =(2,3)连线的斜率,数形结合,即可求解.【详解】 ()32g x x =-为点(x 与点(2,3)连线的斜率,点([0,1]x x ∈在函数[0,1]y x =∈图像上, (1,1)B 在抛物线图象上,()g x 的最大值为31221AB k -==-, 最小值为过A点与[0,1]y x =∈图象相切的切线斜率,设为k ,切线方程为(2)3y k x =-+,代入[0,1]y x =∈得,320,0,14(32)0kx k k k k --=≠∆=--=,即281210k k -+=,解得34k +=或34k =当k =3[0,1]==-,当k =3[0,1]==+ 不合题意,舍去,()g x值域为2].故答案为:37[,2]4+.【点睛】本题考查函数的值域、斜率的几何意义,考查数形结合思想,属于中档题.22.【解析】如图过S 作SO1⊥平面ABCD 由已知=1在Rt △SO1C 中∵SC =∴∴O1S =O1A =O1B =O1C =O1D 故O1是过SABCD 点的球的球心∴球的半径为r =1∴球的体积为点睛:与球有关的组合解析:43π 【解析】如图,过S 作SO 1⊥平面ABCD ,由已知1112O C AC ==1.在Rt △SO 1C 中, ∵ SC =2 ,∴ 22111SO SC O C =-=,∴ O 1S =O 1A =O 1B =O 1C =O 1D ,故O 1是过S ,A ,B ,C ,D 点的球的球心,∴ 球的半径为r =1,∴ 球的体积为34433r π=π.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.23.①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④【详解】对于①如下图所示由于则四边形为平行四边形则面面所以平面故①正确;解析:①③④【解析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④.【详解】对于①,如下图所示,由于1111,DD BB DD BB =,则四边形11DD B B 为平行四边形,则11D B BD11D B ⊂面11D B C ,BD ⊄面11D B C ,所以BD平面11CB D ,故①正确;对于②,由于AD BC ∥,则直线AD 与1CB 所成角为145B CB ∠=︒,故②错误; 对于③,1AA ⊥面ABCD ,BD ⊂面ABCD ,则1AA BD ⊥,故③正确;对于④,在正方体中,1111,AA CC AA CC =,则四边形11AAC C 为平行四边形 所以1111,AC AC AC ⊄平面1ACD ,AC ⊂平面1ACD ,所以11AC ∥平面1ACD 同理1A B 平面1ACD ,1111111,,AC A B A AC A B ⋂=⊂平面11A BC所以平面11A BC ∥平面1ACD ,故④正确;故答案为:①③④【点睛】本题主要考查了利用判定定理证明线面平行,面面平行,利用线面垂直的性质证明线线垂直,异面直线所成角,属于中档题.24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程 解析:217【分析】推导出CD CA AB BD =++,两边平方可得CD 的长.【详解】二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内, 且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++,∴22()CD CA AB BD =++2222CA AB BD CA BD =+++361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.25.或【解析】【分析】由题意可知所以中点坐标为圆心在直线的中垂线上故过圆心满足直线设圆心的坐标为由圆与直线相切故由弦长公式可得圆心到直线的距离为由勾股定理可知解得:当时;当时得解【详解】上有两个点和为一解析:223(2)16x y -+-=()或2211(6)144x y -++=() 【解析】【分析】由题意可知,126x x +=,124y y +=,所以AB 中点坐标为32(,),圆心在直线AB 的中垂线上,故过圆心满足直线5y x =-+,设圆心的坐标为a 5a -(,),由圆与直线2:1l x =-相切故r a 1=+,由弦长公式可得21218AB k x =+-=,圆心到直线AB 262a -222221r (a 1)2(3)162d AB a =+↔+=-+解得:当3a =时,r 4=;当11a =时,r 11=得解。
2015-2016学年安徽师大附中高一(下)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.向量∥就是所在的直线平行于所在的直线B.共线向量是在一条直线上的向量C.长度相等的向量叫做相等向量D.零向量长度等于02.已知,,则m=()A. B. C.2D.﹣23.在△ABC中,分别根据下列条件解三角形,其中有两个解的是()A.a=7,b=14,A=30°B.a=20,b=26,A=150°C.a=30,b=40,A=30°D.a=72,b=60,A=135°4.已知向量,均为单位向量,它们的夹角为60°,则|2﹣3|等于()A.1B. C. D.5.一个等比数列前n项的和为24,前3n项的和为42,则前2n项的和为()A.36B.34C.32D.306.在△ABC中,若2cosAsinB=sinC,则△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形7.在△ABC中,若sinA=2sinB,cosC=﹣,则=()A. B. C. D.8.若{a n}为等差数列,S n是其前n项和,且S11=π,{b n}为等比数列,b5b7=,则tan(a6+b6)的值为()A. B. C. D.9.已知a,b,c为△ABC的三个内角A,B,C的对边,向量=(﹣1,),=(cosA,sinA).若⊥,且acosB+bcosA=csinC,则角A,B的大小分别为()A., B., C., D.,10.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15km后,看见灯塔在正西方向,则这时船与灯塔的距离是()A.15kmB.30kmC.15kmD.15km11.设正项数列{a n}的前n项和为S n,且满足4S n=a n2+2a n﹣3(n∈N*),则a2016=()A.4029B.4031C.4033D.403512.已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足=λ+μ(1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为4,则ab﹣a﹣b=()A.﹣1B.﹣ C. D.1二、填空题:本大题共4小题,每小题3分,共12分.把答案填在答题卡的相应位置. 13.已知数列{a n}的前n项的和为S n=n2﹣2n+3,则数列的通项公式为.14.已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为.15.△ABC的内角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,a,b,c成等比数列,则sinAsinC= .16.正项数列{a n}的前n项和为S n,且2S n=a n2+a n(n∈N*),设c n=(﹣1)n,则数列{c n}的前2017项的和为.三、解答题:本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知,、、同一平面内的三个向量,其中=(2,1).(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.18.如图,D是直角三角形△ABC斜边BC上一点,AC=DC.(1)若∠DAC=,求角B的大小;(2)若BD=2DC,且AD=2,求DC的长.19.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=1,S5=25.(1)求{a n}和{b n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.20.在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;(2)求AB边上的中线长的取值范围.21.已知数列{a n}满足a1=9,a n+1=a n+2n+5;数列{b n}满足b1=,b n+1=b n(n≥1).(1)求a n,b n;(2)记数列{}的前n项和为S n,证明:≤S n<.22.设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若=λ,=μ.(1)求+的值;(2)求λμ的取值范围.2015-2016学年安徽师大附中高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法正确的是()A.向量∥就是所在的直线平行于所在的直线B.共线向量是在一条直线上的向量C.长度相等的向量叫做相等向量D.零向量长度等于0【分析】利用共线向量、相等向量的定义即可判断出正误.【解答】解:A:向量∥就是所在的直线平行于所在的直线,不正确;B:共线向量是在一条直线上的向量,不正确;C:长度相等的向量叫做相等向量,不正确;D:零向量长度等于0,正确;故选:D.【点评】本题考查了共线向量、相等向量的定义,考查了理解能力,属于基础题.2.已知,,则m=()A. B. C.2D.﹣2【分析】根据向量的坐标运算和向量的平行的条件计算即可.【解答】解:∵,,∴2×(﹣1)=1×m,∴m=﹣2,故选:D.【点评】本题考查了向量的坐标运算和向量平行的条件,属于基础题.3.在△ABC中,分别根据下列条件解三角形,其中有两个解的是()A.a=7,b=14,A=30°B.a=20,b=26,A=150°C.a=30,b=40,A=30°D.a=72,b=60,A=135°【分析】由正弦定理可得sinB=,根据条件求得sinB的值,根据b与a的大小判断角B的大小,从而判断△ABC的解的个数.【解答】解:对于A:∵a=7,b=14,A=30°,∴由正弦定理得:sinB===1,又B为三角形的内角,∴B=90°,故只有一解,本选项不合题意;对于B:∵a=20,b=26,A=150°,∴由正弦定理得:sinB===,又b>a,故 B>A,A为钝角,故△ABC不存在;对于C:∵a=30,b=40,A=30°,有=,∴sinB=,又b>a,故B>A,故B可以是锐角,也可以是钝角,故△ABC有两个解.对于D:∵a=72,b=60,A=135°,由正弦定理得:sinB===,又b<a,故B<A,故B为锐角,故△ABC有唯一解.故选:C.【点评】此题属于解三角形的题型,涉及的知识有:正弦定理,三角形的边角关系,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.4.已知向量,均为单位向量,它们的夹角为60°,则|2﹣3|等于()A.1B. C. D.【分析】将所求平方展开,转化为向量,的运算解答.【解答】解:因为向量,均为单位向量,它们的夹角为60°,所以,所以|2﹣3|2==4+9﹣6=7,所以|2﹣3|=;故选D.【点评】本题考查了平面向量的运算;有数量积的公式运用.属于基础题.5.一个等比数列前n项的和为24,前3n项的和为42,则前2n项的和为()A.36B.34C.32D.30【分析】由等比数列的性质得S n,S2n﹣S n,S3n﹣S2n仍成等比数列,由等比中项的性质列出方程代值计算即可.【解答】解:由题意可得S n=24,S3n=42,∵S n,S2n﹣S n,S3n﹣S2n仍成等比数列,∴(S2n﹣S n)2=S n(S3n﹣S2n),代入数据可得,(S2n﹣24)2=24(42﹣S2n),解得S2n=36,故选:A.【点评】本题考查等比数列(公比q不为﹣1)的性质:S n,S2n﹣S n,S3n﹣S2n仍成等比数列,以及等比中项的性质,属基础题.6.在△ABC中,若2cosAsinB=sinC,则△ABC的形状一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【分析】利用内角和定理及诱导公式得到sinC=sin(A+B),利用两角和与差的正弦函数公式化简,代入已知等式变形再利用两角和与差的正弦函数公式化简,得到A﹣B=0,即A=B,即可确定出三角形形状.