最优人教版高一数学模块综合检测及答案A
- 格式:doc
- 大小:107.00 KB
- 文档页数:6
模块综合检测时间:分钟分值:分一、选择题:本大题共题,每题分,共分.在下列各题的四个选项中,只有一个选项是符合题目要求的..已知集合={<<},={≤},则∩等于( ).() .(].() .(]答案:解析:={<<}={<<},={≤}所以∩={<≤}.如果幂函数()=α的图象经过点(,),则()的值等于( )答案:解析:由α=得α=-,故()==..函数=的定义域是( ).(-,+∞).[-,+∞).(-)∪(,+∞).[-)∪(,+∞)答案:解析:要使函数有意义,需(\\(+>-≠,))解得>-且≠.∴函数定义域为(-)∪(,+∞)..设()=(\\(-,<,(-(,≥,)))则[()]的值为( )....答案:解析:[()]=()=,故选..函数=+(-≤≤)的值域是( ).[] .[-,].[-,] .[,]答案:解析:画出函数=+(-≤≤)的图象,由图象得值域是[-,],故选..函数()=(\\(+-,≤,-,>))的所有零点之和为( )....答案:解析:当≤时,令+-=,解得=-;当>时,令-=解得=,所以已知函数所有零点之和为-+=..三个数,的大小顺序是( ).<<.<<.>>.>>答案:解析:∵>=<<,<<=,∴>>..函数()=(+)是奇函数,则实数等于( ).-.-..-或答案:解析:(法一)(-)=(+)=-(),∴(-)+()=,即[(+)(+)]=,∴=-.(法二)由()=得=-..某种生物的繁殖数量(只)与时间(年)之间的关系式为=(+),设这种生物第一年有只,则第年它们发展到( ).只.只.只.只答案:解析:由题意得=(+),∴=,∴第年时,=(+)=..函数()=(-)的大致图象是( )答案:解析:∵(-)=(-)[(-)-]=-(-)=-()∴=(-)为奇函数,排除、.又<<时,<.故选..已知()是上的偶函数,且满足(+)=(),当∈()时,()=+,则()等于( )..-..-答案:解析:由条件知()=(-+)=(-).又因为(-)=(),当∈()时,()=+,所以()=.所以()=(-)=()=..函数()=(\\((<(,,(-(+(≥())满足对任意≠,都有<成立,则的取值范围是( ) .(,) .(,].() .[,+∞)答案:解析:由题意知()在上是减函数,∴<<,又-+≤≤,≤,∴<≤.二、填空题:本大题共小题,每小题分,共分.把答案填在题中横线上..已知函数()对任意,∈,都有(+)=()+(),且()=,则(-)等于.答案:-解析:由题意得()=()+()∴()=.又(-)=()+(-)=∴()为奇函数.()=()+()=∴()=,则(-)=-..若函数()=(+)(>,且≠)的定义域和值域都是[],则的值是.答案:解析:∵≤≤,∴≤+≤,又函数()值域[],∴>,∴()=(+)=,∴=..对于任意实数、,定义{,}=(\\(,≤,>)).设函数()=-+,()=,则函数()={(),()}的最大值是.。
模块综合测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-2<x<1},B={x|x<-1 或x>3},则A∩B=( )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}2.(2024·河北辛集中学月考)若幂函数f(x)]=xα的图象经过点,则α的值为( )A.2 B.-2C.D.-3.(2024·湖北武汉期末)已知函数f(x)]=x-e-x的部分函数值如表所示:x 10.50.750.6250.562 5f(x)0.632 1-0.106 50.277 60.089 7-0.007那么函数f(x)]的一个零点的近似值(精确度为0.01)为( )A.0.55 B.0.57C.0.65 D.0.74.(2024·浙江高考)设x∈R,则“sin x=1”是“cos x=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(2024·福建厦门双十中学月考)将y=图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到y=g(x)] 的图象,再将y=g(x)]图象向左平移,得到y=φ(x)]的图象,则y=φ(x)]的解析式为( )A.y=sin x B.y=cos xC.y=sin 9x D.y=sin6.(2024·山东青岛期末)在直角坐标系中,已知圆C的圆心在原点,半径等于1 ,点P从初始位置(0,1)起先,在圆C上按逆时针方向,以角速度rad/s均速旋转3 s后到达P′点,则P′的坐标为( )A.B.C.D.7.(2024·浙江杭州四中期末)已知实数x,y,z满意x=40.5,y=log53,z=sin ,则( )A.z<x<y B.y<z<xC.z<y<x D.x<z<y8.(2024·北京高考)已知函数f(x)=cos2x-sin2x,则( )A.f(x)在上单调递减B.f(x)在上单调递增C.f(x)在上单调递减D.f(x)在上单调递增二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2024·山东新泰一中期末)下列结论中正确的是( )A.若a,b为正实数,且a≠b,则a3+b3>a2b+ab2B.若a,b,m为正实数,且a<b,则<C.若>,则a>bD.当x>0时,x+的最小值为210.(2024·新高考Ⅰ卷)如图是函数y=sin (ωx+φ)的部分图象,则sin (ωx+φ)=( )A.sin B.sinC.cos D.cos11.(2024·浙江省杭州七中期末)已知函数f(x)]=sin ,则fA.是奇函数B.是偶函数C.关于点(π,0)成中心对称D.关于点成中心对称12.(2024·山东泰安期末)已知f(x)]是定义在R上的偶函数,且在(-∞,0)上单调递增,则下列结论正确的是( )A.f(x)]在(0,+∞)上单调递减B.f(x)]最多有两个零点C.f(log0.53)>f(log25)D.若实数a满意f(2a)>f,则a<三、填空题:本题共4小题,每小题5分,共20分.13.若2a=3b=,则+的值为________.14.的值为________.15.(2024·山东青岛期末)已知函数f(x)]=ax2+bx+c,满意不等式f(x)]<0的解集为(-∞,-2)∪(t,+∞),且f(x-1)为偶函数,则实数t=________.16.某化工厂产生的废气必需经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.25%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:时)之间的函数关系为P=P0·e t ln k(其中e是自然对数的底数,k为常数,P0为原污染物总量).若前4个小时废气中的污染物被过滤掉了96%,则k=________;要能够按规定排放废气,还须要过滤n小时,则正整数n的最小值为________(参考数据:log52≈0.43).四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(2024·浙江高校附属中学期末)(1)计算:+log23·log34+lg 2+lg 50;(2)已知tan α=2,求cos ·cos(π-α)的值.18.(本小题满分12分)(2024·山东临沂期末)已知集合A={x|log2(x-1)<2},B={x|x2-2ax+a2-1<0}.(1)若a=1,求A∪B;(2)求实数a的取值范围,使________成立.从①A⊆∁R B,②B⊆∁R A,③(∁R A)∩B=∅中选择一个填入横线处求解.注:假如选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)已知函数f(x)=2sin2x+cos x-2.(1)求函数f(x)的零点;(2)当x∈时,函数f(x)的最小值为-1,求α的取值范围.20.(本小题满分12分)(2024·湖北华中师大一附中期末)函数f(x)]=-sin2x+sin x cos x.(1)若f=-+,α∈(0,π),求sin α;(2)若函数y=f(ω)(0<ω<3)的图象在区间有且仅有一条经过最高点的对称轴,求ω的取值范围(不须要证明唯一性).21.(本小题满分12分)(2024·湖北沙市中学期末)某地某路无人驾驶公交车发车时间间隔t(单位:分钟)满意5≤t≤20,t∈N.经测算,该路无人驾驶公交车载客量p(t)与发车时间间隔t满意:p(t)=其中t∈N.(1)求p(5),并说明p(5)的实际意义;(2)若该路公交车每分钟的净收益y=-10(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.22.(本小题满分12分)(2024·山东烟台期末)已知函数f(x)=4log2x+,g(x)=m·4x +2x+1-m,m<0.(1)求函数f(x)在区间(1,+∞)上的最小值;(2)求函数g(x)在区间[1,2]上的最大值;(3)若对∀x1∈(1,+∞),∃x2∈[1,2],使得f(x1)+g(x2)>7成立,求实数m的取值范围.模块综合测评1.A [在数轴上表示出集合A,B,如图所示.由图知A∩B={x|-2x-1}.]2.C [由已知可得f (3)=3α=,解得α=.故选C.]3.B [函数f (x)=x-在R上单调递增,由数表知:f (0.5) f (0.562 5)0 f (0.625) f (0.75) f (1),由函数零点存在定理知,函数f (x)的零点在区间(0.562 5,0.625)内,所以函数f (x)的一个零点的近似值为0.57.故选B.]4.A [sin x=1,x=+2kπ,k∈Z,cos x=0,x=+kπ,k∈Z;sin x=1可推出cos x=0,充分性成立;反之不成立,必要性不成立,故为充分不必要条件,故选A.]5.A [将y=sin 图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到g(x)=sin 的图象,再将y=g(x)图象向左平移,得到φ(x)=sin=sin x的图象,故选A.]6.D [点P(0,1)为角α=的终边上一点,3 s后点P按逆时针方向旋转到达P′点,点P′落在角β=+3×的终边上,cos β=cos =-cos =-,sin β=sin =-sin =-,故P′的坐标为.故选D.]7.C [x=40.5=>1,0=log51y=log53log55=1,z=sin 0,综上所述,故z y x.故选C.]8.C [f (x)=cos2x-sin2x=cos 2x.选项A中:2x∈,此时f (x)单调递增,A错误;选项B中:2x∈,此时f (x)先递增后递减,B错误;选项C中:2x∈,此时f (x)单调递减,C正确;选项D中:2x∈,此时f (x)先递减后递增,D错误.故选C.]9.AC[对于A,若a,b为正实数,且a≠b,则a3+b3-=(A+B)-ab(A+B)=(A+B)(a-b)2>0,所以a3+b3>a2b+ab2,故A正确;对于B,若a,b,m为正实数,且a<b,则-=>0,所以>,故B错误;对于C,因为>,又c2>0,故a>b,故C正确;对于D,当x>0时,x+≥2=2,当且仅当x=时取等号,故D错误.故选AC.] 10.BC[由题图可知,函数的最小正周期T=2=π,∴=π,ω=±2.当ω=2时,y=sin (2x+φ),将点代入得,sin =0,∴2×+φ=2kπ+π,k∈Z,即φ=2kπ+,k∈Z,故y=sin .由于y=sin =sin =sin ,故选项B正确;y=sin =cos=cos ,选项C正确;对于选项A,当x=时,sin =1≠0,错误;对于选项D,当x==时,cos =1≠-1,错误.当ω=-2时,y=sin (-2x+φ),将代入,得sin =0,结合函数图象,知-2×+φ=π+2kπ,k∈Z,得φ=+2kπ,k∈Z,∴y=sin ,但当x=0时,y=sin =-<0,与图象不符合,舍去.综上,选BC.]11.BD[因为f =sin =sin =cos x,故函数f 为偶函数,因为函数f 的对称中心坐标为,所以函数f 的图象关于点成中心对称.故选BD.]12.ACD[因为f (x)是定义在R上的偶函数,且在(-∞,0)上单调递增,所以f (x)在(0,+∞)上单调递减,故A正确;函数零点个数无法确定,故B错误;f =f (log23),因为log23<log25,所以f (log23)>f (log25),故C正确;若实数a满意f (2a)>f ,即f (2a)>f ,则2a<=,解得a<,故D正确.