2017-2018学年江苏省扬州中学高二下学期期中考试 数学(文)Word版含答案
- 格式:doc
- 大小:366.00 KB
- 文档页数:5
2017-2018学年第一学期扬州中学期中考试试卷高二数学一、填空题:1.直线l :2x -y +1=0的斜率为________2.命题p :∃x ∊R ,使得x 2+1≤0的否定为______________ 3.直线l :kx +y -2k =0经过定点的坐标为________4.若命题p :2211114(,)x y x y R +<∈,命题q :点11(,)x y 在圆224x y +=内,则p 是q 的______条件。
5.已知两条直线l 1:x +ay =2a +2,l 2:ax +y =a +1,若l 1⊥l 2,则a =_______6. 命题p :“若a >b ,则1a <1b”的否命题是___________(填:真、假)命题7.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线条数为_________8.若直线20x y --=被圆22()4x a y -+=所截得的弦长为a 的值为 .9.离心率为2且与椭圆252x +92y =1有共同焦点的双曲线方程是__________________10.椭圆x 26+y 22=1和双曲线x 23- y 21=1的公共焦点为P F F ,,21是两曲线的一个交点, 那么21cos PF F ∠的值是______ ___11.在平面直角坐标系xOy 中,由不等式所确定的图形的面积为___________12.椭圆22221(0)x y a b a b+=>>的右焦点为F ,过原点O 的直线交椭圆于点A 、P ,且PF 垂直于x 轴,直线AF 交椭圆于点B ,PB PA ⊥,则该椭圆的离心率e =____ __.13.在平面直角坐标系xoy 中,抛物线2y 2x =的焦点为F ,设M 是抛物线上的动点,则MOMF的最大值为 . 14.已知对于点A (0,12),B (10,9),C (8,0),D (-4,7),存在唯一一个正方形S 满足这四个点在S 的不同边所在直线上,设正方形S 面积为k ,则10k 的值为_______二、解答题:15.已知命题:p “方程22191x y k k +=--表示焦点在x 轴上的椭圆”,命题:q “方程2212x y k k +=-表示双曲线”.(1)若p 是真命题,求实数k 的取值范围; (2)若“p q 或”是真命题,求实数k 的取值范围.16.已知圆M 的方程为22(2)1x y +-=,直线l 的方程为20x y -=,点P 在直线l 上,过P 点作圆M 的切线,PA PB ,切点为,A B . (1)若60APB ∠=,试求点P 的坐标;(2)若P 点的坐标为(2,1),过P 作直线与圆M 交于,C D两点,当CD =CD 的方程;17.古希腊有一著名的尺规作图题“倍立方问题”:求作一个立方体,使它的体积等于已知立方体体积的2倍。
2014.4注:本试卷考试时间120分钟,总分值160分一、填空题:本大题共14小题,每小题5分,共70分.1.已知全集},3,2,1,0{=U集合},3,2,1{},1,0{==BA则=BAC U)(▲2.函数()f x=的定义域为▲3.已知复数z1=-2+i,z2=a+2i(i为虚数单位,a∈R).若z1z2为实数,则a的值为▲.4.“sin sinαβ=”是“αβ=”的▲条件.(填:充分不必要、必要不充分、充要、既不充分又不必要)5.若函数⎩⎨⎧>≤+=1,lg1,1)(2xxxxxf,则f(f(10)= ▲.6.函数1()f x xx=+的值域为▲.7.若方程3log3=+xx的解所在的区间是(), 1k k+,则整数k=▲.8. 设357log6,log10,log14a b c===,则,,a b c的大小关系是▲.9.如果函数2()21xf x a=--是定义在(,0)(0,)-∞⋃+∞上的奇函数, 则a的值为▲10.由命题“02,2≤++∈∃mxxRx”是假命题,求得实数m的取值范围是),(+∞a,则实数a的值是▲.11.对大于或等于2的自然数m的n次方幂有如下分解方式:3122+=53132++=753142+++=5323+=119733++=1917151343+++=根据上述分解规律,则9753152++++=,若)(*3Nnm∈的分解中最小的数是91,则m的值为▲。