【解答】解:∵在△ABC中,sinC=sin(A+B)=sinAcosB+cosAsinB,∴2cosAsinB=sinC=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∴A﹣B=0,即A=B,则△ABC为等腰三角形.故选:A.【点评】此题考查了两角和与差的正弦函数公式,诱导公式,以及等腰三角形的判定,熟练掌握公式是解本题的关键.7.在△ABC中,若sinA=2sinB,cosC=﹣,则=()A. B. C. D.【分析】利用正弦定理可得b=a,利用余弦定理,代入可得a,c的关系,即可得出结论.【解答】解:∵sinA=2sinB,∴a=2b,∴b= a∵cosC=﹣,∴=﹣,∴=﹣,∴a2=,∴=.故选:C.【点评】本题考查正弦、余弦定理的运用,考查学生的计算能力,正确运用正弦、余弦定理是关键.8.若{a n}为等差数列,S n是其前n项和,且S11=π,{b n}为等比数列,b5b7=,则tan(a6+b6)的值为()A. B. C. D.【分析】分别利用等差数列与等比数列的通项公式性质及其求和公式即可得出.【解答】解:∵S11==11a6=,解得a6=.∵{b n}为等比数列,b5b7==,解得b6=,∴tan(a6+b6)=.故选:C.【点评】本题考查了等差数列与等比数列的通项公式性质及其求和公式,考查了推理能力与计算能力,属于中档题.9.已知a,b,c为△ABC的三个内角A,B,C的对边,向量=(﹣1,),=(cosA,sinA).若⊥,且acosB+bcosA=csinC,则角A,B的大小分别为()A., B., C., D.,【分析】根据向量数量积判断向量的垂直的方法,可得﹣cosA+sinA=0,分析可得A,再根据正弦定理可得,sinAcosB+sinBcosA=sin2C,有和差公式化简可得sinC=sin2C,可得C,再根据三角形内角和定理可得B,进而可得答案.【解答】解:∵根据题意,⊥,可得=0,即﹣cosA+sinA=0,可得:2sin(A﹣)=0,∵A∈(0,π),A﹣∈(﹣,),∴解得:A=,又∵acosB+bcosA=csinC,∴由正弦定理可得,sinAcosB+sinBcosA=sin2C,∴sinAcosB+sinBcosA=sin(A+B)=sinC=sin2C,∵sinC≠0,可得:sinC=1,又C∈(0,π),∴C=,∴B=.故选:A.【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,向量数量积的应用,判断向量的垂直,解题时要注意向量的正确表示方法,属于中档题.10.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15km后,看见灯塔在正西方向,则这时船与灯塔的距离是()A.15kmB.30kmC.15kmD.15km【分析】做出示意图,利用正弦定理求出.【解答】解:设船开始位置为A,最后位置为C,灯塔位置为B,则∠BAC=30°,∠ABC=120°,AC=15,由正弦定理得,即,解得BC=15.故选:D.【点评】本题考查了正弦定理,解三角形的应用,属于中档题.11.设正项数列{a n}的前n项和为S n,且满足4S n=a n2+2a n﹣3(n∈N*),则a2016=()A.4029B.4031C.4033D.4035【分析】4S n=a n2+2a n﹣3(n∈N*),n≥2时,利用递推关系化为:(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,由a n+a n﹣1>0,可得a n﹣a n﹣1=2,再利用等差数列的通项公式即可得出.【解答】解:∵4S n=a n2+2a n﹣3(n∈N*),∴n=1时,4a1=+2a1﹣3,又a1>0,解得a1=3.n≥2时,4a n=4(S n﹣S n﹣1)=a n2+2a n﹣3﹣,化为:(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n+a n﹣1>0,∴a n﹣a n﹣1=2,∴数列{a n}是等差数列,公差为2,首项为3.则a2016=3+2(2016﹣1)=4033.故选:C.【点评】本题考查了等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.12.已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足=λ+μ(1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为4,则ab﹣a﹣b=()A.﹣1B.﹣ C. D.1【分析】延长AB到点N,延长AC到点M,使得|AN|=a|AB|,|AM|=b|AC|,作CH∥AN,BF∥AM,NG∥AM,MG∥AN,则四边形ABEC,ANGM,EHGF均为平行四边形.由题意可知:点P(x,y)组成的区域D为图中的四边形EFGH及其内部.利用向量的夹角公式可得cos∠CAB=,利用四边形EFGH的面积S=(a﹣1)×(b﹣1)××=4,求出ab﹣a﹣b的值即可.【解答】解:如图所示:,延长AB到点N,延长AC到点M,使得|AN|=a|AB|,|AM|=b|AC|,作CH∥AN,BF∥AM,NG∥AM,MG∥AN,则四边形ABEC,ANGM,EHGF均为平行四边形.由题意可知:点P(x,y)组成的区域D为图中的四边形EFGH及其内部.∵=(3,1),=(1,3),=(﹣2,2),∴||=,||=,||=2,∴cos∠CAB===,sin∠CAB=,∴四边形EFGH的面积S=(a﹣1)×(b﹣1)××=4,∴(a﹣1)(b﹣1)=,即ab﹣a﹣b=﹣,故选:B.【点评】本题考查了向量的夹角公式、数量积运算性质、平行四边形的面积计算公式、基本不等式的性质,考查了数形结合的思想方法,考查了推理能力与计算能力.二、填空题:本大题共4小题,每小题3分,共12分.把答案填在答题卡的相应位置. 13.已知数列{a n}的前n项的和为S n=n2﹣2n+3,则数列的通项公式为.【分析】首先根据S n=n2﹣2n+3求出a1的值,然后利用a n=S n﹣S n﹣1求出当n>2时,a n的表达式,然后验证a1的值,最后写出a n的通项公式.【解答】解:∵S n=n2﹣2n+3,a1=2,∴a n=S n﹣S n﹣1=n2﹣2n+3﹣[(n﹣1)2﹣2(n﹣1)+3]=2n﹣3(n>1),∵当n=1时,a1=﹣1≠2,∴,故答案为【点评】本题主要考查数列递推式的知识点,解答本题的关键是利用a n=S n﹣S n﹣1(n≥2)进行解答,此题难度不大,很容易进行解答14.已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为.【分析】根据向量的坐标公式以及向量投影的定义进行求解即可.【解答】解:∵点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),∴向量=(5,5),=(2,1),则向量在方向上的投影为===故答案为:.【点评】本题主要考查向量投影的计算,根据向量投影的定义以及向量数量积的公式进行求解是解决本题的关键.15.△ABC的内角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,a,b,c成等比数列,则sinAsinC= .【分析】依题意,可求得B=,利用正弦定理即可求得sinAsinC;另解,求得B=,利用余弦定理=cosB可求得a2+c2﹣ac=ac,从而可求得答案.【解答】解:∵△ABC中,A,B,C成等差数列,∴2B=A+C,又A+B+C=π,∴B=,…(6分)又b2=ac,由正弦定理得sinAsinC=sin2B=…(12分)另解:b2=ac, =cosB==,…(6分)由此得a2+c2﹣ac=ac,得a=c,所以A=B=C,sinAsinC=.…(12分)【点评】本题考查正弦定理与余弦定理,熟练掌握两个定理是灵活解题的关键,属于中档题.16.正项数列{a n}的前n项和为S n,且2S n=a n2+a n(n∈N*),设c n=(﹣1)n,则数列{c n}的前2017项的和为﹣.【分析】利用a n=S n﹣S n﹣1判断{a n}为等差数列,得出{a n}的通项公式,从而得出c n的通项公式,使用列项法求和.【解答】解:当n=1时,2a1=a12+a1,∴a1=1或a1=0(舍).当n≥2时,2a n=2S n﹣2S n﹣1=a n2+a n﹣a n﹣12﹣a n﹣1,∴a n+a n﹣1=a2﹣a n﹣12=(a n+a n﹣1)(a n﹣a n﹣1).∵a n+a n﹣1≠0,∴a n﹣a n﹣1=1,∴{a n}是以1为首项,以1为公差的等差数列.∴a n=n,2S n=n2+n.∴c n=(﹣1)n=(﹣1)n().设c n的前n项和为T n,则T2017=﹣1﹣+﹣+…﹣﹣=﹣1﹣=﹣.故答案为:.【点评】本题考查了等差关系的判定,等差数列的通项公式及裂项求和,属于中档题.三、解答题:本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.17.已知,、、同一平面内的三个向量,其中=(2,1).(1)若||=2,且∥,求的坐标;(2)若||=,且+2与2﹣垂直,求与的夹角θ.【分析】(1),根据向量的平行和向量的模得到关于x,y的方程组,解得即可,(2)根据向量的垂直和向量的夹角公式,即可求出.【解答】解:(1),∵,∴,∴x2+y2=20.∵,∴x﹣2y=0,∴x=2y,,∴=(﹣4,﹣2)或, =(4,2)(2)∵,∴,∴,,∴,∴θ=π.【点评】本题考查平面向量的坐标运算和数量积判断两个平面垂直的条件的灵活运用,是基础题.解题时要认真审题,仔细解答.18.如图,D是直角三角形△ABC斜边BC上一点,AC=DC.(1)若∠DAC=,求角B的大小;(2)若BD=2DC,且AD=2,求DC的长.【分析】(1)根据正弦定理即可求出,(2)根据余弦地理和同角的三角函数的关系即可求出.【解答】解:(1)在△ABC中,根据正弦定理,有.∵,∴.又,∴,∴,∴;(2)设DC=x,则,∴.在△ABD中,AD2=AB2+BD2﹣2ABBDcosB,即,得.故.【点评】本题考查了正弦定理余弦定理的应用,以及解三角形的问题,属于中档题.19.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=1,S5=25.(1)求{a n}和{b n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.【分析】(1)根据等差数列,等比数列的通项公式,求和公式列方程解出公差与公比,得出通项公式;(2)使用错位相减法求和.【解答】解:(1)设{a n}的公比为q,数列{b n}的公差为d,a6=a1q5=q5=243,S5=5b1+=5+10d=25,解得q=3,d=2.∴.b n=1+2(n﹣1)=2n﹣1.(2)∵T n=a1b1+a2b2+…+a n b n,∴,①∴,②①﹣②得:,∴T n=(n﹣1)×3n+1.【点评】本题考查了等差数列,等比数列的性质,错位相减法数列求和,属于中档题.20.在△ABC中,角A,B,C对应边分别是a,b,c,c=2,sin2A+sin2B﹣sin2C=sinAsinB.(1)若sinC+sin(B﹣A)=2sin2A,求△ABC面积;(2)求AB边上的中线长的取值范围.【分析】(1)已知等式利用正弦定理化简,再利用余弦定理表示出cosC,将得出关系式代入求出cosC的值,确定出C的度数,sinC+sin(B﹣A)=2sin2A化简后,根据cosA为0与cosA不为0两种情况,分别求出三角形ABC面积即可;(2)根据CD为AB边上的中线,得到=,两边平方并利用平面向量的数量积运算法则变形得到关系式,利用余弦定理列出关系式,将cosC与c的值代入得到关系式,代入计算即可确定出|CD|的范围.【解答】解:(1)由sin2A+sin2B﹣sin2C=sinAsinB,利用正弦定理化简得:a2+b2﹣c2=ab,∴cosC===,即C=,∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A,∴sinBcosA=2sinAcosA,当cosA=0,即A=,此时S△ABC=;当cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,此时此时S△ABC=;(2)∵=,∴|CD|2==,∵cosC=,c=2,∴由余弦定理得:c2=a2+b2﹣2abcosC,即a2+b2﹣ab=4,∴|CD|2==>1,且|CD|2=≤3,则|CD|的范围为(1,].