故选ACD.]13.2 [因为2a=3b=,所以a=log2,b=log3,所以+=+=+==2.]14.1 [原式====1.]15.0 [依据解集易知:a<0 ,由f (x-1)为偶函数,可得f (x)关于直线x=-1对称,即b-2a=0.易知ax2+bx+c=0的两根为t,-2,则依据根与系数的关系可得t-2=-=-2,解得t =0.]16. 4 [明显,当t=0时,P=P0,当t=4时,P=4%P0,则有P0=P0·e4ln k,于是得k4=,而k>0,解得k=,设经过m小时后能够按规定排放废气,则有P0·e m ln k≤0.25%P0⇔k m≤,即≤⇔≥400⇔m≥log5400⇔m≥4+8log52≈4+8×0.43=7.44,于是得还须要过滤时间n=m-4≥3.44,则正整数n的最小值为4.所以k=,正整数n的最小值为4.]17.解:(1)+log23·log34+lg 2+lg 50=+log23×2log32+lg 100=+2+2=.(2)cos ·cos (π-α)=sin α·(-cos α)===-.18.解:(1) A={x|log2(x-1)<2}={x|0<x-1<4}={x|1<x<5},B={x|x2-2ax+a2-1<0}={x|[x-(a-1)][x-(a+1)]<0}={x|a-1<x<a+1},当a=1时,B={x|0<x<2},所以A∪B={x|0<x<5}.(2)由(1)知,A={x|1<x<5},B={x|a-1<x<a+1},所以∁R A={x|x≤1或x≥5},∁R B={x|x≤a-1或x≥a+1}.若选①,A⊆∁R B,则a+1≤1或a-1≥5,解得a≤0或a≥6,所以a的取值范围为a≤0或a≥6.若选②,B⊆∁R A,则a+1≤1或a-1≥5,解得a≤0或a≥6,所以a的取值范围为a≤0或a≥6.若选③,(∁R A)∩B=∅,则解得2≤a≤4,所以a的取值范围为2≤a≤4.19.解:(1)由sin2x+cos2x=1得:f (x)=-2cos2x+cos x,令f (x)=0,解得cos x=0或cos x=,当cos x=0时,x=+kπ,k∈Z;当cos x=时,x=2kπ±,k∈Z.所以函数f (x)的零点为+kπ,2kπ±,k∈Z.(2)因为f (x)=-2cos2x+cos x,令cos x=t,则f (x)=g(t)=-2t2+t,因为f (x)的最小值为-1,所以-2t2+t≥-1(等号可取),解得-≤t≤1(等号可取),即-≤cos x≤1(等号可取),因为x∈,且cos =-,由-≤cos x≤1(等号可取),x∈可得-≤α<.所以α的取值范围为.20.解: f (x)=-sin2x+sin x cos x=-+=sin -.(1)由f =-+,∴sin =,∵α∈(0,π),∴<α+<π.又sin =<=sin ,∴<α+<π,∴cos =-.故sin α=sin =sin cos -cos sin =.(2) y=f (ωx)=sin -,设t=2ωx+,由x∈,则t∈,由0<ω<3,则<+<,<ωπ+<,由题意y=sin t-,在t∈时,有且仅有一条经过最高点的对称轴,即y=sin t-的对称轴x=或x=仅有一条在定义域内.所以或解得<ω<或<ω<.又0<ω<3,故ω的取值范围为∪.21.解:(1)p(5)=60-(5-10)2=35,实际意义为:发车时间间隔为5分钟时,载客量为35.(2)∵y=-10,∴当5≤t<10时,y=-10=110-,任取5≤t1<t2≤6,则y1-y2=-=6(t2-t1)+-=6(t2-t1)+=,∵5≤t1<t2≤6,∴t2-t1>0,25<t1t2<36,∴y1-y2<0,∴函数y=110-在区间[5,6]上单调递增,同理可证该函数在区间[6,10)上单调递减,∴当t=6时,y取得最大值38;当10≤t≤20时,y=-10=-10,该函数在区间[10,20]上单调递减,则当t=10时,y取得最大值28.4.综上,当发车时间间隔为6分钟时,该路公交车每分钟的净收益最大,最大净收益为38元.22.解:(1)当x∈(1,+∞)时,log2x>0,所以4log2x +≥ 2=4,当且仅当4log2x =,即x =时,等号成立,所以,函数f (x)在区间(1,+∞)上的最小值为4.(2)g(x)=m·4x+2x+1-m=m(2x)2+2·2x-m,x∈[1,2],令2x=t,则上述函数化为y(t)=mt2+2t-m,t∈[2,4].因为m<0,所以对称轴t =->0,当-≤2,即m ≤-时,函数y(t)在[2,4]上单调递减,所以当t=2时,y max=3m+4;当2<-<4,即-<m<-时,函数g(t)在上单调递增,在上单调递减,所以y max=y=-m -;当-≥4,即-≤m<0时,函数g(t)在[2,4]上单调递增,所以y max=y(4)=15m+8.综上,当-≤m<0时,g(x)的最大值为15m+8;当-<m<-时,g(x)的最大值为-m -;当m ≤-时,g(x)的最大值为3m+4.(3)对∀x1∈(1,+∞),∃x2∈[1,2],使得f (x1)+g(x2)>7成立,等价于g(x2)>7-f (x1)成立,即g(x)max>[7-f (x)]max,由(1)可知,当x∈(1,+∞)时,[7-f (x)]max=7-f (x)min,因此,只须要g(x)max>3.所以当-≤m<0时,15m+8>3,解得m>-,所以-≤m<0;当-<m<-时,-m ->3,解得m <或<m<0,所以,<m<-;当m ≤-时,3m+4>3,解得m>-,此时解集为空集.综上,实数m 的取值范围为<m<0.。
一、 选择题(每小题5分,共60分)1.设集合A 二{3的倍数}, B 二{2的倍数}・则AUB 是( ).A. {偶数}B. {被2或3整除的数}C. {6的倍数}D. {2和3的公倍 数}2•若 U 二 R,集合 A 二{x I xNl,或 x<-l},B 二{x I xW-l}・则 BQ (C L A )为( ).A. 0B. {x | x<-l}C. {x | —lWx 〈l}D. {-1}3.已知集合A={x | aTWxWa+2}, B={x | 3<x<5}.则能使AoB 成立的实数a p 二 07. 若集合A 二{x | kx?+4x+4二0, XGR}只有一个元素.则集合A 中实系数k 的值为 ( )・A. 1B. 0C. 0或1D.以上答案 都不对8. 已知集合A={x | -2<x<4) ,B={x | x^a},若AGB 二0,且AUB 中不含元素6•则 下列值中a 可能是( ).A. 4B. 5C. 6D. 7 9•已知集合A, B, C 满足A 尝古则下列各式中错误的是( ).A. (AUB^ CB. AAC $C. A (BPC) 隅(AUC) B的取值范圉是(A. {a I 3<aW4} 4. 满足条件MU {2, 3} = {1, 2, 3}的集合M 的个数是(A. 1B. 25. 下列集合中,只有一个子集的集合是( A. {x | x'WO} B. {x I x'WO}6•已知集合A 、B 、C 为非空集合,M 二AQC, A. 一定有 c n p=c B . 一定有 c n P =P)・ B. {a I C ・{a I 3<a<4}C. 3 )・C. {x | x 2<0} N=BAC, P=MU Nc. 一定有 cnp=cup )・ D. 0 D. 4 D. {x | x 3<0} ( )・ D.—定有CQ 10.设全集I 二{(x, y) I x, yWR},集合 M 二{(x, y) N 二{(x, y) | y Hx+1}・那么Ci (M UN)等于(A. 0B. {(2, 3)}D. {(x, y) | y 二x+1} ). C. (2, 3)11.已知1]二匕 A={x | x>3 V2 }, a=—— ・贝lj (2-V3 ).A. a c Ci AB. Ci AC. {a} G A C.A12 •设A,B非空集合,且A QB二0,若M二{A的子集},W二{x | x 15}・则().A.MPW= 0B. APB^MUW c.Mnw={ 0 } D. AUB^MnW二、填空题(每小题4分,共16分)13•方程x2-3ax + 2a2=0 (aHO)的解集为______________________________ 。
模块综合测试一、选择题(每小题5分,共60分)1.已知集合A ={1,2},B ={2,2k },若B ⊆A ,则实数k 的值为( D )A .1或2 B.12 C .1 D .2解析:∵集合A ={1,2},B ={2,2k },B ⊆A ,∴由集合元素的互异性及子集的概念可知2k =1,解得k =2.故选D.2.设U 是全集,M ,P ,S 是U 的三个子集,则图中阴影部分所示的集合为( D )A .(M ∩P )∩SB .(M ∩P )∪(∁U S )C .(M ∩P )∪SD .(M ∩P )∩(∁U S )解析:由题图知,阴影部分在集合M 中,在集合P 中,但不在集合S 中,故阴影部分所表示的集合是(M ∩P )∩(∁U S ).3.已知锐角α的终边上一点P (sin40°,1+cos40°),则锐角α=( B )A .80°B .70°C .20°D .10°解析:点P 到坐标原点的距离为sin 240°+(1+cos40°)2=2+2cos40°=2+2×(2cos 220°-1)=2cos20°,由三角函数的定义可知cos α=sin40°2cos20°=2sin20°cos20°2cos20°=sin20°.∵点P 在第一象限,且角α为锐角,∴α=70°.故选B.4.lg2-lg 15-e ln2-(14)-12 +(-2)2的值为( A )A .-1 B.12 C .3 D .-5解析:原式=lg2+lg5-2-2+2=lg10-2=1-2=-1.故选A.5.设角α=-35π6,则2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+sin (π-α)-cos 2(π+α)的值为( D )A.12B.32C.22D. 3解析:因为α=-35π6,所以2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+sin (π-α)-cos 2(π+α)=2sin αcos α+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α=cos αsin α=cos (-35π6)sin (-35π6)=cos π6sin π6=3.故选D.6.设a ,b ,c 均为正数,且2a=log 12 a ,(12)b =log 12 b ,(12)c =log 2c ,则( A )A .a <b <cB .c <b <aC .c <a <bD .b <a <c解析:因为a ,b ,c 均为正数,所以由指数函数和对数函数的单调性得log 12 a =2a >1⇒0<a <12,log 12b =(12)b ∈(0,1)⇒12<b <1,log 2c =(12)c >0⇒c >1,所以a <b <c ,故选A.7.设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,且f (-x )=f (x ),则( D )A .f (x )在(0,π2)上单调递增B .f (x )在(π4,3π4)上单调递减C .f (x )在(π4,3π4)上单调递增D .f (x )在(π2,π)上单调递增解析:f (x )=2cos(ωx +φ-π4),因为T =π,所以ω=2.又因为f (-x )=f (x ),|φ|<π2,所以φ=π4,所以f (x )=2cos2x ,经检f (x )在(π2,π)上单调递增,故选D.8.若关于x 的方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象可以是( D )解析:因为关于x 的方程f (x )-2=0在(-∞,0)内有解,所以函数y =f (x )与y =2的图象在(-∞,0)内有交点,观察题中图象可知只有D 中图象满足要求.9.若函数f (x )=log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值X 围为( D )A .(-∞,-4]∪[2,+∞)B .(-4,4]C .[-4,4)D .[-4,4]解析:令t =x 2-ax +3a >0,则y =log 12t ,由t =x 2-ax +3a 图象的对称轴为直线x =a 2,且y =log 12t 在(0,+∞)上单调递减,函数f (x )=log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,可得t =x 2-ax +3a 在区间(2,+∞)上为增函数,则2≥a 2,4-2a +3a ≥0,解得a ∈[-4,4],故选D.10.如果将函数f (x )=sin2x 的图象向左平移φ(φ>0)个单位长度,函数g (x )=cos(2x -π6)的图象向右平移φ个单位长度后,二者能够完全重合,则φ的最小值为( C )A.