12.定义域为R的函数()f x满足(1)2()f x f x+=,且当]1,0[∈x时,2()f x x x=-,则当[2,1]x∈--时,()f x的最小值为▲.13. 已知函数),()(2Rbabaxxxf∈++=的值域为),0[+∞,若关于x的不等式cxf<)(的解集为)8,(+mm,则实数c的值为▲.江苏省扬州中学2013—2014学年度第二学期期中考试高二数学(文)试卷14.已知定义在R 上的偶函数()f x 满足对任意x R ∈都有(4)()f x f x +=,且当[]2,0x ∈-时,1()()12x f x =-.若在区间(2,6)-内函数()()log (2)a g x f x x =-+有3个不同的零点,则实数a 的取值范围为 ▲ .二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.已知复数z 1满足z 1·i =1+i (i 为虚数单位),复数z 2的虚部为2. (1)求z 1;(2)若z 1·z 2是纯虚数,求z 2.16.已知集合A={}2|230x x x --<,B={}|(1)(1)0x x m x m -+--≥,(1)当0m =时,求A B ⋂(2)若p :2230x x --<,q :(1)(1)0x m x m -+--≥,且q 是p 的必要不充分条件,求实数m 的取值范围.17.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为x (米),外周长(梯形的上底.....线段..BC 与两腰长的和......)为y (米).⑴求y 关于x 的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过10.5米,则其腰长x 应在什么范围内?⑶当防洪堤的腰长x 为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.6018.已知函数xxx f -+=11log )(3. (1)判断并证明()f x 的奇偶性;(2)当,21,0时⎥⎦⎤⎢⎣⎡∈x 函数[]1)()(2+⋅-=x f a x f y 的最小值为2a-,求实数a 的值。
江苏省邗江中学2017—2018学年度第二学期高二数学期中试卷(文科)说明:本试卷分为填空题和解答题两部分,全卷满分160分,考试时间120分钟一、填空题(本题包括14小题,每小题5分,共70分.)1.1.函数的定义域是_____.【答案】(0,1]【解析】分析:根据函数的解析式有意义,即可求解函数的定义域.详解:由函数满足,解得,即函数的定义域为.点睛:本题注意考查了函数的定义域的求解,函数的定义域表示函数解析式有意义的的取值范围,着重考查了学生的推理与运算能力.2.2.用反证法证明命题“若a2+b2=0,则a,b全为0”,其反设为____.【答案】“a,b不全为0”【解析】分析:根据反证法的概念,即可作出反设.详解:由反证法的概念可知命题“若,则全为”,其反设为:不全为.点睛:本题主要考查了反证法的概念,熟记反证法的定义是解答的关键.3.3.质点的运动方程是S=(S的单位为m,t的单位为s),则质点在t=3s时的瞬时速度为___m/s.【答案】【解析】分析:先求出质点的运动方程的导数,再求出秒的导数,即可得到所求的瞬时速度.详解:因为质点的运动方程为,所以,所以该质点在秒的瞬时速度为,即质点在时的瞬时速度为.点睛:本题考查了函数的导数与瞬时速度的关系、导数在物理的应用,正确解答的关键是理解导数的物理意义,对此类解题规律要好好把握.4.4.