【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,熟练掌握定理是解本题的关键.21.已知数列{a n}满足a1=9,a n+1=a n+2n+5;数列{b n}满足b1=,b n+1=b n(n≥1).(1)求a n,b n;(2)记数列{}的前n项和为S n,证明:≤S n<.【分析】(1)利用数列的递推关系,利用累加法和累积法进行求解即可.(2)求出数列{}的通项公式,利用裂项法进行求解,结合不等式的性质进行证明即可.【解答】解:(1)由a n+1=a n+2n+5得a n+1﹣a n=2n+5,则a2﹣a1=7,a3﹣a2=9,…a n﹣1﹣a n﹣2=2(n﹣2)+5,a n﹣a n﹣1=2(n﹣1)+5=2n+3等式两边同时相加得a n﹣a1=×(n﹣1)=(5+n)(n﹣1)=n2+4n﹣5,则a n=a1+n2+4n﹣5=n2+4n﹣5+9=n2+4n+4,所以数列{a n}的通项公式为.又∵,,∴,∴,,,…,,将上述(n﹣1)个式子相乘,得,即.…(5分)(2)∵.∵=,,∴【点评】本题主要考查递推数列的应用以及数列求和,利用累加法,累积法,以及裂项法求出数列的通项公式是解决本题的关键.22.设G为△ABC的重心,过G作直线l分别交线段AB,AC(不与端点重合)于P,Q.若=λ,=μ.(1)求+的值;(2)求λμ的取值范围.【分析】(1)用,表示出,,根据P,Q,G三点共线得出λ,μ的关系;(2)用λ表示出μ,令λ,μ∈(0,1)得出λ的范围,则λμ可表示为关于λ的函数,求出该函数的最值即可.【解答】解:(1)连接AG并延长,交BC于M,则M是BC的中点,设,,,∴.∵P,G,Q三点共线,故存在实数t,使,∴,∴;(2)由(1)得μ=,∵λ,μ∈(0,1),∴,解得<λ<1.∴1<.∴λμ===.∴当时,λμ取得最小值,当=1或2时,λμ取得最大值.∴λμ的取值范围是[,).【点评】本题考查了平面向量的基本定理,不等式的解法,根据图形寻找向量的关系是关键.。
2015-2016学年高一(下)期中考试数学试题(文科含答案)一、选择题:(每小题5分,共60分,把正确答案涂在机读卡上才能得分)1.已知{an}是等比数列,a1=8,a4=1,则公比q=( )A.﹣B.﹣2 C.2 D.2.设a,b,c∈R,且a>b,则( )A.ac>bc B.a2>b2 C.a3>b3 D.<3.在△ABC中,a=1,b=6,C=60°,则三角形的面积为( )A.B.C.3 D.34.某单位有职工750人,其中青年职工420人,中年职工210人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为( )A.7 B.15 C.25 D.355.在△ABC中,a,b,c分别为角A,B,C所对的边,若a2<b2﹣c2,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.实数x,y满足的不等式组所表示的平面区域面积为( )A.B.1 C.2 D.47.阅读如图的程序框图,则输出的S=( )A.14 B.20 C.30 D.558.根据三个点(0,2),(4,4),(8,9)的坐标数据,求得的回归直线方程是( ) A.=3x﹣1 B.=x+ C.=x+2 D.=x+9.在等差数列{an}中,a1,a2015为方程x2﹣20x+16=0的两根,则a2+a1008+a2014=( ) A.40 B.36 C.30 D.2410.下列各函数中,最小值为4的是( )A.y=x+B.y=sinx+,x∈(0,)C.y=D.y=+﹣211.在100m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°、60°,则塔高为( )A.m B.m C.m D.m12.如图,由若干圆点组成如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N)个点,每个图形总的点数记为an,则=( )A.B.C.D.二、填空题:(每小题5分,共20分,把正确答案写在答题卡上才能得分)13.已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[80,100]内的频数为__________.14.在△ABC中,内角A,B,C所对的边分别为a,b,c,a=1,b=,B=60°,则角A的大小为__________.15.设数列{an}满足an+1=,若a1=,则a2015=__________.16.已知x>0,y>0,=2,若x+y>3m2+m恒成立,则实数m的取值范围用区间表示为__________.三、解答题:(共70分,在答题卡上写出必要的求解或证明步骤才能得分)17.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:每户丢弃旧塑料袋个数 2 3 4 5户数10 10 20 10(1)求这50户居民每天丢弃旧塑料袋的平均数;(2)求这50户居民每天丢弃旧塑料袋的方差.18.解不等式:x2+(1﹣a)x﹣a≤0.19.公差不为零的等差数列{an}中,a3=9且a3,a6,a10成等比数列,(1)求数列{an}的通项公式;(2)求前27项的和S27.20.在△ABC中,角A,B,C所对的边分别为a,b,c且csinB=bcosC=3.(1)求角C;(2)若△ABC的面积为9,求边c.21.某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.用煤(吨)用电(千瓦)产值(万元)甲产品 3 50 12乙产品7 20 8但国家每天分配给该厂的煤、电有限,每天供煤至多47吨,供电至多300千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?22.已知数列{an}满足:a1=1,an+1﹣ansin2θ=sin2θ•cos2nθ.(Ⅰ)当θ=时,求数列{an}的通项公式;(Ⅱ)在(Ⅰ)的条件下,若数列{bn}满足bn=sin,Sn为数列{bn}的前n项和,求证:对任意n∈N*,Sn<3+.高一(下)期中数学试卷(文科)一、选择题:(每小题5分,共60分,把正确答案涂在机读卡上才能得分)1.已知{an}是等比数列,a1=8,a4=1,则公比q=( )A.﹣B.﹣2 C.2 D.【考点】等比数列的通项公式.【专题】方程思想;综合法;等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:∵{an}是等比数列,a1=8,a4=1,∴1=8×q3,解得q=.故选:D.【点评】本题考查了等比数列的通项公式,考查了推理能力与计算能力,属于中档题.2.设a,b,c∈R,且a>b,则( )A.ac>bc B.a2>b2 C.a3>b3 D.<【考点】不等式的基本性质.【专题】计算题;不等式的解法及应用.【分析】利用不等式的基本性质,可得结论.【解答】解:对于A,满足c≤0时成立;对于B,a=1,b=﹣1,结论不成立;对于C,正确;对于D,a=1,b=﹣1,结论不成立.故选:C.【点评】本题考查不等式的基本性质,比较基础.3.在△ABC中,a=1,b=6,C=60°,则三角形的面积为( )A.B.C.3 D.3【考点】三角形的面积公式;三角形中的几何计算;解三角形.【专题】计算题;规律型;综合法;解三角形.【分析】利用已知条件直接求解三角形的面积即可.【解答】解:在△ABC中,a=1,b=6,C=60°,则三角形的面积S===.故选:B.【点评】本题考查三角形的面积的求法,考查计算能力.4.某单位有职工750人,其中青年职工420人,中年职工210人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为( )A.7 B.15 C.25 D.35【考点】分层抽样方法.【专题】计算题;对应思想;概率与统计.【分析】根据已知计算出抽样比,可得答案.【解答】解:由青年职工420人,样本中的青年职工为14人,故抽样比k==,故样本容量为:750×=25,故选:C【点评】本题考查的知识点是分层抽样的方法,计算出抽样比,是解答的关键.5.在△ABC中,a,b,c分别为角A,B,C所对的边,若a2<b2﹣c2,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形的形状判断.【专题】计算题;转化思想;分析法;解三角形.【分析】由条件利用余弦定理求得cosB=<0,故B为钝角,从而判断△ABC 的形状.【解答】解:△ABC中,由a2<b2﹣c2,可得a2+c2<b2 可得 cosB=<0,故B为钝角,故△ABC的形状是钝角三角形,故选:C.【点评】本题主要考查余弦定理的应用,判断三角形的形状的方法,属于中档题.6.实数x,y满足的不等式组所表示的平面区域面积为( )A.B.1 C.2 D.4【考点】简单线性规划.【专题】作图题;对应思想;数形结合法;不等式的解法及应用.【分析】由约束条件作出可行域,联立方程组求出三角形三个顶点的坐标,进一步得到两直角边的长度,代入三角形面积公式得答案.【解答】解:由约束条件作出可行域如图,A(1,1),联立,得B(2,1),联立,得C(1,2),∴|AB|=1,|AC|=1,则.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.7.阅读如图的程序框图,则输出的S=( )A.14 B.20 C.30 D.55【考点】程序框图.【专题】计算题;图表型;数形结合;分析法;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=4时不满足条件i≤3,退出循环,输出S的值为14.【解答】解:模拟执行程序框图,可得S=0,i=1S=1,i=2满足条件i≤3,S=5,i=3满足条件i≤3,S=14,i=4不满足条件i≤3,退出循环,输出S的值为14.故选:A.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的S,i的值是解题的关键,属于基础题.8.根据三个点(0,2),(4,4),(8,9)的坐标数据,求得的回归直线方程是( )A.=3x﹣1 B.=x+ C.=x+2 D.=x+【考点】线性回归方程.【专题】计算题;转化思想;概率与统计.【分析】根据已知中的数据,求出样本数据中心点,可得答案.【解答】解:∵=4,=5,故回归直线方程必过(4,5)点,故A错误;B正确,C错误,D错误,故选:B【点评】本题考查的知识点是线性回归方程,正确理解线性回归方程必过数据样本中心点是解答的关键.9.在等差数列{an}中,a1,a2015为方程x2﹣20x+16=0的两根,则a2+a1008+a2014=( ) A.40 B.36 C.30 D.24【考点】等差数列的性质.【专题】方程思想;转化思想;等差数列与等比数列.【分析】利用一元二次方程的根与系数的关系可得:a1+a2015=20,再利用等差数列的性质即可得出.【解答】解:∵a1,a2015为方程x2﹣20x+16=0的两根,∴a1+a2015=20=2a1008.则a2+a1008+a2014=3a1008=30.故选:C.【点评】本题考查了一元二次方程的根与系数的关系、等差数列的性质,考查了推理能力与计算能力,属于中档题.10.下列各函数中,最小值为4的是( )A.y=x+B.y=sinx+,x∈(0,)C.y=D.y=+﹣2【考点】函数最值的应用.【专题】计算题;函数思想;转化思想;函数的性质及应用;不等式的解法及应用.【分析】利用函数的性质以及基本不等式求解即可.【解答】解:y=x+中,x≠0,所以最小值不为4.y=sinx+=sinx+≥5,x∈(0,),最小值不是4.y=,最小值不是4;y=+﹣2≥﹣2=4,当且仅当x=9时取等号.满足题意.故选:D.【点评】本题考查函数的最值以及基本不等式的应用,考查计算能力.11.在100m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°、60°,则塔高为( )A.m B.m C.m D.m【考点】解三角形的实际应用.【专题】应用题;方程思想;综合法;解三角形.