π3B.2π3C.π12D.5π12解析:将函数f (x )=sin2x 的图象向左平移φ(φ>0)个单位长度得到y =sin[2(x +φ)]=sin(2x +2φ)的图象,将函数g (x )=cos(2x -π6)的图象向右平移φ个单位长度后,可得函数y =cos[2(x -φ)-π6]=cos(2x -2φ-π6)=sin[π2-(2x -2φ-π6)]=sin(2π3-2x +2φ)=sin(2x -2φ+π3)的图象.二者能够完全重合,由题意可得2x +2φ=2x -2φ+π3+2k π,k ∈Z ,解得φ=12k π+π12(k ∈Z ),又φ>0,故当k =0时,φmin =π12.故选C.11.定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (13)=0,则满足f (log 18x )>0的x 的取值X 围是( B )A .(0,+∞)B .(0,12)∪(2,+∞)C .(0,18)∪(12,2)D .(0,12)解析:由题意知f (x )=f (-x )=f (|x |),所以f (|log 18x |)>f (13).因为f (x )在[0,+∞)上单调递增,所以|log 18x |>13,又x >0,解得0<x <12或x >2.12.具有性质f (1x )=-f (x )的函数,我们称为满足“倒负”变换.给出下列函数:①y =ln 1-x 1+x ;②y =1-x 21+x 2;③y =⎩⎨⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的是( C )A .①②B .①③C .②③D .①解析:①f (1x )=ln 1-1x 1+1x=ln x -1x +1,-f (x )=-ln 1-x 1+x =ln 1+x 1-x ,f (1x )≠-f (x ),不满足“倒负”变换.②f (1x )=1-(1x )21+(1x )2=x 2-1x 2+1=-1-x 21+x 2=-f (x ),满足“倒负”变换. ③当0<x <1时,1x >1,f (x )=x ,f (1x )=-x =-f (x );当x >1时,0<1x<1,f (x )=-1x ,f (1x )=1x =-f (x );当x =1时,1x =1,f (x )=0,f (1x )=f (1)=0=1x =-f (x ),满足“倒负”变换.综上,②③是符合要求的函数,故选C.二、填空题(每小题5分,共20分)13.函数y =3-2x -x 2的定义域是[-3,1].解析:要使函数有意义,必须使3-2x -x 2≥0,即x 2+2x -3≤0,∴-3≤x ≤1.14.如图所示,已知A ,B 是单位圆上两点且|AB |=3,设AB 与x 轴正半轴交于点C ,α=∠AOC ,β=∠OCB ,则sin αsin β+cos αcos β=32.解析:由题意得∠OAC =β-α,因为A ,B 是单位圆上两点且|AB |=3,所以sin αsin β+cos αcos β=cos(β-α)=cos ∠OAC =12|AB |1=32.15.设函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,log 2x ,x >0,那么函数y =f (f (x ))-1的零点的个数为2.解析:当x ≤0时,f (f (x ))=f (2x )=log 22x =x ;当0<x ≤1时,f (f (x ))=f (log 2x )=2log 2x =x ;当x >1时,f (f (x ))=f (log 2x )=log 2(log 2x ).所以由f (f (x ))=1得x =1,或x =4,即函数有2个零点.16.给出以下四个命题:①若集合A ={x ,y },B ={0,x 2},A =B ,则x =1,y =0; ②若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0);③函数f (x )=1x 的单调递减区间是(-∞,0)∪(0,+∞);④若f (x +y )=f (x )f (y ),且f (1)=1,则f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)+f (2 016)f (2 015)=2 016.其中正确的命题有①②.(写出所有正确命题的序号)解析:①由A ={x ,y },B ={0,x 2},A =B 可得⎩⎨⎧ y =0,x =x 2或⎩⎨⎧ x =0,y =x 2.(舍)故x =1,y =0正确;②由函数f (x )的定义域为(-1,1),则函数f (2x +1)中x 应满足-1<2x +1<1,解得-1<x <0,即函数f (2x +1)的定义域为(-1,0),正确;③函数f (x )=1x 的单调递减区间是(-∞,0),(0,+∞),不能用并集符号,错误;④由题意f (x +y )=f (x )·f (y ),且f (1)=1,则f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)+f (2 016)f (2 015)=f (1)·f (1)f (1)+f (3)·f (1)f (3)+…+f (2 013)·f (1)f (2 013)+f (2 015)·f (1)f (2 015)=f (1)+f (1)+…+f (1)=1+1+…+1=1 008,错误.三、解答题(共70分)17.(本小题10分)如图,以Ox 为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于P ,Q 两点,已知点P 的坐标为(-35,45).(1)求sin2α+cos2α+11+tan α的值; (2)若cos αcos β+sin αsin β=0,求sin(α+β)的值.解:(1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos α(sin α+cos α)sin α+cos αcos α=2cos 2α=2×(-35)2=1825. (2)∵cos αcos β+sin αsin β=cos(α-β)=0,且0<β<α<π,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725.18.(本小题12分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,log a x ,x >0,且点(4,2)在函数f (x )的图象上.(1)求函数f (x )的解析式,并在如图所示的平面直角坐标系中画出函数f (x )的图象;(2)求不等式f (x )<1的解集;(3)若方程f (x )-2m =0有两个不相等的实数根,某某数m 的取值X 围.解:(1)∵点(4,2)在函数的图象上,∴f (4)=log a 4=2,解得a =2.∴f (x )=⎩⎨⎧ x +2,x ≤0,log 2x ,x >0.函数的图象如图所示.(2)不等式f (x )<1等价于⎩⎪⎨⎪⎧ x >0,log 2x <1或⎩⎨⎧ x ≤0,x +2<1,解得0<x <2或x <-1,∴原不等式的解集为{x |0<x <2或x <-1}.(3)∵方程f (x )-2m =0有两个不相等的实数根,∴函数y =2m 的图象与函数y =f (x )的图象有两个不同的交点.结合图象可得2m ≤2,解得m ≤1.∴实数m 的取值X 围为(-∞,1].19.(本小题12分)已知函数f (x )=A sin(ωx +φ)(ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)将函数y =f (x )的图象上所有点的纵坐标不变,横坐标缩短为原来的12,再将所得函数图象向右平移π6个单位长度,得到函数y =g (x )的图象,求g (x )的单调递增区间;(3)当x ∈[-π2,5π12]时,求函数y =f (x +π12)-2f (x +π3)的最值.解:(1)由题图得34T =116π-π3=96π=32π,∴T =2π,∴ω=2πT =1.由f (116π)=0,得A sin(116π+φ)=0,∴116π+φ=2k π,k ∈Z ,解得φ=2k π-116π,k ∈Z .∵0<φ<π2,∴当k =1时,φ=π6.又由f (0)=2,得A sin φ=2,∴A =4.∴f (x )=4sin(x +π6). (2)将f (x )=4sin(x +π6)的图象上所有点的横坐标缩短为原来的12,纵坐标不变,得到y =4sin(2x +π6)的图象,再将图象向右平移π6个单位长度得到g (x )=4sin[2(x -π6)+π6]=4sin(2x -π6)的图象.由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),得k π-π6≤x ≤k π+π3(k ∈Z ),∴g (x )的单调递增区间为[k π-π6,k π+π3](k ∈Z ).(3)y =f (x +π12)-2f (x +π3)=4sin[(x +π12)+π6]-2×4sin[(x +π3)+π6]=4sin(x +π4)-42sin(x +π2)=4(sin x cos π4+cos x sin π4)-42cos x =22sin x +22cos x -42cos x =22sin x -22cos x =4sin(x -π4).∵x ∈[-π2,512π],∴x -π4∈[-34π,π6],∴sin(x -π4)∈[-1,12],∴4sin(x-π4)∈[-4,2],∴函数的最小值为-4,最大值为2.20.(本小题12分)某工厂现有职工320人,平均每人每年可创利20万元.该工厂打算购进一批智能机器人(每购进一台机器人,将有一名职工下岗).据测算,如果购进智能机器人不超过100台,每购进一台机器人,所有留岗职工(机器人视为机器,不作为职工看待)在机器人的帮助下,每人每年多创利2千元,每台机器人购置费及日常维护费用折合后平均每年2万元,工厂为体现对职工的关心,给予下岗职工每人每年4万元补贴;如果购进智能机器人数量超过100台,则工厂的年利润y =8 202+lg x 万元(x 为机器人台数且x <320).(1)写出工厂的年利润y 与购进智能机器人台数x 的函数关系.(2)为获得最大经济效益,工厂应购进多少台智能机器人?此时工厂的最大年利润是多少?(参考数据:lg2≈0.301 0)解:(1)当购进智能机器人台数x ≤100时,工厂的年利润y =(320-x )(20+0.2x )-4x -2x =-0.2x 2+38x +6 400,∴y =⎩⎨⎧ -0.2x 2+38x +6 400,0≤x ≤100,x ∈N ,8 202+lg x ,100<x <320,x ∈N .(2)由(1)知,当0≤x ≤100时,y =-0.2(x -95)2+8 205, 当x =95时,y max =8 205;当x >100时,y =8 202+lg x 为增函数,8 202+lg x <8 202+lg320=8 202+1+5lg2≈8 204.505<8 205.综上可得,工厂购进95台智能机器人时获得最大经济效益,此时的最大年利润为8 205万元.21.(本小题12分)已知函数f (x )=1x 2-x 是定义在(0,+∞)上的函数.(1)用定义法证明函数f (x )的单调性;(2)若关于x 的不等式f (x 2+2x +m x)<0恒成立,某某数m 的取值X 围.解:(1)证明:任取0<x 1<x 2,∴f (x 1)-f (x 2)=(1x 21-x 1)-(1x 22-x 2)=x 22-x 21x 21x 22+(x 2-x 1)=(x 2-x 1)(x 2+x 1)x 21x 22+(x 2-x 1)=(x 2-x 1)(x 2+x 1x 21x 22+1). ∵0<x 1<x 2,∴x 2-x 1>0,x 2+x 1x 21x 22+1>0,即f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2). 故f (x )在(0,+∞)上单调递减.(2)由(1)知函数f (x )在其定义域内是减函数,且f (1)=0,∴当x ∈(0,+∞)时,原不等式恒成立等价于f (x 2+2x +m x)<f (1)恒成立,即x 2+2x +m x>1恒成立,即m >-x 2-x . ∵当x ∈(0,+∞)时,-x 2-x =-(x +12)2+14<0,∴m ≥0,即实数m 的取值X 围是[0,+∞).22.(本小题12分)已知函数g (x )=ax 2-2ax +1+b (a ≠0,b <1)在区间[2,3]上有最大值4,最小值1,设f (x )=g (x )x .(1)求a ,b 的值;(2)若不等式f (2x )-k ·2x ≥0在x ∈[-1,1]时恒成立,某某数k 的取值X 围.解:(1)g (x )=a (x -1)2+1+b -a ,当a >0时,g (x )在[2,3]上为增函数,故⎩⎨⎧ g (2)=1,g (3)=4,即⎩⎨⎧4a -4a +1+b =1,9a -6a +1+b =4,解得⎩⎨⎧ a =1,b =0. 当a <0时,g (x )在[2,3]上为减函数,故⎩⎨⎧ g (2)=4,g (3)=1,即⎩⎨⎧4a -4a +1+b =4,9a -6a +1+b =1,解得⎩⎨⎧ a =-1,b =3. ∵b <1,∴a =1,b =0. (2)由(1)知,g (x )=x 2-2x +1,f (x )=x +1x -2. 不等式f (2x )-k ·2x ≥0可化为2x+12x -2≥k ·2x ,即1+(12x )2-22x ≥k .令12x =m ,则k ≤m 2-2m +1.∵x ∈[-1,1],∴m ∈[12,2].记h (m )=m 2-2m +1,则h (m )min =0.∴k ≤0. ∴k 的取值X 围是(-∞,0].。