如果,,那么是的.(在“充分不必要条件”、“必要不充分条件”、“充要条件”、“既不充分也不必要”中选择一个填空)【答案】充分不必要条件.【解析】试题分析:,是的充分不必要条件.考点:充分条件、必要条件.5.5.若复数z满足|z|=1(i为虚数单位),则|z﹣2i|的最小值是_____.【答案】1【解析】分析:复数满足,设,利用复数的模的计算公式与三角函数求值即可求出.详解:由复数满足,设,则,当且仅当时等号成立,所以的最小值为.点睛:本题考查了复数的运算法则、模的计算公式及其三角函数的求解,着重考查了推理与运算能力,属于基础题.6.6.已知函数f(x)是定义在R上的偶函数,且对于任意的x∈R都有f(x+4)= f(x)+ f(2),f(1)= 4,则f(3)+ f(10)的值为______.【答案】4【解析】分析:令,可求得,从而可得是以为周期的周期函数,结合,即可求解的值.详解:由题意可知,令,可求得,又函数是定义在上的偶函数,所以,即,所以是以为周期的周期函数,又,所以.点睛:本题考查了抽象函数及其基本性质应用,重点考查赋值法,求得是解答的关键,着重考查了分析问题和解答问题的能力.7.7.已知函数,若f(x0)=﹣2,则x0=_____.【答案】【解析】分析:根据分段函数的分段条件,分别列出方程,求解即可.详解:当,则,解得或(舍去);当,则,解得(舍去),综上可知.点睛:本题主要了分段函数的计算问题,属于基础题,着重考查了推理与运算能力.8.8.若函数f(x)=f′(1)x3﹣2x2+3,则f′(1)的值为_____.【答案】2【解析】分析:根据导数的运算公式,求的,令,即可求解.详解:由,则,令时,,解得.点睛:本题主要考查了导数的运算,熟记基本初等函数的导数公式是解答的关键.9.9.若函数为定义在上的奇函数,当时,,则不等式的解集为____.【答案】【解析】分析:由奇函数的性质,求出函数的解析式,对时的解析式求出,并判断函数的单调性和极值,再由奇函数的图象特征画出函数的图象,根据图象和特殊的函数值求出不等式的解集.详解:因为函数是定义在上的奇函数,所以当时,,不满足不等式,设,则,因为时,,所以,因为函数是奇函数,所以,所以,当时,,令,解得,当时,;当时,,所以函数在上递减,在上递增,所以当时取得极小值,,再由函数是奇函数,画出函数的图象如图所示,因为当时,当时取得极小值,,所以不等式的解集在无解,在上有解,因为,所以不等式的解集为.点睛:本题考查函数的基本性质的综合应用,其中解答中涉及到函数的奇偶性,函数的单调性的综合应用,着重考查了数形结合思想方法,分析问题和解答问题的能力,试题有一定的难度,属于难题.10.10.如图,一个类似杨辉三角的数阵,请写出第n(n≥2)行的第2个数为_____.【答案】n2+2【解析】分析:由三角形数阵看出,从第二行开始起,每一行的第二个数与它的前一行的第二个数的差构成以为公差的等差数列,然后利用累加的办法求得第行的第二个数.详解:由图可以看出由此看出,以上个式子相加得,所以.点睛:本题主要考查了归纳推理的应用,解答此题的关键是根据数表数阵,得到数字的排布规律,即从第二行开始起,每一行的第二个数与它的前一行的第二个数的差构成以为公差的等差数列,此题是中档试题.11.11.函数f(x)=x|x|,若存在x∈[1,+∞)使得不等式f(x﹣2k)<k成立,则实数k的取值范围为_____.【答案】【解析】分析:根据题意时,,讨论和时,存在,使的的取值范围即可.详解:根据题意,时,,当时,即时,存在,使得,即只需,所以,所以,所以,整理得,即,因为,所以不等式对一切实数都成立,所以;当时,解得,存在,使得,即即可,因为,所以,所以,整理得,解得,又因为,所以;综上,,所以实数的取值范围是.点睛:本题考查了含有字母系数的不等式的解法与应用问题,着重考查了分类讨论思想与转化思想的应用问题,试题有一定难度,属于难题.12.12.若不等式(﹣1)n•a<3对任意的正整数n恒成立,则实数a的取值范围是_____.