【分析】如图,设AB为山,CD为塔,Rt△ABD中利用正弦的定义,算出BD=200m.在△BCD 中,得到∠C=120°、∠DBC=30°,利用正弦定理列式,解出CD即为塔高.【解答】解:如图,设AB为山,CD为塔,则Rt△ABD中,∠ADB=60°,AB=100m,∴sin∠ADB==,得BD=200m在△BCD中,∠BDC=90°﹣60°=30°,∠DBC=60°﹣30°=30°,∴∠C=180°﹣30°﹣30°=120°由正弦定理,得CD==m,即塔高为m.故选:D.【点评】本题给出实际问题,求距离山远处的一个塔的高,着重考查了直角三角形三角函数的定义和正弦定理解三角形等知识,属于基础题.12.如图,由若干圆点组成如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N)个点,每个图形总的点数记为an,则=( )A.B.C.D.【考点】归纳推理.【专题】推理和证明.【分析】根据图象的规律可得出通项公式an,根据数列{}的特点可用列项法求出=,将n=2014代入可得答案.【解答】解:每个边有n个点,把每个边的点数相加得3n,这样角上的点数被重复计算了一次,故第n个图形的点数为3n﹣3,即an=3n﹣3,令Sn==++…+=1﹣+﹣+…+﹣=1﹣=,∴=,故选:B【点评】本题主要考查等差数列的通项公式和求和问题.属基础题.二、填空题:(每小题5分,共20分,把正确答案写在答题卡上才能得分)13.已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[80,100]内的频数为35.【考点】频率分布直方图.【专题】转化思想;数形结合法;概率与统计.【分析】求出[80,100]内的频率即最后两组的直方图面积和,乘上样本容量即可.【解答】解:[80,100]内的频率为0.025×10+0.010×10=0.35,∴[80,100]内的频数为0.35×100=35.故答案为35.【点评】本题考查了频率分布直方图知识,是基础题.14.在△ABC中,内角A,B,C所对的边分别为a,b,c,a=1,b=,B=60°,则角A的大小为30°.【考点】正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由已知及正弦定理可得sinA=,利用大边对大角可得A为锐角,即可解得A的值.【解答】解:∵a=1,b=,B=60°,∴由正弦定理可得:sinA===.∵a=1<b=,A为锐角.∴解得:A=30°.故答案为:30°.【点评】本题主要考查了正弦定理,大边对大角等知识的应用,属于基本知识的考查.15.设数列{an}满足an+1=,若a1=,则a2015=.【考点】数列递推式.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】数列{an}满足an+1=,可得a1=,a2=,a3=,a4=.…,an+3=an.即可得出.【解答】解:∵数列{an}满足an+1=,∵a1=,∴a2=2a1﹣1=,a3=2a2=,a4=2a4=.…,各项值成周期为3重复出现∴an+3=an.则a2015=a3×671+2=.故答案为:.【点评】本题考查了数列的周期性、分段函数的性质,考查了推理能力与计算能力,属于中档题.16.已知x>0,y>0,=2,若x+y>3m2+m恒成立,则实数m的取值范围用区间表示为(﹣1,).【考点】基本不等式;函数恒成立问题.【专题】转化思想;函数的性质及应用;不等式的解法及应用.【分析】首先,根据已知条件,转化为(x+y)min>3m2+m,然后得到x+y=×2×(x+y)=(x+y)(+),再结合基本不等式确定其最值即可.【解答】解:∵x>0,y>0,x+y>3m2+m恒成立,∴(x+y)min>3m2+m,∵x+y=×2×(x+y)=(x+y)(+)=(2++)≥(2+2)=2,∴3m2+m<2,∴﹣1<m<.故答案为:(﹣1,).【点评】本题重点考查了基本不等式及其灵活运用,注意基本不等式的适应关键:一正、二定(定值)、三相等(即验证等号成立的条件),注意给条件求最值问题,一定要充分利用所给的条件,作出适当的变形,然后,巧妙的利用基本不等式进行处理,这也是近几年常考题目,复习时需要引起高度关注.三、解答题:(共70分,在答题卡上写出必要的求解或证明步骤才能得分)17.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:每户丢弃旧塑料袋个数 2 3 4 5户数10 10 20 10(1)求这50户居民每天丢弃旧塑料袋的平均数;(2)求这50户居民每天丢弃旧塑料袋的方差.【考点】离散型随机变量的期望与方差.【专题】计算题;对应思想;数学模型法;概率与统计.【分析】(1)直接由图表中给出的数据代入求平均数公式得答案;(2)由图表中给出的数据结合(1)中的平均数代入方差公式求方差.【解答】解:(1)由图表可得,平均数;(2).【点评】本题考查离散型随机变量的期望与方差,是基础的计算题.18.解不等式:x2+(1﹣a)x﹣a≤0.【考点】一元二次不等式的解法.【专题】分类讨论;分类法;不等式的解法及应用.【分析】把不等式化为(x+1)(x﹣a)≤0,求出对应方程的实数根,讨论a的值,写出不等式的解集.【解答】解:不等式x2+(1﹣a)x﹣a≤0可化为(x+1)(x﹣a)≤0,该不等式对应方程的实数根为﹣1和a;①当a>﹣1时,不等式解集为[﹣1,a],②当a=﹣1时,不等式解集为{﹣1},③当a<﹣1时,不等式解集为[a,﹣1].【点评】本题考查了含有字母系数的一元二次不等式的解法与应用问题,是基础题目.19.公差不为零的等差数列{an}中,a3=9且a3,a6,a10成等比数列,(1)求数列{an}的通项公式;(2)求前27项的和S27.【考点】等差数列与等比数列的综合.【专题】方程思想;待定系数法;等差数列与等比数列.【分析】(1)设公差为d(d≠0),运用等差数列的通项公式和等比数列的性质,解方程可得d=1,即可得到所求通项公式;21·世纪*教育网(2)运用等差数列的求和公式,计算即可得到所求值.【解答】解:(1)设公差为d(d≠0),由题意得a62=a3a10,a3=9,则(9+3d)2=9(9+3d)得d=1,则an=a3+(n﹣3)d=9+n﹣3=n+6;(2)前27项的和S27=27a1+×27×26×1=27×7+27×13=540.【点评】本题考查等差数列的通项公式和求和公式的运用,以及等比数列的性质,考查运算能力,属于基础题.20.在△ABC中,角A,B,C所对的边分别为a,b,c且csinB=bcosC=3.(1)求角C;(2)若△ABC的面积为9,求边c.【考点】正弦定理;余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)由正弦定理化简已知等式可得tanC=,结合范围C∈(0,π),即可解得C的值.(2)由已知及三角形面积公式可求a,由(1)得b的值,由余弦定理可求c的值.【解答】解:(1)由csinB=bcosC,得sinCsinB=sinBcosC即sinC=cosC,∴tanC=,因为在△ABC中,C∈(0,π),所以 C=.(2)由S△ABC=acsinB==9,得a=6,由(1)C=得bcos=3,b=2,由c=得c===2.【点评】本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,属于中档题.21.某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.用煤(吨)用电(千瓦)产值(万元)甲产品 3 50 12乙产品7 20 8但国家每天分配给该厂的煤、电有限,每天供煤至多47吨,供电至多300千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?21教育名师原创作品【考点】简单线性规划的应用.【专题】数形结合;数形结合法;不等式的解法及应用.【分析】由题意得出约束条件和目标函数,作出可行域,变形目标函数平移直线可得结论.【解答】解:设生产甲、乙两种产品各x吨、y吨,日产值为z万元由题意得x,y的约束条件为:,目标函数z=12x+8y,作出可行域(如图阴影)在图中作直线y=﹣x,当平移至过点A时,Z取最大值,联立两直线方程可得A(4,5),代入计算可得Z的最大值为88,故每天生产甲4吨,乙5吨,时日产值最大为88万元.【点评】本题考查简单线性规划的应用,由题意得出约束条件和目标函数并准确作图是解决问题的关键,属中档题.22.已知数列{an}满足:a1=1,an+1﹣ansin2θ=sin2θ•cos2nθ.(Ⅰ)当θ=时,求数列{an}的通项公式;(Ⅱ)在(Ⅰ)的条件下,若数列{bn}满足bn=sin,Sn为数列{bn}的前n项和,求证:对任意n∈N*,Sn<3+.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(1)当时,,,利用等差数列的通项公式即可得出;(2)由(1)可得:an=,可得,可得当n=1,2,3时,不等式成立;当n≥4时,由于,利用“错位相减法”、等比数列的前n项函数公式即可得出.【解答】(1)解:当时,,,∴{2n﹣1an}是以1为首项、1为公差的等差数列,2n﹣1an=n,从而.(2)证明:,∴当n=1,2,3时,;当n≥4时,∵,,令,两式相减得,.综上所述,对任意.【点评】本题考查了“错位相减法”、等比数列与等差数列的通项公式及其前n项函数公式、三角函数的性质、“放缩法”,考查了推理能力与计算能力,属于中档题.。
2015-2016学年安徽省安庆市高一(下)期末数学试卷(B卷)(必修四、五)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内.1.函数y=2sin2x的最小正周期为()A.2πB.1.5πC.0.5πD.π2.为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位3.如果tanAtanBtanC>0,那么以A,B,C为内角的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形4.已知点P(tanα,cosα)在第三象限,则角α的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.表示如图中阴影部分所示平面区域的不等式组是()A.B.C.D.6.数列{a n}满足a n+1﹣a n=﹣3(n≥1),a1=7,则a3的值是()A.﹣3 B.4 C.1 D.67.已知,则等于()A.B.7 C.D.﹣78.向量.满足||=1,|﹣|=,与的夹角为60°,则||=()A.B.C.D.9.若log2a+log2b=6,则a+b的最小值为()A.B.6 C. D.1610.不等式x2﹣4x>2ax+a对一切实数x都成立,则实数a的取值范围是()A.(1,4)B.(﹣4,﹣1)C.(﹣∞,﹣4)∪(﹣1,+∞)D.(﹣∞,1)∪(4,+∞)11.设S n为等差数列{a n}的前n项的和,a1=﹣2016,=2,则S2016的值为()A.﹣2015 B.﹣2016 C.2015 D.201612.若函数f(x)=2sin()(﹣2<x<10)的图象与x轴交于点A,过点A的直线l与函数的图象交于B、C两点,则(+)•=()A.﹣32 B.﹣16 C.16 D.32二、填空题:本大题共4小题,每小题5分,共20分,将每题的正确答案填在题中的横线上.13.=.14.设△ABC的内角A,B,C,所对的边分别是a,b,c.若(a+b﹣c)(a+b+c)=ab,则角C=.15.已知向量=(2,3),=(﹣2,1),则在方向上的投影等于.16.已知等比数列的前n项和为S n,且a1+a3=,则=.三、解答题:本大题共6小题,共70分.解答过程有必要的文字说明、演算步骤及推理过程.17.已知,求下列各式的值:(Ⅰ);(Ⅱ).18.设函数f(x)=Asin(2x+)(x∈R)的图象过点P(,﹣2).(Ⅰ)求f(x)的解析式;(Ⅱ)已知f(+)=,﹣<a<0,求cos(a﹣)的值.19.已知二次函数f(x)=ax2﹣(a+2)x+1(a∈z),在区间(﹣2,﹣1)上恰有一个零点,解不等式f(x)>1.20.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.21.△ABC的外接圆半径R=,角A,B,C的对边分别是a,b,c,且=(1)求角B和边长b;(2)求S△ABC的最大值及取得最大值时的a,c的值,并判断此时三角形的形状.22.