模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={x|x<6,且x ∈N *},集合A={1,3},B={3,5},则∁U (A ∪B )等于( ) A.{1,4}B.{1,5}C.{2,4}D.{2,5}解析:由已知可得U={1,2,3,4,5},A ∪B={1,3,5},故∁U (A ∪B )={2,4}. 答案:C2.函数y=-1+l og 14x (x ≥4)的值域是( )A.(-∞,-2]B.(-∞,0]C.[-2,+∞)D.[2,+∞)解析:∵函数y=-1+l og 14x 在[4,+∞)上单调递减,∴y ≤-1+l og 144=−2,∴所求函数的值域为(-∞,-2].答案:A3.函数y =√3x -1+1x -1的定义域为( ) A.(-∞,0] B.[1,+∞) C.[0,1)D.[0,1)∪(1,+∞)解析:函数有意义时{3x -1≥0,x -1≠0,解得x ≥0,且x ≠1.故函数定义域为[0,1)∪(1,+∞).答案:D4.下列函数中,在区间(0,+∞)内是增函数的是()A.y=x2-2xB.y=(12)x C.x=logπx D.x=x-12解析:对于A,函数y=x2-2x在区间(0,1)内递减,在(1,+∞)内递增,故A不正确,B,D在(0,+∞)内为减函数;对于C,因为π>1,所以y=logπx在(0,+∞)内为增函数.答案:C5.函数f(x)=e x−1x的零点所在的区间是()A.(0,12)B.(12,1)C.(1,32)D.(32,2)解析:∵x(12)=e12−2<0,x(1)=e−1>0,∴x(12)·f(1)<0,∴函数f(x)=e x−1x的零点所在的区间是(12,1).答案:B6.设a=70.3,b=0.37,c=log70.3,则a,b,c的大小关系是()A.a<b<cB.c<b<aC.c<a<bD.b<c<a解析:∵a=70.3>1,0<b=0.37<1,c=log70.3<0,∴c<b<a.答案:B7.已知函数f(x)是定义在R上的偶函数,当x<0时,y=f(x)是减函数,若|x1|<|x2|,则()A.f(x1)-f(x2)<0B.f(x1)-f(x2)>0C.f(x1)+f(x2)<0D.f(x1)+f(x2)>0解析:∵f(x)是定义在R上的偶函数,∴f (x )的图象关于y 轴对称.又当x<0时,y=f (x )是减函数,∴当x>0时,y=f (x )是增函数. ∴当|x 1|<|x 2|时,f (|x 1|)<f (|x 2|),即f (x 1)<f (x 2),即f (x 1)-f (x 2)<0. 答案:A8.已知一次函数f (x )=kx+b 的图象过第一、第二、第三象限,且f (f (x ))=9x+8,则f (2)等于( ) A.-10B.-4C.2D.8解析:∵f (x )=kx+b ,∴f (f (x ))=k (kx+b )+b=k 2x+kb+b.又f (f (x ))=9x+8,∴{x 2=9,xx +x =8,解得{x =3,x =2或{x =-3,x =-4.∴f (x )=3x+2或f (x )=-3x-4.又f (x )的图象过第一、二、三象限,∴f (x )=3x+2,∴f (2)=8.答案:D9.已知函数f (x )=log a (2x+b-1)(a>0,且a ≠1)的图象如图所示,则a ,b 满足的关系是( )A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1解析:由题图,可知函数f(x)在R上单调递增,故a>1.函数图象与y轴的交点坐标为(0,log a b),由题图可知-1<log a b<0,得a-1<b<1.综上,0<a-1<b<1,选A.答案:A10.给出下列集合A到集合B的几种对应:其中,是从A到B的映射的有()A.①②B.①②③C.①②④D.①②③④解析:根据映射的定义知,③中集合A中的元素a对应集合B中的两个元素x,y,则此对应不是映射;④中集合A中的元素b在集合B中没有对应元素,则此对应也不是映射.仅有①②符合映射的定义,故①②是映射.答案:A11.某企业去年销售收入1 000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p%为()A.10%B.12%C.25%D.40%解析:利润300万元,纳税300·p%万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元, 共纳税300·p %+180·p %=120(万元), 故p %=25%. 答案:C12.如果函数f (x )对其定义域内的任意两个实数x 1,x 2都满足不等式x (x 1+x 22)<x (x 1)+x (x 2)2,那么称函数x (x )在定义域上具有性质x .给出函数:①x =√x ;②x =x 2;③x =2x ;④x =log 2x .其中具有性质x 的是( ) A.①②B.②③C.③④D.①④解析:分别画出它们的图象,可知函数y =√x 与函数y=log 2x 满足x (x 1+x 22)>x (x 1)+x (x 2)2;函数y=x 2与函数y=2x满足x (x 1+x 22)<x (x 1)+x (x 2)2.答案:B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若幂函数f (x )的图象过点(3,√274),则x (x )的解析式是____________________.解析:设f (x )=x α,则由已知得3α=√274=334,∴α=34,∴x (x )=x 34.答案:f (x )=x 3414.已知f (x )={x 2+1,x ≤0,-2x ,x >0,则x (x (1))=___________________.解析:∵f (1)=-2,∴f (f (1))=f (-2)=(-2)2+1=5.答案:515.已知函数f (x )是定义在R 上的奇函数,并且当x ∈(0,+∞)时,f (x )=1+ln x ,则当x<0时,f (x )= . 解析:设t<0,则-t>0.∵当x ∈(0,+∞)时,f (x )=1+ln x , ∴f (-t )=1+ln(-t ).又f (x )是定义在R 上的奇函数,∴-f (t )=1+ln(-t ),∴f (t )=-1-ln(-t ). ∴当x<0时,f (x )=-1-ln(-x ).答案:-1-ln(-x )16.已知函数f (x )={log 2x ,x >0,3x ,x ≤0,且函数x (x )=x (x )+x −x 有且只有一个零点,则实数x 的取值范围是___________________.解析:由题意可画出函数f (x )={log 2x ,x >0,3x ,x ≤0的图象,如图所示,函数h (x )=f (x )+x-a 有且只有一个零点,即y=f (x )的图象与y=a-x 的图象有且只有一个交点,显然当a>1时满足条件.答案:(1,+∞)三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)计算下列各式的值:(1)2-12√2√2-1√(1-√5)0;(2)log 3√27+lg 25+lg 4+7log 72+(−9.8)0. 解:(1)原式=2-12√2√2-1−√1=2-12+2-12+√2+1−1=2×2-12+√2=√2+√2=2√2.(2)原式=log 3332+lg 100+2+1=32+2+2+1=132.18.(12分)设全集是实数集R ,集合A={x|y=log a (x-1)+√3-x },x ={x |2x +x ≤0}. (1)当m=-4时,求A ∩B 和A ∪B ; (2)若(∁R A )∩B=B ,求实数m 的取值范围.解:(1)由{x -1>0,3-x ≥0,得1<x ≤3,即集合A=(1,3];由2x-4≤0,得2x≤22,x ≤2, 即集合B=(-∞,2].故A ∩B=(1,2],A ∪B=(-∞,3]. (2)由(1)得∁R A={x|x>3,或x ≤1}.∵(∁R A )∩B=B ,∴B ⊆∁R A. ①若B=⌀,则m ≥0;②若B ≠⌀,则m<0,∴2x ≤-m.∴x ≤log 2(-m ). ∵B ⊆∁R A ,∴log 2(-m )≤1,即log 2(-m )≤log 22,因此0<-m ≤2,-2≤m<0.综上所述,实数m 的取值范围是[-2,+∞).19.(12分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (单位:万元)与年产量x (单位:吨)之间的函数解析式可以近似地表示为y =x 25−48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,其生产的总成本最低?最低成本是多少?(2)如果每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)由y =x 25−48x +8000=15(x −120)2+5120(0≤x ≤210),所以当年产量为120吨时,其生产的总成本最低,最低成本为5120万元. (2)设该工厂年获得总利润为f (x )万元,则f (x )=40x-y=40x −x 25+48x −8000=−x 25+88x −8000=−15(x −220)2+1680(0≤x ≤210).因为f (x )在区间[0,210]上是增函数,所以当x=210时,f (x )有最大值为−15(210−220)2+1680=1660.故当年产量为210吨时,可获得最大利润1660万元.20.(12分)已知函数f (x )是定义在区间[-1,1]上的奇函数,若当x ,y ∈[-1,1],x+y ≠0时,有(x+y )·[f (x )+f (y )]>0. (1)比较x (12)与x (13)的大小;(2)判断f (x )的单调性,并加以证明; (3)解不等式x (x +12)<x (1−2x ).解:(1)令x =12,x =−13,因为12+(-13)≠0, 由[12+(-13)][x (12)+x (-13)]>0,得x (12)>−x (-13),所以x (12)>x (13).(2)f (x )在区间[-1,1]上是增函数.证明如下:在区间[-1,1]上任取x 1,x 2,且x 1<x 2,则x 2-x 1>0.由题意(x 2-x 1)[f (x 2)+f (-x 1)]>0, 因为f (x )为奇函数, 所以(x 2-x 1)[f (x 2)-f (x 1)]>0. 所以f (x 2)-f (x 1)>0,即f (x 2)>f (x 1). 所以f (x )在区间[-1,1]上是增函数. (3)由(2)知,f (x )在区间[-1,1]上是增函数, 所以{-1≤x +12≤1,-1≤1-2x ≤1,x +12<1-2x ,解得0≤x <16.即不等式x (x +12)<x (1−2x )的解集为[0,16).21.(12分)设f (x )=l og 121-xxx -1为奇函数,x 为常数.(1)求a 的值;(2)证明f (x )在区间(1,+∞)内单调递增;(3)若对于区间[3,4]上的每一个x 的值,不等式f (x )>(12)x+m 恒成立,求实数m 的取值范围.解:(1)∵f (-x )=-f (x ),∴lo g 121+xx-1-x=-lo g 121-xxx -1=lo g 12x -11-xx .∴1+xx -x -1=x -11-xx ,即(1+ax )(1-ax )=-(x+1)(x-1),∴a=-1.(2)由(1)可知f (x )=lo g 12x +1x -1. 