【答案】【解析】分析:将不等式进行参数分离,求函数的最值即可得到结论.详解:当为奇数时,不等式可化为,即,要使得不等式对任意自然数恒成立,则,当为偶数时,不等式可化为,要使得不等式对任意自然数恒成立,则,即,综上,.点睛:本题主要考查了不等式恒成立问题,将不等式的恒成立转化为求式子的最值问题解决恒成立问题是解答恒成立问题的基本方法,着重考查分析问题和解答问题的能力.13.13.若曲线上存在某点处的切线斜率不大于,则正实数a的最小值为____.【答案】【解析】分析:求得函数的导数,把使存在某点处的切线斜率不大于,转化为不等式有解,再利用基本不等式,即可求解.详解:由函数,则,要使存在某点处的切线斜率不大于,即,即不等式有解,又,当且仅当,即等号成立,所以,即,解得,解得.点睛:本题主要考查了导数的几何意义,不等式的有解问题,其中解答中把使存在某点处的切线斜率不大于,转化为不等式有解是解答的关键,着重考查了分析问题和解答问题的能力.14.14.已知函数,,,若关于x的方程f(x)+g(x)=0有四个不同的实数解,则实数m的取值范围是____.【答案】【解析】分析:根据函数的奇偶性,把方程有四个不同的实数解,转化为方程在上有两个解,进而转化为与在在上有两个解,利用函数的性质即可求解.详解:由,则,所以函数是偶函数,所以要使得方程有四个不同的实数解,则,只需有两个不同的实数解,即方程在上有两个解,即在上有两个解,转化为与在在上有两个解,又由,当时,,函数为单调递增函数,当时,,函数为单调递减函数,所以当时,函数有最大值,要使得与在在上有两个解,则,即.点睛:本题考查了由方程解得个数求解参数问题,解答中涉及到函数的奇偶性、函数的单调性,以及函数的图象的综合应用,其中根据函数的奇偶性,把方程有四个不同的实数解,转化为方程在上有两个解是解答的关键,着重考查了转化的思想方法的应用,试题属于中档试题.二、解答题(15、16题均为14分,17、18题均为15分,19、20题均为16分,请在答题纸的指定区域内答题,并写出必要的计算、证明、推理过程.)15.15.已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|m﹣1≤x≤m+1,x∈R,m∈R}(1)若A∩B=[1,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.【答案】(1)m=1;(2)m>4或m<﹣2.【解析】分析:(1)由题意,求得集合,根据,列出方程即可求解实数的值;(2)由(1)中,求得,列出方程,即可求解实数的取值范围.详解:(1)∵集合A={x|x2﹣2x﹣3≤0,x∈R}={x|﹣1≤x≤3},B={x|m﹣1≤x≤m+1,x∈R,m∈R},A∩B=[1,3],∴m﹣1=1,解得m=2,此时B={x|1≤x≤3},成立,故m=1.(2)∵∁R B={x|x<m﹣1或x>m+1},A⊆∁R B,∴m﹣1>3或m+1<﹣1,解得m>4或m<﹣2.点睛:求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.16.16.已知复数(是虚数单位,),且为纯虚数(是的共轭复数).(1)设复数,求;(2)设复数,且复数所对应的点在第四象限,求实数的取值范围.【答案】(1)(2)【解析】分析:根据复数的概念及其分类,求解.(1)求得,再根据复数的模的计算公式,即可求解;(2)由(1)可求得,根据复数对应的点位于第一象限,列出方程组,即可求解实数的取值范围.详解:∵z=1+mi,∴.∴.又∵为纯虚数,∴,解得m=﹣3.∴z=1﹣3i.(Ⅰ),∴;(Ⅱ)∵z=1﹣3i,∴.又∵复数z2所对应的点在第1象限,∴,.∴.点睛:复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为.17.17.设a∈R,命题q:∀x∈R,x2+ax+1>0,命题p:∃x∈[1,2],满足(a﹣1)x﹣1>0.