设数列{a n}的各项都是正数,且对任意n∈N*,都有(a n﹣1)(a n+3)=4S n,其中S n为数列{a n}的前n项和.(1)求证数列{a n}是等差数列;(2)若数列{}的前n项和为T n,求T n.2015-2016学年安徽省安庆市高一(下)期末数学试卷(B 卷)(必修4、五)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内.二、填空题:本大题共4小题,每小题5分,共20分,将每题的正确答案填在题中的横线上.13.故答案为:.14.故答案为:15.故答案为:﹣16.故答案为:2n ﹣1.17.【解答】解:由=﹣1整理得:tan α=﹣tan α+1,即tan α=,(Ⅰ)原式===﹣;(Ⅱ)原式=sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α)====.18.【解答】解:(Ⅰ)∵f (x )的图象过点P (,﹣2),∴f ()=Asin (2×+)=Asin=﹣2∴A=2故f (x )的解析式为f (x )=2sin (2x +)(Ⅱ)∵f (+)=2cos α=,∴cos α=,∵﹣<a <0,∴sin α=﹣∴cos (a ﹣)=cos αcos+sin αsin=﹣19.【解答】解:由题设易知:,又∵a∈z,∴a=﹣1,∴f(x)=﹣x2﹣x+1⇒﹣x2﹣x+1>1,∴不等式解集为(﹣1,0).20.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]21.【解答】解:(1)∵,∴2sinAcosB﹣sinCcosB=sinBcosC,可得2sinAcosB=sinBcosC+cosBsinC=sin(B+C),∵在△ABC中,sin(B+C)=sin(π﹣A)=sinA>0,∴2sinAcosB=sinA,可得cosB=.又∵B∈(0,π),∴,由正弦定理,可得b=2RsinB=2•sin=3;(2)∵b=3,,∴由余弦定理b2=a2+c2﹣2accosB,得a2+c2﹣ac=9,因此,ac+9=a2+c2≥2ac,可得ac≤9,当且仅当a=c时等号成立,∵S△ABC==,∴由此可得:当且仅当a=c时,S△ABC有最大值,此时a=b=c=3,可得△ABC是等边三角形.22.【解答】解:(1)∵对任意n∈N*,都有(a n﹣1)(a n+3)=4S n,即.∴当n≥2时,4a n=4(S n﹣S n﹣1)=﹣=﹣2a n﹣1,化为(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵对任意n∈N*,a n>0.∴a n+a n﹣1>0.∴a n﹣a n﹣1=2.∴数列{a n}是等差数列,公差为2.(2)由(1),a1=3,d=2,∴a n=3+2(n﹣1)=2n+1.∴=4n(n+1),∴==,n∈N*;∴T n=.。
安徽省安庆市第一中学高一数学下学期期中试题(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若60C =︒,b =c =则角A 为( ) A. ︒45 B. 60︒C. ︒75D. 135︒【答案】C 【解析】 【分析】由60C=︒,b =c =及正弦定理求得:sin 2B =,结合c b <即可求得B ,问题得解。
【详解】解:∵60C=︒,b =c =,∴由正弦定理可得:sin sin 2b C Bc ⋅==, ∵c b <,B 为锐角, ∴45B =︒∴18075A B C =︒--=︒. 故选:C.【点睛】本题主要考查了正弦定理,考查大边对大角、三角形的内角和结论在解三角形中的应用,属于基础题.2.已知2,b 的等差中项为5,则b 为( ) A.27B. 6C. 8D. 10【答案】C 【解析】 【分析】根据等差中项的公式,列出等式,由此解得b 的值.【详解】由于b ,2的等差中项为5,所以252b+=,解得8b =,故选C . 【点睛】本小题主要考查等差中项的公式,若,,a b c 成等差数列,则有2b a c =+,根据这个公式列式即可求的未知数的值,属于基础题.3.在等比数列{}n a 中,1a 1=,5724a a 8a a +=+,则6a 的值为( )A. 4B. 8C. 16D. 32【答案】D 【解析】 【分析】利用等比数列的通项公式及其性质即可得出.【详解】设等比数列{}n a 的公比为q ,1a 1=,5724a a 8a a +=+,()()46131a q q 8a q q+∴=+,解得q 2=. 则56a 232==.故选:D .【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.4.若不等式20ax x a -+>对一切实数x 都成立,则实数a 的取值范围为( ) A. 12a <-或12a >B. 12a >或0a < C. 12a >D. 1122a -<<【答案】C 【解析】 【分析】根据题意得出0a >⎧⎨∆<⎩,由此求出a 的取值范围.【详解】解:显然a=0,不等式不恒成立,所以不等式20ax x a -+>对一切实数x 都成立,则00a >⎧⎨∆<⎩,即2140a a >⎧⎨-<⎩, 解得12a >, 所以实数a 的取值范围是12a >. 故选:C.【点睛】本题主要考查了利用判别式解决一元二次不等式恒成立问题,是基础题.5.若x ,y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =-的最小值为( )A. 1-B. 2-C. 2D. 1【答案】B 【解析】 【分析】画出满足约束条件的平面区域,结合平面区域,通过平移直线,即可求解. 【详解】由题意,画出约束条件所表示的平面区域,如图所示, 又由目标函数2z x y =-,可化为122z y x =-, 结合图形,可得直线122zy x =-经过点A 时,在y 轴上的截距最大, 此时目标函数取得最小值,又由10(0,1)330x y A x y +-=⎧⇒⎨-+=⎩,所以目标函数的最小值为0212z =-⨯=-,故选B.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求,其关键是准确作出可行域,理解目标函数的意义是解答的关键.6.已知ABC∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2221()4a b c -+-,1sin 2B =,则A =( ) A. 105 B. 75C. 30D. 15【答案】D 【解析】 【分析】由题意,在ABC ∆中,利用面积公式和余弦定理求得135C =,再由1sin 2B =,求得30B =,进而可求得,得到答案.【详解】由题意,在ABC ∆的面积为()22214a b c -+-,即()22211sin 24ABC S ab C a b c ∆==-+-, 根据余弦定理,可得222sin cos 2a b c C C ab+-=-=-,即tan 1C =-,又∵0180C <<,所以135C =, 又由1sin 2B =,又由0180B <<,且B C <,所以30B =, 所以()()180********15A B C =-+=-+=,故选D.【点睛】本题主要考查了利用余弦定理和三角形的面积公式求解三角形问题,其中解答中合理利用余弦定理和面积公式,求得C 角的大小,再由特殊角的三角函数值,确定B 的值是解答的关键,着重考查了推理与计算能力,属于基础题.7.等比数列{}n a 的各项均为正数,已知向量()45,a a a =,()76,b a a =,且4a b ⋅=,则2122210log log log (a a a ++⋯+= )A. 12B. 10C. 5D.22log 5+【答案】C 【解析】 【分析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出. 【详解】向量a =(4a ,5a ),b =(7a ,6a ),且a •b =4, ∴47a a +56a a =4,由等比数列的性质可得:110a a =……=47a a =56a a =2, 则2122210log log log a a a +++=log 2(12a a •10a )=()5521102log log 25a a ==.故选:C .【点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题.8.如图,某建筑物的高度m BC 300=,一架无人机Q 上的仪器观测到建筑物顶部C 的仰角为15︒,地面某处A 的俯角为︒45,且60BAC ∠=︒,则此无人机距离地面的高度PQ 为( )A. m 100B. 200mC. m 300D. m 100【答案】B 【解析】【分析】在Rt ABC ∆中求得AC 的值,ACQ ∆中利用正弦定理求得AQ 的值,在Rt APQ ∆中求得PQ 的值.【详解】解:根据题意,可得Rt ABC ∆中,60BAC ∠=︒, 300=BC ,∴sin 60BC AC ===︒; ACQ ∆中,451560AQC ∠=︒+︒=︒,180456075QAC ∠=︒-︒-︒=︒,∴18045QCA AQC QAC ∠=︒-∠-∠=︒, 由正弦定理,得sin 45sin 60AQ AC=︒︒,解得AQ ==在Rt APQ ∆中,sin 45200PQ AQ m =︒==. 故选:B.【点睛】本题主要考查了正弦定理及直角三角形中的勾股定理,考查计算能力,属于中档题。
安徽省安庆市高一下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017高二下·雅安期末) 若i是虚数单位,则复数 =()A . ﹣1B . 1C . ﹣iD . i2. (2分)在中, ,,点P在AM上且满足,则等于()A .B .C .D .3. (2分) (2020高一下·揭阳月考) 已知,向量,则向量()A .B .C .D .4. (2分) (2018高一上·武邑月考) 下列几何体是组合体的是()A .B .C .D .5. (2分)(2018·鸡西模拟) 已知向量,若,则k=()A .B .C . 6D .6. (2分)(2019·吉林模拟) 已知A、B是抛物线上的两点,直线AB垂直于轴,F为抛物线的焦点,射线BF交抛物线的准线于点C,且,的面积为,则的值为()A .C . 2D . 47. (2分)如图,等腰直角三角形ABC中,∠ACB=90°,在斜边AB上取两点M、N,使∠MCN=45°,设MN=x,BN=n,AM=m,则以x、m、n为边的三角形的形状为()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 随x、m、n的值而定8. (2分)已知中,A,B,C所对的边分别为a,b,c,且,那么角A等于()A .B .C .D . 或9. (2分)(2017·云南模拟) 在△ABC中,CB=5,AD⊥BC交BC于点D,若CD=2时,则 =()A . 5B . 2C . 1010. (2分)圆柱被一个平面截去一部分后与半球(半径为 )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2018高二下·长春期末) 复数 ________.12. (1分) (2018高二上·铜梁月考) 平面截球的球面所得圆的半径为1,球心到平面的距离为,则此球的体积为________.13. (1分)(2019·长宁模拟) 若圆锥的侧面积为,底面积为,则该圆锥的体积为________。
2014-2015学年度第二学期中联考试题高一数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至6页。
2. 答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将答题卡交回。