任取x 1>x 2>1,则f (x 1)-f (x 2)=lo g 12x 1+1x 1-1-lo g 12x 2+1x 2-1=lo g 12(x 1+1)(x 2-1)(x 1-1)(x 2+1).由x 1>x 2>1易知(x 1+1)(x 2-1)>0,(x 1-1)·(x 2+1)>0,现比较(x 1+1)(x 2-1)(x 1-1)(x 2+1)与1的大小.(x 1+1)(x 2-1)(x 1-1)(x 2+1)-1=(x 1+1)(x 2-1)-(x 1-1)(x 2+1)(x 1-1)(x 2+1)=2(x 2-x 1)(x 1-1)(x 2+1)<0, 所以0<(x 1+1)(x 2-1)(x 1-1)(x 2+1)<1,lo g 12(x 1+1)(x 2-1)(x 1-1)(x 2+1)>0,即f (x 1)>f (x 2).故f (x )在区间(1,+∞)内单调递增. (3)设g (x )=lo g 12x +1x -1−(12)x,则g (x )在区间[3,4]上为增函数.∴g (x )>m 对x ∈[3,4]恒成立,∴m<g (3)=-98.∴实数m 的取值范围是m<-98.22.(12分)(1)当m 为何值时,f (x )=x 2+2mx+3m+4.①有且仅有1个零点? ②有2个零点,且均比-1大?(2)若函数F (x )=|4x-x 2|+a 有4个零点,求实数a 的取值范围. 解:(1)①若函数f (x )=x 2+2mx+3m+4有且仅有1个零点,则等价于Δ=4m 2-4(3m+4)=0,即4m 2-12m-16=0,即m 2-3m-4=0,解得m=4或m=-1. ②设2个零点分别为x 1,x 2,且x 1>-1,x 2>-1,x 1≠x 2,则x 1+x 2=-2m ,x 1·x 2=3m+4,故只需{x =4x 2-4(3x +4)>0,(x 1+1)+(x 2+1)>0,(x 1+1)(x 2+1)>0⇔{x 2-3x -4>0,-2x +2>0,3x +4+(-2x )+1>0⇔{x <-1或x >4,x <1,x >-5.故m 的取值范围是-5<m<-1.(2)F (x )=|4x-x 2|+a 有4个零点,即|4x-x 2|+a=0有4个实数根,即|4x-x 2|=-a 有4个实数根.令g (x )=|4x-x 2|,h (x )=-a.在同一坐标系中作出g (x )和h (x )的图象,如图所示.由图象可知要使|4x-x 2|=-a 有4个实数根,则需g (x )的图象与h (x )的图象有4个交点, 故0<-a<4,即-4<a<0.所以实数a 的取值范围为-4<a<0.。
模块综合检测时间:120分钟 分值:150分一、选择题:本大题共 12题,每题5分,共60分.在下列各题的四个选项中,只有 题目要求的.1.已知集合 A= {x|0<log 4X<1} , B = {x|xW2},则 An B 等于() A. (0,1) B. (0,2]C. (1,2)D. (1,2]答案:D解析:A= {x|0<log4x<1} ={ x|1<x<4} , B = {x|x< 2}所以 AA B = {x|1<x<2}2 .如果哥函数f(x)=x'的图象经过点(3,坐),则f(8)的值等于() 答案:B3 .函数 y =ig £±l_扁定义域是( )x — 1A . (- 1 ,)B. [-1, +8 )C. (-1,1)U (1 ,+8 )D. [-1,1)U(1,+8 )答案:Cx+ 1>0解析:要使函数有意义,需1 解得x> — 1且x W 1.l x - 1 w 1,,函数定义域为(―1,1)U(1, +8).2e x 1, xv 2,f(x)=l og3(x 2-1 -2, )则伏2)]的值为(A. 0B. 1C. 2D. 3答案:C解析:f[f(2)] =f(1) = 2,故选 C.5,函数y=x 2+x(-1<x<3)的值域是( ) 解析:a= — 1,故 f(8)= 8 2 =乎.个选项是符合 A.22 B.42c.43 D.234.设1A. [0,12]B. [-4, 12] 1 3C. [ —2p 12]D. [4, 12]答案:B解析:画出函数y=x2+x(—1WxW3)的图象,由图象得值域是[―J 12],故选B.X2 + 2x—3, x<0,6.函数f(x)=< 的所有零点之和为( )lgx — 1 , x> 0A. 7B. 5C. 4D. 3答案:A解析:当x< 0时,令x2+2x-3=0,解得x= —3;当x>0时,令lgx—1 = 0解得x=10,所以已知函数所有零点之和为—3+10=7.7.三个数2°.3,0.32, 10g0.32的大小顺序是( )A. 1og0.32<20.3<0.32B . 20.3< 0.32V 10g0.32C.10g0.32 >2°.3>0.32D.20.3>0.32>log0.32答案:D解析:.••20.3>20=1,0v0.32v1, log0.32vlog0.32vlog0.31 = 0, •. 2°.3>0.32>log0.32.28.函数f(x)=lg(1 ~ + a)是前函数,则头数 a等于( )A . — 3 B. - 1C. 1D. — 1 或 1答案:B2 .2 2.•.f(-x) + f(x) = 0,即 lg[(氐 + a)(:+ a)] = 0,•• a = 1 1.(法二)由 f(0) = 0 得 a=- 1.9.某种生物的繁殖数量y(只)与时间x(年)之间的关系式为y= alog2(x+1),设这种生物第一年有100只, 则第7年它们发展到( )A. 300 只B. 400 只C. 500 只D. 600 只答案:A解析:由题意得 100=alog2(1 + 1),,a= 100,,第 7 年时,y= 10010g2(7+ 1) = 300.解析:(法一)f(—x)= lg(年x +a) = —f(x),10.函数f(x)= x(x2—1)的大致图象是( )答案:A解析:• 1 f(-x)=(-x)[(-x)2- 1] = — x(x2— 1)=— f(x)・•.y=x(x2—1)为奇函数,排除 C、D.又0<x<1时,y<0.故选A.11.已知f(x)是R上的偶函数,且满足 f(x + 4) = f(x),当xC(0,2)时,f(x)=x+1,则f(3)等于( )A. 2B. — 2C. 1D. - 1答案:A解析:由条件知 f(3) = f(-1+4) = f(-1).又因为 f(-1)=f(1),当 xC(0,2)时,f(x) = x+1,所以 f(1)=2.所以 f(3) = f(—1)=f(1)=2.a x112.函数f(x)= " 满足对任意x产x2,都有^一匚‘一)v 0成立,则a的取值范围是(a-3 x+4a (x> 1) x1 一x2( )A. (0, 4)B. (0, 3]C. (0,1)D. [3, i )答案:B3 3解析:由题息知f(x)在R上是减函数,,0vav1,又a —3+ 4a< a,4a< 3, a< 4,,0vaw-.二、填空题:本大题共 4小题,每小题5分,共20分.把答案填在题中横线上.13.已知函数 f(x)对任意 x, yCR,都有 f(x+y) = f(x)+f(y),且 f(2) = 4,则 f(—1)等于.答案:—2解析:由题意得f(0)=f(0)+f(0).•.f(0)=0.又 f(x-x) = f(x)+f(-x)=0・•.f(x)为奇函数.f(2) = f(1)+f(1) = 4.•.f(1)=2,则 f(-1) = - 2.14.若函数f(x) = loga(x+ 1)(a>0,且aw 1)的定义域和值域都是[0,1],则a的值是答案:2解析:0< x< 1, K x+ 1W2,又函数 f(x)值域[0,1],,a>1 ,,f(1)= log a (1 + 1)= 1,a= 2.a, a< b .设函数 f(x)= —x+3, g(x)=log 2x,则函数 h(x) b, a>b =min{ f(x), g(x)}的最大值是答案:116 .已知 y = f(x) + x 是偶函数,且 f(2) = lg32 + log 416+6lg1+lg1,若 g(x)=f(x)+1,贝U g(-2) = 2 5答案:6因为 y= f(x) + x 是偶函数,所以 f( -x) - x= f(x)+x,所以 f(-x) = f(x)+ 2x,所以 g( —2)=f(—2)+1=f(2)+2X2+1 = 6.三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17 . (10分)求下列各式的值:⑴1.5 葭[-6,+ 80.25X 42+ (32X #)6-\(-亍);32 2log 5 3(2)2log 32-log 3 丁+ 10g 38 —59. AWB, B = { —2}.,方程 x 2+bx+c= 0 的判别式 A= b 2—4c=0,2b-c= 4, ① b 2-4c=0, ②由①得c= 2b —4,代入②整理得:(b —4)2=0, b= 4, c= 4.19. (12分)函数y=lg(3 —4x+x 2)的定义域为 M, xC M 时,求f(x) = 2*2—3X 4x 的最大值. 解:要使函数y=lg(3-4x+x 2)有意义,需3-4x+ x2>0,解得x< 1或x> 3设t = 2x,则0vtv2或t >8, f(x) = g(t)=4t —3t 2(0vt<2 或 t>8).而 g ⑴= 4t —3t2=— 3(t —刍2+A ,所以当 0V t<2, t=2时,g ⑴取 3 3 3 最大值2当t>8时,g(t)是减函数,所以g(t) v g(8) = — 160.总之,t=4时,g(t)最大为即f(x) = 2"2—3X 4x 3 3 3 的最大值为4.320. (12分)某商店将进货价每个10元的商品按每个18元售出时,每天可卖出 60个.商店经理到市场 上做了一番调查后发现, 若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销售就增加10个.为了每日获得最大利润, 此商品的售价应定为每个多少元?解:设此商品每个售价为 x 元时,每日利润为y 元.当 18Wx<30 时,有 y = [60 - 5(x-18)]( x- 10) = - 5(x- 20)2+500.15.对于任意实数 a 、b,定义 min{ a, b}=解析:依题意,h(x) = iog 2x(0vxw 2)—x+ 3(x>2 j ,结合图象,易知h(x)的最大值为1. 解析: f(2)= lg32 + log 416 + 6lg ;+ lg5T= 5lg2 +2 — 6lg2 -lg5=2-(lg2 + lg5) = 2-1 = 1 解: ⑴原式=即在商品提价时,当x= 20时,每日利润y最大,最大利润是 500元.当 10Vx<18 时,有 y=[60 + 10(18—x)](x— 10) = — 10(x- 17)2+490,即在商品降价时,当x= 17时,每日利润y最大,最大利润是 490元.因为500>490,所以此商品的售价应定为每个20元.21.(12 分)已知函数 f(x)= alog2x- blog1x,其中常数 a, b 满足 abw0. 3(1)若a>0, b>0,证明函数f(x)在定义域内为增函数;(2)若 a=ln(m2+2m+ 3), b= ln10,解不等式 f(3x— 1)<f(x+3).1斛:f(x)= alog2x— blog3x= alog2x+ blog3x,其TE义域为(0, +°° ).(1)任取x1, x2 € (0, +8), x1vx2,则f(x1)一 f(&)= alog2x〔 + blogM — (alog 2x2+ blog a x2)= a(log 2x1 — log2x2)+ b(log3x1 一 log3x2). •-1 0v x〔 vx2且 y= log2x 和 y= log3x在(0, +°° )上为增函数,1 lOg2x1< lOg2K2, lOg3x1< lOg3K2,当 a >0, b>0 时,a (log2x1_log2x2)< 0, b(log3x1 — log3x2)v 0,•• f(x〔)—f(x2)V 0,即 f(x1)Vf(x2),函数 f(x)在(0, )上为增函数.(2)「a=ln(m2+2m+3)=ln[(m+1)2+2]Rln2>ln1 =0, b=ln10>ln1 =0,,由(1)可知函数f(x)在(0, +8 )上为增函数,,3x- 1 >0,•.f(3x—1)wf(x+3)? ^x+3>0, ..Lxw 2,,“二3i3x— 1 w x+ 3,••・原不等式的解集为{xljv x< 2}. 322.(12分)已知定义域为[0,1]的函数f(x)同时满足以下三个条件:①对任意的xC [0,1],总有f(x)>0;② f(1) = 1;③当 x1, x2C[0,1],且 x[+x2C [0,1]时,f(x〔 +*2)>%)+ 可刈成立.