(1)若命题p∧q是真命题,求a的范围;(2)(¬p)∧q为假,(¬p)∨q为真,求a的取值范围.【答案】(1);(2)a≤﹣2或.【解析】分析:(1)根据题意,求解真:;真:,即可求解;(2)根据为假,为真,得到同时为假或同时为真,分类讨论即可求解实数的取值范围.详解:(1)p真,则或得;q真,则a2﹣4<0,得﹣2<a<2,∴p∧q真,.(2)由(¬p)∧q为假,(¬p)∨q为真⇒p、q同时为假或同时为真,若p假q假,则,⇒a≤﹣2,若p真q真,则,⇒综上a≤﹣2或.点睛:本题主要考查了逻辑联结词的应用,解答简易逻辑联结词相关问题,关键是要首先明确各命题的真假,利用或、且、非真值表,进一步作出判断,着重考查了学生分析问题和解答问题的能力.18.18.已知函数f(x)=x2﹣|x|+1.(1)求不等式f(x)≥2x 的解集;(2)若关于x 的不等式f(x)在[0,+∞)上恒成立,求a 的取值范围.【答案】(1);(2).【解析】分析:(1)分类讨论,即可求解不等式的解集;(2)由在上恒成立,即,列出不等式组,即可求解实数的取值范围.详解:(1)x≥0时,f(x)=x2﹣x+1≥2x,解得:0≤x≤或x≥,x<0时,f(x)=x2+x+1≥2x,解得:x<0,综上,x∈(﹣∞,]∪[,+∞);(2)f(x)≥|+a|,x∈[0,+∞),故x2﹣x+1≥|+a|,故解得:﹣≤a≤.点睛:本题主要考查了函数性质的综合应用,以及不等式恒成立问题的求解,对于不等式的恒成立问题,分类参数是常用的方法,着重考查了分析问题和解答问题的能力,以及推理与运算能力.19.19.日前,扬州下达了2018年城市建设和环境提升重点工程项目计划,其中将对一块以O为圆心,R(R为常数,单位:米)为半径的半圆形荒地进行治理改造,如图所示,△OBD区域用于儿童乐园出租,弓形BCD区域(阴影部分)种植草坪,其余区域用于种植观赏植物.已知种植草坪和观赏植物的成本分别是每平方米5元和55元,儿童乐园出租的利润是每平方米95元.(1)设∠BOD=θ(单位:弧度),用θ表示弓形BCD的面积S弓=f(θ);(2)如果市规划局邀请你规划这块土地,如何设计∠BOD的大小才能使总利润最大?并求出该最大值.【答案】(1)见解析;(2)当园林公司把扇形的圆心角设计成时,总利润取最大值R2(50π).【解析】分析:根据弓形的面积等于扇形的面积减去三角形的面积,即可求解弓形的面积;(2)由题意列出函数的关系式,利用导数判断函数的单调性,即可求解最大值.详解:(1)S扇=R2θ,S△OBD=R2sinθ,S弓=f(θ)=R2(θ﹣sinθ),θ∈(0,π)(2)设总利润为y元,儿童乐园利润为y1元,种植草坪成本为y2元,种植观赏植物成本为y3元;则y1=R2sinθ•95,y2=R2(θ﹣sinθ)•5,y3=R2(π﹣θ)•55,∴y=y1﹣y2﹣y3=R2(100sinθ+50θ﹣55π),设g(θ)=100sinθ+50θ﹣55π,θ∈(0,π).∴g′(θ)=100cosθ+50∴g′(θ)<0,cosθ>﹣,g(θ)在θ∈(0,)上为减函数;g′(θ)>0,cosθ<﹣,g(θ)在θ∈(,π)上为增函数;当θ=时,g(θ)取到最大值,此时总利润最大,此时总利润最大:y=R2(100sinθ+50θ﹣55π)=R2(50﹣π).(求最值时,如不交代单调性或者列表,扣2分)答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值R2(50﹣π)点睛:本题考查了导数在实际问题中的应用,解答中涉及到利用导数研究函数的单调性、利用导数研究函数的最值等问题,试题属于中档试题,其中正确读懂题意,列出函数关系式是解答的关键,着重考查了分析问题和解答问题的的能力.20.20.已知函数.(1)若曲线在处的切线过点.① 求实数的值;② 设函数,当时,试比较与的大小;(2)若函数有两个极值点,(),求证:.【答案】(1)①;②见解析;(2)见解析.