第Ⅰ卷(选择题 共60分)一、选择题(本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1 ( ) A. 输出a=10 B. 赋值a=10 C. 判断a=10 D. 输入a=12. 0600cos 的值为 ( )A.23 B.23- C.21 D 21- 3. 一个扇形的圆心角为︒120,半径为3,则此扇形的面积为 ( ) A.π B.45πC. 33π D.2932π 4.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数是 ( ) A .15,16,19 B .15,17,18 C .14,17,19 D .14,16,205.某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,则这射手在一次射击中不够9环的概率是( )A.0.48B.0.52C.0.71D.0.296.阅读右边的程序框图,运行相应的程序,则输出s 的值为 ( )A .-1B .0C .1D .3 7.将二进制数10001(2)化为十进制数为( )A .17B .18C .16D .19 8.设角θ的终边经过点P (-3,4),那么sin θ+2cos θ=( )A .15 B .15- C .25- D .259.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是( )A. 函数)(x f 的最小正周期为2πB. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数10.函数)20)(sin()(πϕϕω<>+=,A x A x f 其中的图象如图所示,为了得到xx g 2sin )(=的图象,则只需将)(x f 的图象( )A.向右平移6π个长度单位B.向右平移3π个长度单位C.向左平移6π个长度单位D.向左平移3π个长度单位11.函数()1f x kx =+,实数k 随机选自区间[-2,1].对[0,1],()0x f x ∀∈≥的概率是( ) A .13B .12C .23D .3412. 定义在R 上的函数()f x ,既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π02x ⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为 ( )A.12-C. D.12第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4题,每小题5分,共20分)13..图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________ .08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)14..函数tan()3y x π=-的单调递减区间为15.已知正边形ABCD 边长为2,在正边形ABCD 内随机取一点P ,则点P 满足||1PA ≤的概率是16.已知sin (0),()(1)1(0),x x f x f x x π⎧=⎨--⎩<> 则111166f f ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭= 三.解答题:(本大题共6个小题.共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(1)化简()fα。
安徽省安庆市高一下学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)直线经过两点,那么直线的倾斜角的取值范围()A .B .C .D .2. (2分) (2018高二下·泸县期末) 设 , 是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为()A .B .C .D .3. (2分) (2016高二上·惠城期中) 已知{an}是等差数列,且a2+a3+a10+a11=48,则a6+a7=()A . 12B . 16C . 20D . 244. (2分)已知直线ax+2y+2=0与3x﹣y﹣2=0平行,则系数a=()A . -3B . -6C . -D .5. (2分)在,根据下列条件解三角形,则其中有两个解的是()A . b = 10,A = 45°,B = 70°B . a = 60,c = 48,B = 100°C . a = 7,b = 5,A = 80°D . a = 14,b = 16,A = 45°6. (2分)若数列的通项公式是,则该数列的第五项为()A . 1B .C .D .7. (2分) (2016高二下·曲靖期末) 若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB 的方程是()A . x﹣y=0B . x+y=0C . x﹣y﹣2=0D . x+y﹣2=08. (2分) (2016高二上·宜春期中) 已知各项均为正数的等比数列{an}中,3a1 , a3 , 2a2成等差数列,则 =()A . 27B . 3C . ﹣1或3D . 1或279. (2分)已知的外接圆半径为R,角、、的对边分别为、、且,那么角的大小为()A .B .C .D .10. (2分)(2020·攀枝花模拟) 已知的最大值为,若存在实数、,使得对任意实数总有成立,则的最小值为()A .B .C .D .11. (2分) (2018高一上·大连期末) 在空间直角坐标系中,点关于轴的对称点坐标为()A .B .C .D .12. (2分)(2017·大庆模拟) 已知,函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2019高二下·张家口月考) 已知集合,集合,则________.14. (1分) (2018高二下·邯郸期末) 三角形中,是边上一点,,,且三角形与三角形面积之比为,则 ________.15. (1分)关于定义在R上的函数y=f(x)有下面四个判定:(1)若对任意x∈R,恒有f(4﹣x)=f(4+x),则函数y=f(x)的图象关于直线x=4对称;(2)若对任意x∈R,恒有f(4﹣x)=f(x﹣4),则函数y=f(x)的图象关于y轴对称;(3)函数y=f(4﹣x)与函数y=f(4+x)两者的图象关于y轴对称;(4)函数y=f(4﹣x)与函数y=f(x﹣4)两者的图象关于直线x=4对称.其中正确判定的序号是________16. (1分) (2020高一下·济南月考) 的内角,,的的对边分别是、、,若,,,则 ________三、解答题 (共6题;共60分)17. (10分)已知射线l1:y=4x(x≥0)和点P(6,4),试在l1上求一点Q使得PQ所在直线l和l1以及直线y=0在第一象限围成的面积达到最小值,并写出此时直线l的方程.18. (10分)(2020·沈阳模拟) 的内角A,B,C的对边分别为a,b,c,已知,.(1)求A及a;(2)若,求BC边上的高.19. (15分)(1)求与点P(3,5)关于直线l:x-3y+2=0对称的点P′的坐标.(2)已知直线l:y=-2x+6和点A(1,-1),过点A作直线l1与直线l相交于B点,且|AB|=5,求直线l1的方程.20. (5分) (2015高二下·营口期中) 已知数列{an}的前n项和为Sn ,点(n,)在直线y= x+ 上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn= ,求数列{bn}的前n项和为Tn ,并求使不等式Tn>对一切n∈N*都成立的最大正整数k的值.21. (10分) (2016高二下·信宜期末) 已知a,b,c分别是△ABC的内角A,B,C的对边,sin2B=2sinAsinC.(1)若a=b,求cosB的值;(2)若B=60°,△ABC的面积为4 ,求b的值.22. (10分) (2016高二上·上杭期中) 在数列{an}中,a1=1,an+1=1﹣,bn= ,其中n∈N* .(1)求证:数列{bn}为等差数列;(2)设cn=bn+1•(),数列{cn}的前n项和为Tn,求Tn;(3)证明:1+ + +…+ ≤2 ﹣1(n∈N*)参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、。
安徽省安庆市2015-2016学年高一下学期期末教学质量调研监测数学(A)一、选择题:共12题1.点与圆的位置关系是A.在圆外B.在圆上C.在圆内D.不确定【答案】A【解析】本题考查点与圆的位置关系.因为,所以点在圆外.选A.2.若球的体积扩大为原来的8倍,则它的表面积扩大为原来的A.2倍B.4倍C.8倍 D.16倍【答案】B【解析】本题考查球的表面积与体积公式.,可得,所以,即球的表面积扩大为原来的4倍.选B.3.如果>0,那么以为内角的△是A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【答案】A【解析】本题考查三角函数的定义.因为为△的内角,>0,所以>0,所以,即△是锐角三角形.选A.4.若平面⊥平面,平面⊥平面,则A.∥B.⊥C.与相交但不垂直D.以上都有可能【答案】D【解析】本题考查点线面之间的位置关系.若平面⊥平面,平面⊥平面,则∥或⊥或与相交.选D.5.表示如图中阴影部分所示平面区域的不等式组是A. B.C. D.【答案】A【解析】本题考查简单的线性规划问题.,即满足题意;,即满足题意;,所以;所以阴影部分所示平面区域的不等式组是.选A.6.数列满足且,则的值是A.-3 B.4 C.1D.6【答案】C【解析】本题考查等差数列.由题意得,.选C.7.已知直线,, 若//, 则的值为A. B. C. D.【答案】A【解析】本题考查两直线平行.因为//,所以,解得.选A.8.一个平面截一个球得到截面面积为的圆面,球心到这个平面的距离是,则该球的表面积是A. B. C. D.【答案】D【解析】本题考查球的表面积.画出图形(如图所示);由题意得,可得;而在直角三角形中,,所以该球的半径,所以该球的表面积.选D.9.若,则的最小值为A. B.6 C.D.16【答案】D【解析】本题考查对数运算,基本不等式.因为,所以,且;所以(当且仅当时等号成立).选D.10.不等式对一切实数都成立,则实数的取值范围是A.(1,4)B.C. D.【答案】B【解析】本题考查不等式恒成立问题.对一切实数都成立等价于对一切实数都成立等价于,解得,即实数的取值范围是.选B.11.设为等差数列的前项的和,,则的值为A. B. C.2015 D.2016【答案】B【解析】本题考查等差数列.=,所以==,所以.选B.【备注】等差数列中,.12.两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线,和圆:相切,则的取值范围是A.或B.或C.或D.或【答案】C【解析】本题考查直线与圆的位置关系.由题意得圆:的圆心(-1,0),半径;当直线与圆相切时,,解得或7;当直线与圆相切时,,解得;或7或是对应的临界值,所以C正确,选C.【备注】点到线的距离公式:.二、填空题:共4题13.若过点,的直线的斜率等于1,则的值为____________.【答案】1【解析】本题考查直线的斜率.由题意得,解得.14.设△的内角A,B,C所对的边分别为a,b,c,若,则角的大小为_________.【答案】【解析】本题考查余弦定理.,即,即,即,所以.【备注】余弦定理:.15.若正三棱锥的正视图与俯视图如图所示(单位:cm),则它的侧视图的面积为__________.【答案】【解析】本题考查三视图.侧视图如图所示;由题意得,,所以正三棱锥的侧视图的面积.16.已知等比数列的前项和为,且,,则___________ 【答案】【解析】本题考查等比数列的通项与求和.联立与,解得,;所以,,所以=.【备注】等比数列中,.三、解答题:共6题17.设直线的方程为.(1)若在两坐标轴上截距相等,求的方程;(2)若不经过第二象限,求实数的取值范围.【答案】(1)当直线过原点时,在x轴和y轴上的截距为零.∴a=2,方程即为3x+y=0.当直线不过原点时,由截距存在且均不为0,∴=a-2,即a+1=1.∴a=0,方程即为x+y+2=0.因此直线l的方程为3x+y=0或x+y+2=0.(2)将l的方程化为y=-(a+1)x+a-2,由题意得,∴a≤-1.综上可知a的取值范围是a≤-1.【解析】本题考查直线的方程.(1)分类讨论得直线l为3x+y=0或x+y+2=0.(2)由题意得,解得a≤-1.且18.如图为一组合体,其底面ABCD为正方形,平面ABCD ,,(1)求证:平面;(2)求四棱锥B-CEPD的体积.【答案】(1)证明:∵,平面PDA ,平面,∴平面;同理可证平面,∵平面EBC ,平面EBC,∴平面EBC 平面,又∵平面EBC,∴平面.(2)∵平面ABCD ,平面ABCD,∴,∵,,∴平面PDCE,∵,∴四棱锥B-CEPD的体积.