称这样的函数为“友谊函数”.请解答下列各题:(1)已知f(x)为“友谊函数”,求 f(0)的值;(2)函数g(x) = 2x—1在区间[0,1]上是否为“友谊函数”?请给出理由;(3)已知 f(x)为“友谊函数”,假定存在x oC [0,1],使得 f(x0)C [0,1],且 f[f(x0)] = x0,求证:f(x0)=x0. 解:(1)令 x1=1, x2= 0,则 x1 + x2= 1 e [0,1].由③,得 f(1)>f(0)+f(1),即 f(0)< 0.又由①,得f(0)>0,所以f(0) = 0.(2)g(x)=2x—1是友谊函数.任取 x1, x2c [0,1], x1 + x2c [0,1],有 2x1>1,2x2>1.则(2x1—1)(2x2—1)>0.即 g(x[ + x2)>g(x1)+g(x2).又 g(1)=1,故g(x)在[0,1]上为友谊函数.⑶证明:取 0Wx1<x2W1,则 0<x2-x1<1.因此,f(x2)>f(x1)+ f(x2 —x1) > f(x1).假设 f(x0)Wx0,若 f(x0)>x0,则 f[f(x0)] >f(x0)>x0.若 f(x0)<x0,则 f[f(x0)]Wf(x0)<x0.都与题设矛盾,因此f(x0) = x0.1 + (23) 4 X2 4+ (2 3)6X (3 1 2)6- [(| )3] 23?■,= [|j3+(23X 2) 4+ 22X 33- ?= 2 + 4X 27= 110.(2)原式=21og32-(1og325-1og332)+ 1og323- 51og 59=210g32 — 510g32 + 210g33 + 310g 32 — 9=2 — 9= - 7.18. (12 分)已知集合 A={x|x2+ax-6=0}, B= {x|x2+bx+c= 0},且 AwB, AUB={-2,3}, AAB = {— 2},求a, b, c的值.解:.An B={ -2} , 2C A 且一2C B,将一2代入方程:x2+ax—6=0中,得a=- 1,从而 A={—2,3}.将一2 代入方程 x2 + bx+c=0,得 2b—c=4.•. AU B = {-2,3}, AU B = A, • . B? A.。
模块综合测试卷班级____ 姓名____ 考号____ 分数____ 本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.-3290°角是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 答案:D解析:-3290°=-360°×10+310° ∵310°是第四象限角 ∴-3290°是第四象限角2.在单位圆中,一条弦AB 的长度为3,则该弦AB 所对的弧长l 为( ) A.23π B.34π C.56π D.π 答案:A解析:设该弦AB 所对的圆心角为α,由已知R =1,∴sin α2=AB2R =32,∴α2=π3,∴α=23π,∴l =αR =23π.3.下列函数中周期为π2的偶函数是( )A .y =sin4xB .y =cos 22x -sin 22x C .y =tan2x D .y =cos2x 答案:B解析:A 中函数的周期T =2π4=π2,是奇函数.B 可化为y =cos4x ,其周期为T =2π4=π2,是偶函数.C 中T =π2,是奇函数,D 中T =2π2=π,是偶函数.故选B.4.已知向量a ,b 不共线,实数x ,y 满足(3x -4y )a +(2x -3y )·b =6a +3b ,则x -y 的值为( ) A .3 B .-3 C .0 D .2 答案:A解析:由原式可得⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3.∴x -y =3.5.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 是( ) A .长方形 B .平行四边形 C .菱形 D .梯形 答案:D解析:AD →=AB →+BC →+CD →=-8a -2b =2BC →, 且|AD →|≠|BC →|∴四边形ABCD 是梯形.6.已知向量a =(1,0),b =(cos θ,sin θ),θ∈⎣⎢⎡⎦⎥⎤-π2,π2,则|a +b |的取值范围是( ) A .[0,2] B .[0,2] C .[1,2] D .[2,2] 答案:D解析:|a +b |2=a 2+b 2+2a ·b =2+2cos θ,因为θ∈⎣⎢⎡⎦⎥⎤-π2,π2,所以2+2cos θ∈[2,4],所以|a +b |的取值范围是[2,2].7.已知cos α=-45,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan ⎝ ⎛⎭⎪⎫π4-α=( ) A .-17 B .7C.17D .-7 答案:B解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,cos α=-45,∴sin α=35,tan α=-34, tan ⎝ ⎛⎭⎪⎫π4-α=1-⎝ ⎛⎭⎪⎫-341+⎝ ⎛⎭⎪⎫-34=7. 8.函数f (x )=2sin ⎪⎪⎪⎪⎪⎪x -π2的部分图象是( )答案:C解析:∵f (x )=2sin ⎪⎪⎪⎪⎪⎪x -π2, ∴f (π-x )=2sin ⎪⎪⎪⎪⎪⎪π-x -π2=2sin ⎪⎪⎪⎪⎪⎪π2-x =f (x ),∴f (x )的图象关于直线x =π2对称.排除A 、B 、D.9.y =2cos ⎝ ⎛⎭⎪⎫π4-2x 的单调减区间是( ) A.⎣⎢⎡⎦⎥⎤k π+π8,k π+58π(k ∈Z ) B.⎣⎢⎡⎦⎥⎤-38π+k π,π8+k π(k ∈Z ) C.⎣⎢⎡⎦⎥⎤π8+2k π,58π+2k π(k ∈Z ) D.⎣⎢⎡⎦⎥⎤-38π+2k π,π8+2k π(k ∈Z ) 答案:A解析:y =2cos ⎝ ⎛⎭⎪⎫π4-2x =2cos ⎝⎛⎭⎪⎫2x -π4.由2k π≤2x -π4≤π+2k π,(k ∈Z )得π8+k π≤x ≤58π+k π(k ∈Z )时,y =2cos ⎝⎛⎭⎪⎫2x -π4单调递减.故选A. 10.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ的值为( )A.π4B.π3C.π2D.3π4 答案:A解析:因为直线x =π4和x =5π4是函数图象中相邻的两条对称轴,所以5π4-π4=T 2,即T2=π,T =2π.又T =2πω=2π,所以ω=1,所以f (x )=sin(x +φ).因为直线x =π4是函数图象的对称轴,所以π4+φ=π2+k π,k ∈Z ,所以φ=π4+k π,k ∈Z .因为0<φ<π,所以φ=π4,检验知,此时直线x =5π4也为对称轴.故选A.11.若向量a =(2x -1,3-x ),b =(1-x,2x -1),则|a +b |的最小值为( ) A.2-1 B .2- 2 C. 2 D .2 答案:C解析:|a +b |=x 2+2x +≥ 2.12.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝ ⎛⎭⎪⎫π4-β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( ) A.33 B .-33C.539 D .-69 答案:C解析:∵α+β2=⎝⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫π4-β2,∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫π4+β2=13×33+223×63=3+439=539. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知|a |=4,a 与b 的夹角为π6,则a 在b 方向上的投影为__________.答案:2 3解析:由投影公式计算:|a |cos π6=2 3.14.函数y =2sin x cos x -1,x ∈R 的值域是______. 答案:[-2,0]解析:y =2sin x cos x -1=sin2x -1,∵x ∈R , ∴sin2x ∈[-1,1],∴y ∈[-2,0].15.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-32,3 解析:由f (x )与g (x )的图像的对称轴完全相同,易知:ω=2,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,则f (x )的最小值为3sin ⎝ ⎛⎭⎪⎫-π6=-32,最大值为3sin π2=3, 所以f (x )的取值范围是⎣⎢⎡⎦⎥⎤-32,3. 16.下列判断正确的是________.(填写所有正确判断序号)①若sin x +sin y =13,则sin y -cos 2x 的最大值是43②函数y =sin ⎝ ⎛⎭⎪⎫π4+2x 的单调增区间是⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ) ③函数f (x )=1+sin x -cos x1+sin x +cos x 是奇函数④函数y =tan x 2-1sin x的最小正周期是π答案:①④解析:①sin y -cos 2x =sin 2x -sin x -23,∴sin x =-1时,最大值为43.②2k π-π2≤2x +π4≤2k π+π2,∴k π-3π8≤x ≤k π+π8.③定义域不关于原点对称.④y =tan x 2-1sin x =-1tan x,∴T =π.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α终边上一点P (-4,3),求cos ⎝ ⎛⎭⎪⎫π2+α-π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值.解:∵tan α=y x =-34∴cos ⎝ ⎛⎭⎪⎫π2+α-π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α=-sin α·sin α-sin α·cos α=tan α=-34.18.(12分)已知向量m =(sin A ,cos A ),n =(1,-2),且m ·n =0. (1)求tan A 的值;(2)求函数f (x )=cos2x +tan A ·sin x (x ∈R )的值域. 解:(1)∵m ·n =0, ∴sin A -2cos A =0.∴tan A =sin Acos A=2.(2)f (x )=cos2x +tan A sin x =cos2x +2sin x=1-2sin 2x +2sin x =-2⎝⎛⎭⎪⎫sin x -122+32.∵-1≤sin x ≤1∴sin x =12时,f (x )取最大值32,sin x =-1时,f (x )取最小值-3,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,32. 19.(12分)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=2 5,且c ∥a ,求c 的坐标;(2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ.解:(1)设c =(x ,y ).∵|c |=2 5,∴x 2+y 2=2 5,即x 2+y 2=20.① ∵c ∥a ,a =(1,2)∵2x -y =0,即y =2x ,②联立①②得⎩⎪⎨⎪⎧ x =2y =4或⎩⎪⎨⎪⎧x =-2y =-4,∴c =(2,4)或(-2,-4). (2)∵(a +2b )⊥(2a -b ), ∴(a +2b )·(2a -b )=0,∴2|a |2+3a ·b -2|b |2=0.∵|a |2=5,|b |2=54,代入上式得a ·b =-52,∴cos θ=a ·b|a |·|b |=-525×52=-1.又∵θ∈[0,π], ∴θ=π.20.(12分)已知函数f (x )=cos 2⎝⎛⎭⎪⎫x -π6-sin 2x .(1)求f ⎝ ⎛⎭⎪⎫π12的值; (2)若对于任意的x ∈⎣⎢⎡⎦⎥⎤0,π2,都有f (x )≤c ,求实数c 的取值范围.解:(1)f ⎝ ⎛⎭⎪⎫π12=cos 2⎝ ⎛⎭⎪⎫-π12-sin 2π12=cos π6=32.