【解析】本题考查线面平行与垂直,空间几何体的体积. (1)平面,平面,,∴平面EBC平面,∴平面.(2)证得平面PDCE,求得,∴.19.已知二次函数,且函数在上恰有一个零点,求不等式的解集.【答案】∵f(x)=ax2-(a+2)x+1,Δ=(a+2)2-4a=a2+4>0,∴函数f(x)=ax2-(a+2)x+1必有两个不同的零点.因此f(-2)f(-1)<0,∴(6a+5)(2a+3)<0,∴-<a<-.又a∈Z,∴a=-1.不等式f(x)>1即为-x2-x>0,解得-1<x<0.故原不等式的解集为.【解析】本题考查函数与方程,一元二次不等式的求解.函数f(x)必有两个不同的零点,因此f(-2)f(-1)<0,求得a=-1.不等式f(x)>1转化为-x2-x>0,解得-1<x<0.20.已知圆C经过,两点,且圆心在直线上.(1)求圆C的方程;(2)若直线经过点且与圆C相切,求直线的方程.【答案】(1)方法1:设圆的方程为, 依题意得解得,,.所以圆的方程为.方法2:因为,,所以线段中点的坐标为,直线的斜率,因此直线的垂直平分线的方程是,即.圆心的坐标是方程组的解,解此方程组,得即圆心的坐标为.圆心为的圆的半径长.所以圆的方程为.(2)由于直线经过点,当直线的斜率不存在时,与圆相离.当直线的斜率存在时,可设直线的方程为,即.因为直线与圆相切,且圆的圆心为,半径为,所以有,解得或.所以直线的方程为或,即或.【解析】本题考查圆的标准方程,直线与圆的位置关系.(1)设圆的方程为,求得,,,所以圆为;(2)当直线的斜率不存在时,不满足题意;当直线的斜率存在时,直线的方程为或.21.已知△的外接圆半径,角的对边分别是,且(1)求角和边长;(2)求的最大值及取得最大值时的的值,并判断此时三角形的形状.【答案】(1)由,得,即,所以, 又,所以;又,,所以b=3.(2)由得(当且仅当时取等号),所以,(当且仅当时取等号),此时综上,的最大值,取得最大值时,此时三角形是等边三角形.【解析】本题考查正余弦定理,三角形的面积公式. (1)由正余弦定理得, 所以;由正弦定理得b=3.(2)由, 所以,,此时三角形是等边三角形.22.设数列的各项都是正数,且对任意,都有,其中为数列的前项和.(1)求证:数列是等差数列;(2)若数列的前项和为,求.【答案】(1)∵,①当时,,②①-②得,即,又,∴.当时,,∴,又,∴.所以,数列是以3为首项,2为公差的等差数列.(2)由(1)知,,,∴.设,.∵,∴,∴,= .【解析】本题考查等差数列,数列的通项与求和.(1)由得,.所以,是以3为首项,2为公差的等差数列.(2)由(1)知.设, 裂项相消得.。
2015-2016学年安徽省安庆一中高一(下)期中数学试卷一、选择题(本题共12小题,每小题5分,共60分)1.下列不等式正确的是()A.若a>b,则a•c>b•c B.若a•c2>b•c2,则a>bC.若a>b,则< D.若a>b,则a•c2>b•c22.在△ABC中,A=60°,B=75°,a=10,则c等于()A.B.C.D.3.若1≤x≤4,3≤y≤6,则的取值范围是()A.B.C.D.4.在△ABC中,∠A=60°,a=,b=,满足条件的△ABC()A.不能确定 B.无解 C.有一解D.有两解5.数列{a n}的通项公式a n=,则该数列的前()项之和等于9.A.98 B.99 C.96 D.976.数列{a n}的通项a n=,则数列{a n}中的最大值是()A.3B.19 C.D.7.下列不等式一定成立的是()A.x2+>x(x>0)B.x2+1≥2|x|(x∈R)C.sinx+≥2(x≠kπ,k∈Z) D.>1(x∈R)8.在△ABC中,a,b,c分别为角A,B,C所对的边.若b=2acosC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形9.等比数列{a n}的前n项和为S n,且S m=x,S2m=y,S3m=z,则()A.x+y=z B.y2=x•z C.x2+y2=xy+xz D.2y=x+z10.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于()A.12 B.16 C.9 D.16或911.若不等式(﹣1)n a<2+对于任意正整数n都成立,则实数a的取值范围是()A.B.C.[﹣3,2] D.(﹣3,1)12.已知数列A:a1,a2,…,a n(0≤a1<a2<…<a n,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),a j+a i与a j﹣a i两数中至少有一个是该数列中的一项、现给出以下四个命题:①数列0,1,3具有性质P;②数列0,2,4,6具有性质P;③若数列A具有性质P,则a1=0;④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2,其中真命题有()A.4个B.3个C.2个D.1个二、填空题(本题共4小题,每小题5分,共20分)13.不等式<0的解集为.14.两个等差数列{a n}和{b n}的前n项和分别为S n和T n,若,则=.15.若正实数x,y满足2x+y+6=xy,则xy的最小值是.=若a6=1,则16.已知数列{a n}满足:a1=m(m为正整数),a n+1m所有可能的取值的个数为.三、解答题(第17、18、19题各10分,20题12分,21、22题14分,共70分)17.设变量x,y满足约束条件,求目标函数z=2x+y的最大值及此时的最优解.18.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求证:<1.19.在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=.(Ⅰ)求角B的大小;(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.20.各项均为正数的数列{a n}中,S n是数列{a n}的前n项和,对任意n∈N*,有2S n=2a n2+a n ﹣1.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记b n=2n•a n,求数列{b n}的前n项和T n.21.某兴趣小组测量渡江战役纪念馆前的胜利之塔的高度H(单位:m)如示意图,垂直放置的标杆BC高度h=2m,仰角∠ABE=α,∠ADE=β.(Ⅰ)该小组已经测得一组α、β的值,tanα=1.21,tanβ=1.17,请据此算出H的值;(Ⅱ)该小组分析若干测得的数据后,认为适当调整标杆到胜利之塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若胜利之塔的实际高度为60m,试问d为多少时,α﹣β最大?22.设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若p=,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=4m+1(m∈N*)?如果存在,求p和q的取值范围;如不存在,说明理由.2015-2016学年安徽省安庆一中高一(下)期中数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题5分,共60分)1.下列不等式正确的是()A.若a>b,则a•c>b•c B.若a•c2>b•c2,则a>bC.若a>b,则< D.若a>b,则a•c2>b•c2【考点】不等式比较大小.【分析】A.当c≤0时,ac≤bc;B.利用不等式的基本性质即可判断出;C.取a=2,b=﹣1,不成立;D.c=0时不成立.【解答】解:A.当c≤0时,ac≤bc,因此不正确;B.∵a•c2>b•c2,∴a>b,正确;C.取a=2,b=﹣1,则不成立;D.c=0时不成立.综上可得:只有B正确.故选;B.2.在△ABC中,A=60°,B=75°,a=10,则c等于()A. B.C.D.【考点】正弦定理;余弦定理.【分析】求出C,利用正弦定理直接求出c即可.【解答】解:由题意,在△ABC中,A=60°,B=75°,a=10,所以C=180°﹣75°﹣60°=45°.根据正弦定理得:,即c==.故选C.3.若1≤x≤4,3≤y≤6,则的取值范围是()A.B.C.D.【考点】不等式的基本性质.【分析】根据已知结合不等式的基本性质,可得的范围.【解答】解:∵3≤y≤6,∴,又∵1≤x≤4,∴,即的取值范围是,故选:B.4.在△ABC中,∠A=60°,a=,b=,满足条件的△ABC()A.不能确定 B.无解 C.有一解D.有两解【考点】正弦定理.【分析】由题意画出图形,再结合条件可此三角形解的情况.【解答】解:因为A=60°,b=,a=,如图:所以h=bsinA==,又<<,则此三角形有两解,故选:D.5.数列{a n}的通项公式a n=,则该数列的前()项之和等于9.A.98 B.99 C.96 D.97【考点】数列的求和.【分析】先将分母有理化,再利用叠加法可求和,进而可得结论【解答】解:∵a n=,∴a n=,∴∴,∴n=99故选B.6.数列{a n}的通项a n=,则数列{a n}中的最大值是()A.3B.19 C.D.【考点】数列的函数特性.【分析】利用数列的通项公式结合基本不等式的性质即可得到结论.【解答】解:a n==,∵f(n)=n+在(0,3)上单调递减,在(3,+∞)上单调递增,∴当n=9时,f(9)=9+10=19,当n=10时,f(10)=9+10=19,即f(9)=f(10)为最小值,此时a n=取得最大值为a9=a10=,故选:C.7.下列不等式一定成立的是()A.x2+>x(x>0)B.x2+1≥2|x|(x∈R)C.sinx+≥2(x≠kπ,k∈Z)D.>1(x∈R)【考点】基本不等式.【分析】根据基本不等式的性质判断A、B,根据特殊值法判断C、D即可.【解答】解:对于A:x2+≥2=x,当且仅当x=时“=”成立,故A错误;对于B:x2+1≥2|x|,B正确;对于C:比如sinx=﹣1时,不成立,C错误;对于D:比如x=1时,不成立,D错误;故选:B.8.在△ABC中,a,b,c分别为角A,B,C所对的边.若b=2acosC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【考点】正弦定理.【分析】(法一)根据正弦定理、内角和定理、诱导公式、两角和与差的正弦公式化简已知的式子,由内角的范围即可判断出△ABC的形状;(法二)根据余弦定理化简已知的式子,即可判断出△ABC的形状.【解答】解:(法一)∵b=2acosC,∴由正弦定理得sinB=2sinAcosC,∵B=π﹣(A+C),∴sin(A+C)=2sinAcosC,则sinAcosC+cosAsinC=2sinAcosC,sinAcosC﹣cosAsinC=0,即sin(A﹣C)=0,∵A、C∈(0,π),∴A﹣C∈(﹣π,π),则A﹣C=0,∴A=C,∴△ABC是等腰三角形;(法二)∵b=2acosC,∴由余弦定理得b=2a•,化简得a2﹣c2=0,即a=c,∴△ABC是等腰三角形,故选:C.9.等比数列{a n}的前n项和为S n,且S m=x,S2m=y,S3m=z,则()A.x+y=z B.y2=x•z C.x2+y2=xy+xz D.2y=x+z【考点】等比数列的通项公式.【分析】由等比数列的性质得S m,S2m﹣S m,S3m﹣S2m成等比数列,从而x,y﹣x,z﹣y 也成等比数列,由此能求出结果.【解答】解:∵等比数列{a n}的前n项和为S n,且S m=x,S2m=y,S3m=z,由等比数列的性质得S m,S2m﹣S m,S3m﹣S2m成等比数列,∴x,y﹣x,z﹣y也成等比数列,∴(y﹣x)2=x(z﹣y),整理得:x2+y2=xy+xz.故选:C.10.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于()A.12 B.16 C.9 D.16或9【考点】等差数列的前n项和.【分析】由等差数列的通项公式可得多边形的内角a n=120°+5°(n﹣1)=5°n+115°,由n边形内角和定理和等差数列的前n项和公式可得,(n﹣2)×180°=n×120°+n(n﹣1)2×5°.解出即可.【解答】解:由题意可得多边形的内角a n=120°+5°(n﹣1)=5°n+115°,由a n<180°,可得n<13且n∈N*,由n边形内角和定理得,(n﹣2)×180°=n×120°+×5°.解得n=16或n=9∵n<13,∴n=9.故选C.11.若不等式(﹣1)n a<2+对于任意正整数n都成立,则实数a的取值范围是()A.B.C.[﹣3,2] D.(﹣3,1)【考点】函数恒成立问题.【分析】要使不等式对于任意正整数n恒成立,讨论n为奇数和偶数,令f(n)=(﹣1)n•a﹣,求得最大值,由最大值小于2,列出不等式求出a的范围即可.【解答】解:由不等式得:(﹣1)n•a﹣<2,令f(n)=(﹣1)n•a﹣,当n取奇数时,f(n)=﹣a﹣;当n取偶数时,f(n)=a+.所以f(n)只有两个值,当﹣a﹣<a+时,f(n)max=a+,即a+<2,得到a<;当﹣a﹣≥a+时,即﹣a﹣<2,得a≥﹣2,所以a的取值范围为﹣2≤a<.故选:A.12.已知数列A:a1,a2,…,a n(0≤a1<a2<…<a n,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),a j+a i与a j﹣a i两数中至少有一个是该数列中的一项、现给出以下四个命题:①数列0,1,3具有性质P;②数列0,2,4,6具有性质P;③若数列A具有性质P,则a1=0;④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2,其中真命题有()A.4个B.3个C.2个D.1个【考点】数列的应用.【分析】根据数列A:a1,a2,…,a n(0≤a1<a2<…<a n,n≥3)具有性质P:对任意i,j (1≤i≤j≤n),a j+a i与a j﹣a i两数中至少有一个是该数列中的一项,逐一验证,可知①错误,其余都正确.【解答】解:∵对任意i,j(1≤i≤j≤n),a j+a i与a j﹣a i两数中至少有一个是该数列中的项,①数列0,1,3中,a2+a3=1+3=4和a3﹣a2=3﹣1=2都不是该数列中的数,故①不正确;②数列0,2,4,6,a j+a i与a j﹣a i(1≤i≤j≤3)两数中都是该数列中的项,并且a4﹣a3=2是该数列中的项,故②正确;③若数列A具有性质P,则a n+a n=2a n与a n﹣a n=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<a n,n≥3,而2a n不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④∵数列a1,a2,a3具有性质P,0≤a1<a2<a3∴a1+a3与a3﹣a1至少有一个是该数列中的一项,且a1=0,1°若a1+a3是该数列中的一项,则a1+a3=a3,∴a1=0,易知a2+a3不是该数列的项∴a3﹣a2=a2,∴a1+a3=2a22°若a3﹣a1是该数列中的一项,则a3﹣a1=a1或a2或a3①若a3﹣a1=a3同1°,②若a3﹣a1=a2,则a3=a2,与a2<a3矛盾,③a3﹣a1=a1,则a3=2a1综上a1+a3=2a2,故选B.二、填空题(本题共4小题,每小题5分,共20分)13.不等式<0的解集为{x|﹣2<x<3} .【考点】其他不等式的解法.【分析】原不等式可化为x﹣3与x+2乘积小于0,即x﹣3与x+2异号,可化为两个一元一次不等式组,分别求出解集,两解集的并集即为原不等式的解集.【解答】解:原不等式可化为:(x﹣3)(x+2)<0,即或,解得:﹣2<x<3,∴原不等式的解集为{x|﹣2<x<3}.故答案为:{x|﹣2<x<3}14.两个等差数列{a n}和{b n}的前n项和分别为S n和T n,若,则=.【考点】等差数列的前n项和.【分析】利用等差数列{a n}和{b n}的前n项和的性质可得:=,即可得出.【解答】解:∵两个等差数列{a n}和{b n}的前n项和分别为S n和T n,若,∴===.故答案为:.15.若正实数x,y满足2x+y+6=xy,则xy的最小值是18.【考点】基本不等式.【分析】首先左边是xy的形式右边是2x+y和常数的和的形式,考虑把右边也转化成xy的形式,使形式统一.可以猜想到应用基本不等式.转化后变成关于xy的方程,可把xy看成整体换元后求最小值.【解答】解:由条件利用基本不等式可得,令xy=t2,即t=>0,可得.即得到可解得.又注意到t>0,故解为,所以xy≥18.故答案应为18.=若a6=1,则16.已知数列{a n}满足:a1=m(m为正整数),a n+1m所有可能的取值的个数为3.【考点】数列递推式.【分析】a6=1,可得a5必为偶数,因此=1,解得a5=2.当a4为偶数时,,解得a4=4;当a4为奇数时,a5=3a4+1=2,解得a4=,舍去.依此类推即可得出.【解答】解:∵a6=1,∴a5必为偶数,∴a6==1,解得a5=2.当a4为偶数时,a5=,解得a4=4;当a4为奇数时,a5=3a4+1=2,解得a4=,舍去.∴a4=4.当a3为偶数时,a4==4,解得a3=8;当a3为奇数时,a4=3a3+1=4,解得a3=1.当a3=8时,当a2为偶数时,a3=,解得a2=16;当a2为奇数时,a3=3a2+1=8,解得a2=,舍去.当a3=1时,当a2为偶数时,a3==1,解得a2=2;当a2为奇数时,a3=3a2+1=1,解得a2=0,舍去.当a2=16时,当a1为偶数时,a2==16,解得a1=32=m;当a1为奇数时,a2=3a1+1=16,解得a1=5=m.当a2=2时,当a1为偶数时,a2==2,解得a1=4=m;当a1为奇数时,a2=3a1+1=2,解得a1=,舍去.综上可得m=4,5,32.故答案为:3.三、解答题(第17、18、19题各10分,20题12分,21、22题14分,共70分)17.设变量x,y满足约束条件,求目标函数z=2x+y的最大值及此时的最优解.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义即可得到结论.【解答】解:由z=2x+y,得y=﹣2x+z,作出不等式组对应的平面区域如图:由图象可知当直线y=﹣2x+z过点C时,直线y=﹣2x+z的在y轴的截距最大,此时z最大,由,得,即C(2,1),此时z=2×2+1=5,即最优解为(2,1),z取得最大值5.18.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{a n}的通项;(Ⅱ)求证:<1.【考点】数列的求和;数列递推式.【分析】(Ⅰ)由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列,可得=a1•a9,即(1+2d)2=1×(1+8d),解出即可得出.(II)==.利用“裂项求和”方法、数列的单调性即可证明.【解答】(Ⅰ)解:由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列,∴=a1•a9,∴(1+2d)2=1×(1+8d),化为:4d2=4d,解得d=1,d=0(舍去),故{a n}的通项a n=1+(n﹣1)×1=n.(II)证明:==.∴.19.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设S 为△ABC 的面积,满足S=.(Ⅰ)求角B 的大小;(Ⅱ)边a ,b ,c 成等比数列,求sinAsinC 的值. 【考点】余弦定理;正弦定理.【分析】(I )由S==acsinB ,代入cosB=,即可得出.(II )由a ,b ,c 成等比数列,可得ac=b 2,由正弦定理可得:sinAsinC=sin 2B .【解答】解:(I )在△ABC 中,∵S==acsinB ,cosB=.∴tanB=, ∵B ∈(0,π), ∴B=.(II )∵a ,b ,c 成等比数列, ∴ac=b 2,由正弦定理可得:sinAsinC=sin 2B==.20.各项均为正数的数列{a n }中,S n 是数列{a n }的前n 项和,对任意n ∈N *,有2S n =2a n 2+a n ﹣1.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)记b n =2n •a n ,求数列{b n }的前n 项和T n . 【考点】数列的求和;数列递推式.【分析】(I )对任意n ∈N *,有2S n =2a n 2+a n ﹣1.令n=1,可得:﹣1,a 1>0,解得a 1.n ≥2时,2a n =2(S n ﹣S n ﹣1),化为(a n +a n ﹣1)(a n ﹣a n ﹣1﹣)=0.数列{a n }的各项均为正数,可得a n ﹣a n ﹣1=.利用等差数列的通项公式即可得出.(II )b n =2n •a n =(n +1)•2n ﹣1,再利用“错位相减法”、等比数列的通项公式及其前n 项和公式即可得出.【解答】解:(I )对任意n ∈N *,有2S n =2a n 2+a n ﹣1.令n=1,可得:﹣1,a 1>0,解得a 1=1.n ≥2时,2a n =2(S n ﹣S n ﹣1)=2a n 2+a n ﹣1﹣,化为:(a n +a n ﹣1)(a n ﹣a n ﹣1﹣)=0.∵数列{a n }的各项均为正数,∴a n ﹣a n ﹣1﹣=0,即a n ﹣a n ﹣1=.∴数列{a n }为等差数列,公差为,首项为1.∴a n =1+(n ﹣1)=.(II )b n =2n •a n =(n +1)•2n ﹣1,∴T n =2×1+3×2+4×22+…+(n +1)×2n ﹣1, 2T n =2×2+3×22+…+n ×2n ﹣1+(n +1)×2n ,两式相减可得:﹣T n =2+2+22+…+2n ﹣1﹣(n +1)×2n =1+﹣(n +1)×2n =n ×2n ,∴T n =n ×2n .21.某兴趣小组测量渡江战役纪念馆前的胜利之塔的高度H (单位:m )如示意图,垂直放置的标杆BC 高度h=2m ,仰角∠ABE=α,∠ADE=β.(Ⅰ)该小组已经测得一组α、β的值,tan α=1.21,tan β=1.17,请据此算出H 的值;(Ⅱ)该小组分析若干测得的数据后,认为适当调整标杆到胜利之塔的距离d (单位:m ),使α与β之差较大,可以提高测量精确度.若胜利之塔的实际高度为60m ,试问d 为多少时,α﹣β最大?【考点】解三角形的实际应用. 【分析】(I )根据三角函数的定义用H ,h ,tan α,tan β表示出AD ,BD ,AB ,根据AD ﹣AB=DB 列方程解出H .(II )根据两角差的正切公式得出tan (α﹣β)关于H ,h ,d 的函数关系式,使用基本不等式求出tan (α﹣β)取得最大值的条件.【解答】解:(I )∵tan β==,tan α=,∴AD=,BD=,AB=.∵AD﹣AB=DB,∴,解得:.∴胜利塔的高度H是60.5m.(II)∵tanα=,tanβ=,∴tan(α﹣β)===.∵d+≥2,(当且仅当d===2时取等号)∵0<β<α<,则0<α﹣β<,∴故当时,tan(α﹣β)最大.22.设数列{a n}的通项公式为a n=pn+q(n∈N*,P>0).数列{b n}定义如下:对于正整数m,b m是使得不等式a n≥m成立的所有n中的最小值.(Ⅰ)若p=,求b3;(Ⅱ)若p=2,q=﹣1,求数列{b m}的前2m项和公式;(Ⅲ)是否存在p和q,使得b m=4m+1(m∈N*)?如果存在,求p和q的取值范围;如不存在,说明理由.【考点】数列与不等式的综合;数列的概念及简单表示法;数列的求和.【分析】(Ⅰ)由题意,得,解,得n的范围即可得出.(Ⅱ)由题意,得a n=2n﹣1,对于正整数,由a n≥m,得.根据b m的定义可知当m=2k﹣1时,;当m=2k时,.∴b1+b2+…+b2m=(b1+b3+…+b2m)+(b2+b4+…+b2m),分组利用等差数列的求和公式即可得出.﹣1(Ⅲ)假设存在p和q满足条件,由不等式pn+q≥m及p>0得.由于,根据b m的定义可知,对于任意的正整数m 都有,即﹣p﹣q≤(4p﹣1)m<﹣q对任意的正整数m都成立.对4p﹣1分类讨论即可得出.【解答】解:(Ⅰ)由题意,得,解,得.∴成立的所有n中的最小整数为8,即b3=8.(Ⅱ)由题意,得a n=2n﹣1,对于正整数,由a n≥m,得.根据b m的定义可知当m=2k﹣1时,;当m=2k时,.∴b1+b2+…+b2m=(b1+b3+…+b2m﹣1)+(b2+b4+…+b2m)=(1+2+3+…+m)+[2+3+4+…+(m+1)]=.(Ⅲ)假设存在p和q满足条件,由不等式pn+q≥m及p>0得.∵,根据b m的定义可知,对于任意的正整数m 都有,即﹣p﹣q≤(4p﹣1)m<﹣q对任意的正整数m都成立.当4p﹣1>0(或4p﹣1<0)时,得(或),这与上述结论矛盾!当4p﹣1=0,即时,得,解得.∴存在p和q,使得;p和q的取值范围分别是,.2017年1月4日。