(2)f (x )=12⎣⎢⎡⎦⎥⎤1+cos ⎝⎛⎭⎪⎫2x -π3-12(1-cos2x ) =12⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2x -π3+cos2x =12⎝ ⎛⎭⎪⎫32sin2x +32cos2x =32sin ⎝ ⎛⎭⎪⎫2x +π3.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,所以当2x +π3=π2,即x =π12时,f (x )取得最大值32.所以对任意x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )≤c 等价于32≤c .故当对任意x ∈⎣⎢⎡⎦⎥⎤0,π2,f (x )≤c 时,c 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.21.(12分)已知sin α+cos α=355,α∈⎝ ⎛⎭⎪⎫0,π4,sin ⎝ ⎛⎭⎪⎫β-π4=35,β∈⎝ ⎛⎭⎪⎫π4,π2.(1)求sin2α和tan2α的值; (2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45.又2α∈⎝⎛⎭⎪⎫0,π2,∴cos2α=1-sin 22α=35,∴tan2α=sin2αcos2α=43.(2)∵β∈⎝ ⎛⎭⎪⎫π4,π2,β-π4∈⎝ ⎛⎭⎪⎫0,π4,∴cos ⎝⎛⎭⎪⎫β-π4=45, 于是sin2⎝ ⎛⎭⎪⎫β-π4=2sin ⎝ ⎛⎭⎪⎫β-π4cos ⎝ ⎛⎭⎪⎫β-π4=2425. 又sin2⎝⎛⎭⎪⎫β-π4=-cos2β,∴cos2β=-2425. 又2β∈⎝ ⎛⎭⎪⎫π2,π,∴sin2β=725,又cos 2α=1+cos2α2=45,∴cos α=25,∴sin α=15⎝⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π4.∴cos(α+2β)=cos αcos2β-sin αsin2β=255×⎝ ⎛⎭⎪⎫-2425-55×725=-11525.22.(12分)如图,点P ⎝ ⎛⎭⎪⎫0,A 2是函数y =A sin ⎝ ⎛⎭⎪⎫2π3x +φ(其中A >0,φ∈[0,π))的图象与y 轴的交点,点Q ,点R 是它与x 轴的两个交点.(1)求φ的值;(2)若PQ ⊥PR ,求A 的值.解:(1)∵函数经过点P ⎝ ⎛⎭⎪⎫0,A 2,∴sin φ=12, 又∵φ∈[0,π),且点P 在递增区间上,∴φ=π6.(2)由(1)可知y =A sin ⎝ ⎛⎭⎪⎫2π3+π6.令y =0,得sin ⎝ ⎛⎭⎪⎫2π3x +π6=0,∴2π3x +π6=k π,(k ∈Z ),∴可得x =-14,54, ∴Q ⎝ ⎛⎭⎪⎫-14,0,R ⎝ ⎛⎭⎪⎫54,0.又∵P ⎝ ⎛⎭⎪⎫0,A 2,∴PQ →=⎝ ⎛⎭⎪⎫-14,-A 2,PR →=⎝ ⎛⎭⎪⎫54,-A 2. ∵PQ ⊥PR ,∴PQ →·PR →=-516+14A 2=0,解得A =52.。
模块综合评价(一)(时间:分钟满分:分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项符合题目要求).设集合={≤≤},为整数集,则集合∩中元素的个数是( )....解析:因为∩={,,,,},所以∩中有个元素.答案:.设集合={<<},={<}.若⊆,则的范围是( ).≥.≤.≥.≤解析:在数轴上作出两个集合所在的区间,可知满足⊆的≥.答案:.已知幂函数()=的图象过点(,),若()=,则实数的值为().±.±.解析:依题意有=,得=,所以()=,当()==时,=.答案:.设=,=,=,则( ).<<.<<.<<.<<解析:数形结合,画出三个函数的图象.由图象可知<,<<,>,因此<<.答案:.已知∩{-,,}={,},且∪{-,,}={-,,,},则满足上述条件的集合共有( ).个.个.个.个解析:因为∩{-,,}={,},所以,∈且-∉.又因为∪{-,,}={-,,,},所以∈且至多-,,∈.故,∈且至多-,∈,所以满足条件的只能为{,},{,,-},{,,},{,,,-},共有个.答案:.已知集合={=},={=+},则∩=( ).∅.[-,].[-,+∞) .[,+∞)解析:={=}={≥-},={=+}={≥}.所以∩=[,+∞).答案:.设()是上的偶函数,且在(,+∞)上是减函数,若<,+>,则( ).(-)>(-).(-)=(-).(-)<(-).(-)与(-)大小不确定解析:由<,+>得>->,又()是上的偶函数,且在(,+∞)上是减函数,所以(-)=()<(-).答案:。
模块质量评估(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).已知={>或 <},={=},则∩(∁)等于( ).[].().[].∅解析:因为={>或<},所以∁=[],又={=}=[,+∞),故∩(∁)=[].答案:.已知幂函数=()的图象过点,则()的值为( ).-.-.解析:设()=α,则=α,故α=,()=,所以()==.答案:.函数=的定义域为( ).(,+∞) ∪(,+∞)解析:要使函数有意义,则(-)>,∴<-<,∴<<.答案:.函数()=+的零点所在的一个区间是( ).(-).(-,-).().()解析:∵(-)·()=-<,∴函数()的零点所在区间为(-).答案:.设全集=,={<-,或>},={<<},则图中阴影部分所表示的集合是( ).{-≤≤}.{-≤<}.{<}.{<≤}解析:阴影部分所表示集合是∩(∁),又∵∁={-≤≤},∴∩(∁)={<≤}.答案:.若==,则+等于( )..-..解析:∵=,=,∴+=+==,故选.答案:.若一次函数()=+有一个零点,则函数()=-的图象可能是( )解析:依题意有×+=,得=-;又由-=,解得=或=,那么函数()=-有零点和-,也就是该函数图象与轴交点的横坐标分别为和-,故选.答案:.已知=,=,=,则,,之间的大小关系是( ).<<.<<.<<.<<解析:∵=∈(),=<,=>.∴>>.答案:.已知是函数()=-的零点,若<<,则()的值满足( ).()>.()<.()>或()<.()=解析:易判断()=-是增函数,∵<<,∴()<()=,故选.答案:.设函数()是定义在上的奇函数,当∈(,+∞)时,()=,则满足()<的的取值范围是( ).().(-∞,).(-∞,).(-∞,-)∪()解析:根据已知条件画出函数()的图象如图所示.。
最新人教版数学精品教学资料数学·必修1(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个命题中,设U为全集,则错误命题是()A.A∩B=∅⇒(∁U A)∪∁U B)=U B.A∩B=∅⇒A=B=∅C.A∪B=U⇒(∁U A)∩(∁U B)=∅D.A∪B=∅⇒A=B=∅答案:B2.(2013·陕西卷)设全集为R,函数f(x)=1-x2的定义域为M,则∁R M为()A.[-1,1] B.(-1,1)C.(-∞,-1]∪[1,+∞) D.(-∞,-1)∪(1,+∞)答案:D3.已知函数f(x)的图象如右图所示,则f(x)等于()A.x2-2|x|+1B.x2-2|x|+1C .|x 2-1|D.x 2-2x +1解析:A 中x 2-2|x |+1=(|x |-1)2=||x |-1|,画图知选A.B 、C 、D 均错.答案:A4.函数y =x -1x +1,x ∈(0,1)的值域是( ) A .[1,0) B .(-1,0] C .(-1,0) D .[-1,0]解析:因y =x -1x +1,x ∈(0,1)上为单调增函数, 故所求其值域为(-1,0).答案:C5.在下列各图中,能表示从集合A =[0,3]到集合B =[0,2]的函数的是( )答案:.B6.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =⎝ ⎛⎭⎪⎫12x ,x >1,则A ∩B =( )A.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪ 0<y <12 B .{y |0<y <1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y <1 D .∅答案:A7.若偶函数f (x )在(-∞,-1]上是增函数,则下列关系中成立的是( )A .f ⎝ ⎛⎭⎪⎫-32<f (-1)<f (2) B .f (-1)<f ⎝ ⎛⎭⎪⎫-32<f (2)C .f (2)<f (-1)<⎝ ⎛⎭⎪⎫-32D .f (2)<f ⎝ ⎛⎭⎪⎫-32<f (-1)答案:D8.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:由⎩⎪⎨⎪⎧ x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.答案:B9.(2013·辽宁卷)已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]答案:D10.函数y =1-11+x 的图象是( )答案:A二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填写在题中的横线上)11.设a ,b ∈R 集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案:212.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.解析:①当m =0时,f (x )=x -43. 显然其定义域为R.②当m ≠0,Δ=(4m )2-4m ×3<0,解得0<m <34. 综合①②知0≤m <34. 答案:⎣⎢⎡⎭⎪⎫0,3413.我国2001年底的人口总数为M,要实现到2011年底我国人口总数不超过N(其中M<N),则人口的年平均自然增长率p的最大值是______.答案:10NM-114.当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是________.解析:x∈(1,2)时,x2+mx+4<0恒成立.∵x2+mx+4<0,∴m<-x-4 x.∵y=-x-4x在x∈(1,2)上是单调增函数,∴y>-5,∴m≤-5.答案:m≤-5三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.(1)求A∪B;(2)求(∁R A)∩B;(3)若A C,求a的取值范围.解析:(1)A={x|3≤x≤7}B={x|2<x<10}∴A∪B={x|2<x<10}.(2)∵A={x|3≤x≤7},∴∁R A={x|x<3或>7}(∁R A)∩B={x|x<3或x>7}∩{x|2<x<10}={x|2<x<3或7<x <10}.(3)∵A C ,∴a >7.16.(本小题满分12分)已知函数f (x )=log a (1-x )+log a (x +3) (a >0且a ≠1).(1)求函数f (x )的定义域和值域;(2)若函数f (x )有最小值为-2,求a 的值.解析:(1)由⎩⎪⎨⎪⎧1-x >0,x +3>0,得-3<x <1, 所以函数的定义域{x |-3<x <1},f (x )=log a (1-x )(x +3),设t =(1-x )(x +3)=4-(x +1)2,所以t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为{y |y ≤log a 4}.当0<a <1时,y ≥log a 4,值域为{y |y ≥log a 4}.(2)由(1)知:当0<a <1时,函数有最小值,所以log a 4=-2,解得a =12.17.(本小题满分14分)某自来水厂的蓄水池有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t 小时内供水总量为120 6t 吨,其中0≤t ≤24.(1) 从供水开始到第几小时,蓄水池中的存水量最少?最少水量是多少吨?(2) 若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象?解析:设供水t 小时,水池中存水y 吨.(1)y =400+60t -1206t =60(t -6)2+40(1≤t ≤24).当t =6时,y min =40(吨),故从供水开始到第6小时,蓄水池中的存水量最少,最少水量40吨.(2)依条件知⎩⎪⎨⎪⎧60(t -6)2+40<80,1≤t ≤24, 解得83<t <323,即323-83=8. 答:一天24小时内有8小时出现供水紧张.18.(本小题满分14分)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ).当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式.(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解析:(1)当0<x <80,x ∈N *时,L (x )=500×1 000x 10 000-13x 2-10x -250=-13x 2+ 40x -250.当x ≥80,x ∈N *时,L (x )=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-⎝⎛⎭⎪⎫x +10 000x . ∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250(0<x <80,x ∈N *),1 200-⎝ ⎛⎭⎪⎫x +10 000x (x ≥80,x ∈N *). (2)当0<x <80,x ∈N *时,L (x )=-13(x -60)2+950, ∴当x =60时,L (x )取得最大值L (60)=950(万元). 当x ≥80,x ∈N *时,L (x )=1 200-⎝ ⎛⎭⎪⎫x +10 000x =1 200-⎝⎛⎭⎪⎫x -100x 2-200≤1 000. 故当x =100x,即x =100时,L (x )取得最大值1 000万元,即生产量为100千件时,该厂在这一商品的生产中所获利润最大.19.(本小题满分14分)已知函数f (x )=x 2+a x (x ≠0),常数a ∈R.(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围.解析:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞),f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数.当a ≠0时,f (x )=x 2+a x (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴f (-1)≠-f (1),f (-1)≠f (1),∴函数f (x )既不是奇函数,也不是偶函数.(2)设2≤x 1≤x 2,f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=(x 1-x 2)x 1x 2·[x 1x 2(x 1+x 2)-a ], 要使函数f (x )在x ∈[2,+∞)上为增函数,必须f (x 1)-f (x 2)<0恒成立.∵x 1-x 2<0,x 1x 2>4,即a <x 1x 2(x 1+x 2)恒成立.又∵x 1+x 2>4,∴x 1x 2(x 1+x 2)>16.∴a 的取值范围是(-∞,16].20.(本小题满分14分)函数f (x )定义在区间(0,+∞)上,且对任意的x ∈R +,y ∈R 都有f (x y )=yf (x ).(1)求f (1)的值;(2)若f ⎝ ⎛⎭⎪⎫12<0,求证:f (x )在(0,+∞)上为增函数.(1)解析:令x =1,y =2,则有f (12)=2f (1),则f (1)=0.(2)证明:对任意0<x 1<x 2,存在s 、t 使得x 1=⎝ ⎛⎭⎪⎫12s ,x 2=⎝ ⎛⎭⎪⎫12t ,且s >t ,f ⎝ ⎛⎭⎪⎫12<0, 则f (x 1)-f (x 2)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫12s -f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫12t =(s -t )f ⎝ ⎛⎭⎪⎫12<0, 即f (x 1)<f (x 2),故函数f (x )在(0,+∞)上是增函数.。
最优人教版高一数学模块综合检测及答案A(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.如果A ={x |x >-1},那么( )A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A2.已知f (12x -1)=2x +3,f (m )=6,则m 等于( )A .-14 B.14C.32 D .-32 3.函数y =x -1+lg(2-x )的定义域是( ) A .(1,2) B .[1,4] C .[1,2) D .(1,2] 4.函数f (x )=x 3+x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称5.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .一次函数 6.若0<m <n ,则下列结论正确的是( )A .2m >2nB .(12)m <(12)nC .log 2m >log 2nD .12log m >12log n7.已知a =0.3,b =20.3,c =0.30.2,则a ,b ,c 三者的大小关系是( ) A .b >c >a B .b >a >c C .a >b >c D .c >b >a 8.函数f (x )=log 3x -8+2x 的零点一定位于区间( ) A .(5,6) B .(3,4) C .(2,3) D .(1,2) 9.下列计算正确的是( ) A .(a 3)2=a 9B .log 26-log 23=1C .1122a a =0D .log 3(-4)2=2log 3(-4)10.已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( ) A.12 B.14 C .2 D .4 11.函数y =|lg(x +1)|的图象是( )12.设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点二、填空题(13.已知A ={-1,3,m },集合B ={3,4},若B ∩A =B ,则实数m =________. 14.已知f (x 5)=lg x ,则f (2)=________.15.函数y =f (x )是定义域为R 的奇函数,当x <0时,f (x )=x 3+2x -1,则x >0时函数的解析式f (x )=________.16.幂函数f (x )的图象过点(3,427),则f (x )的解析式是________. 三、解答题(本大题共6小题,共70分) 17.(10分)(1)计算:12729⎛⎫ ⎪⎝⎭+(lg 5)0+132764-⎛⎫ ⎪⎝⎭;(2)解方程:log 3(6x -9)=3.18.(12分)某商品进货单价为40元,若销售价为50元,可卖出50个,如果销售价每涨1元,销售量就减少1个,为了获得最大利润,求此商品的最佳售价应为多少?19.(12分)已知函数f (x )=-3x 2+2x -m +1.(1)当m 为何值时,函数有两个零点、一个零点、无零点; (2)若函数恰有一个零点在原点处,求m 的值.20.(12分)已知集合M 是满足下列性质的函数f (x )的全体:在定义域D 内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.(1)函数f (x )=1x是否属于集合M ?说明理由;(2)若函数f (x )=kx +b 属于集合M ,试求实数k 和b 满足的约束条件.21.(12分)已知奇函数f (x )是定义域[-2,2]上的减函数,若f (2a +1)+f (4a -3)>0,求实数a 的取值范围.22.(12分)已知函数 (1)若a =1,求函数f (x )的零点;(2)若函数f (x )在[-1,+∞)上为增函数,求a 的取值范围.模块综合检测(A)1.D [∵0∈A ,∴{0}⊆A.]2.A [令12x -1=t ,则x =2t +2,所以f(t)=2×(2t +2)+3=4t +7.令4m +7=6,得m =-14.]3.C [由题意得:⎩⎪⎨⎪⎧x -1≥02-x>0,解得1≤x<2.]4.C [∵f(x)=x 3+x 是奇函数,∴图象关于坐标原点对称.]5.C [本题考查幂的运算性质.f(x)f(y)=a x a y =a x +y =f(x +y).]6.D [由指数函数与对数函数的单调性知D 正确.] 7.A [因为a =0.3=0.30.5<0.30.2=c<0.30=1, 而b =20.3>20=1,所以b>c>a.]8.B [f(3)=log 33-8+2×3=-1<0,f(4)=log 34-8+2×4 =log 34>0.又f(x)在(0,+∞)上为增函数, 所以其零点一定位于区间(3,4).] 9.B [A 中(a 3)2=a 6,故A 错;B 中log 26-log 23=log 263=log 22=1,故B 正确;C 中,12a -·12a =1122a -+=a 0=1,故C 错;D 中,log 3(-4)2=log 316=log 342=2log 34.]10.C [依题意,函数f(x)=a x +log a x(a>0且a ≠1)在[1,2]上具有单调性,因此a +a 2+log a 2=log a 2+6,解得a =2.]11.A [将y =lg x 的图象向左平移一个单位,然后把x 轴下方的部分关于x 轴对称到上方,就得到y =|lg (x +1)|的图象.]12.D [因为f ⎝⎛⎭⎫1e ·f(1)=⎝⎛⎭⎫13·1e -ln 1e ·⎝⎛⎭⎫13-ln 1=13⎝⎛⎭⎫13e +1>0, 因此f(x)在⎝⎛⎭⎫1e ,1内无零点.又f(1)·f(e )=⎝⎛⎭⎫13×1-ln 1·⎝⎛⎭⎫13·e -ln e =e -39<0. 因此f(x)在(1,e )内有零点.] 13.4解析 ∵A ={-1,3,m},B ={3,4},B ∩A =B ,∴m =4. 14.15lg 2 解析 令x 5=t ,则x =15t .∴f(t)=15lg t ,∴f(2)=15lg 2.15.x 3-2-x +1解析 ∵f(x)是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-[(-x )3+2-x -1]=x 3-2-x +1.16.f (x )=34x解析 设f (x )=x n ,则有3n=427,即3n=343, ∴n =34,即f (x )=34x .17.解 (1)原式=12259⎛⎫ ⎪⎝⎭+(lg 5)0+13334-⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=53+1+43=4. (2)由方程log 3(6x -9)=3得6x -9=33=27,∴6x =36=62, ∴x =2.经检验,x =2是原方程的解.18.解 设最佳售价为(50+x )元,最大利润为y 元, y =(50+x )(50-x )-(50-x )×40=-x 2+40x +500. 当x =20时,y 取得最大值,所以应定价为70元. 故此商品的最佳售价应为70元.19.解 (1)函数有两个零点,则对应方程-3x 2+2x -m +1=0有两个根,易知Δ>0,即Δ=4+12(1-m )>0,可解得m <43;Δ=0,可解得m =43;Δ<0,可解得m >43.故m <43时,函数有两个零点;m =43时,函数有一个零点;m >43时,函数无零点. (2)因为0是对应方程的根,有1-m =0,可解得m =1.20.解 (1)D =(-∞,0)∪(0,+∞),若f (x )=1x ∈M ,则存在非零实数x 0,使得1x 0+1=1x 0+1,即x 20+x 0+1=0,因为此方程无实数解,所以函数f (x )=1x∉M .(2)D =R ,由f (x )=kx +b ∈M ,存在实数x 0,使得 k (x 0+1)+b =kx 0+b +k +b ,解得b =0, 所以,实数k 和b 的取值范围是k ∈R ,b =0.21.解 由f (2a +1)+f (4a -3)>0得f (2a +1)>-f (4a -3), 又f (x )为奇函数,得-f (4a -3)=f (3-4a ), ∴f (2a +1)>f (3-4a ),又f (x )是定义域[-2,2]上的减函数, ∴2≥3-4a >2a +1≥-2 即⎩⎪⎨⎪⎧2≥3-4a 3-4a >2a +12a +1≥-2∴⎩⎪⎨⎪⎧a ≥14a <13a ≥-32∴实数a 的取值范围为[14,13).22.解 (1)当a =1时,由x -2x=0,x 2+2x =0,得零点为2,0,-2.(2)显然,函数g (x )=x -2x 在[12,+∞)上递增,且g (12)=-72;函数h (x )=x 2+2x +a -1在[-1,12]上也递增,且h (12)=a +14.故若函数f (x )在[-1,+∞)上为增函数,则a +14≤-72,∴a ≤-154.故a 的取值范围为(-∞,-154].。