【解析】分析:(1)①求出函数的导数,得到切点,表示出切线方程,代入切点的坐标即可求解;②由,设,利用导数得到函数的单调性和最值,即可得到结论.(2)设通过讨论的范围,得到函数的单调性,根据得到,进而得到,设,得到单调减函数,即可作出证明.详解:(1)①因为,所以,由曲线在处的切点为,所以在处的切线方程为.因为切线过点,所以.②,由.设(),所以,所以在为减函数.因为,所以当时,有,则;当时,有,则;当时,有,则.(2)由题意,有两个不等实根,().设,则(),当时,,所以在上是增函数,不符合题意;当时,由,得,列表如下:↗极大值↘由题意,,解得,所以,因为,所以.因为,所以,所以().令(),因为,所以在上为减函数,所以,即,所以,命题得证.点睛:本题主要考查导数在函数中的应用,着重考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.。
江苏省扬州市2017~2018学年第二学期期末试卷(文)高二数学一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........)1. 已知集合【答案】0.【解析】分析:根据集合的并集的含义,有集合A或B必然含有元素0,又由集合A,B从而求得结果.A或B必然含有元素0,0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.2. 已知i是虚数单位,则【答案】【解析】分析:首先根据题中所给的条件,可以断定其为求复数结果.点睛:该题考查的是有关复数模的求解问题,根据公式运算即可,属于简单题目.3.【答案】【解析】∵点答案:4. 若点【答案】P点的坐标代入直线方程,利用同角三角函数间的基本关系求出.点睛:该题考查的是有关点在直线上的条件是点的坐标满足直线的方程,再者就是同角三角函数关系式中的商关系,注意公式的正确使用.5. _______.【解析】分析:首先;利用图像的对称变换和平移变换,得到函数图像所过的点,此时应用对称点以及平移对坐标的影响,得到相应的点的坐标,求得结果.点睛:该题考查的是有关图像过的点的问题,在解题的过程中,需要用到对称点的坐标与该点坐标之间的关系,以及平移之后点的坐标的变化特点,求得结果.6. 已知i_______.【答案】【解析】分析:利用复数代数形式的乘除运算法则化简,求出复数z,进而求得其共轭复数,从而求得结果.,故答案是.点睛:该题考查的是有关复数的除法运算以及共轭复数的概念与求解问题,在解题的过程中,需要对复数的除法运算法则灵活掌握,以及共轭复数满足的条件是实部相等,虚部互为相反数.7. 已知直线_______.【解析】分析:根据两平行直线的斜率相等,在纵轴上的截距不相等,求出m,利用两行直线间的距离公式求出两平行直线间的距离.,故直线故两平行直线间的距离为,故答案是点睛:该题考查的是有关两直线平行的条件,以及平行线之间的距离问题,在解题的过程中,需要应用直线平行的条件是斜率相等,截距不等,得到系数直角的关系,之后应用平行线之间的距离公式求得结果.8. 已知函数则对应的函数解析式为_______.【答案】【解析】分析:根据题中所给的函数的图像,可以求得1.时取得最大值1,所以结合,所以函数的解析式是点睛:该题考查的是有关利用图像求函数解析式的问题,在解题的过程中,需要明确解析式.9. 通过类比的方法,可求得:的距离为______.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可.的距离,故答案是点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.10.9.【解析】分析:首先将圆C的方程化为标准方程,根据两圆相切,得到两圆心之间的距离要么等于两半径和,要么等于两半径差,得出相应的等量关系式,从而求得相应的结果.详解:圆C可化为C相切,点睛:该题考查的是有关两圆的位置关系的问题,根据两圆相切,得到两圆内切或外切,从而得到两圆心之间的距离所满足的关系式,从而求得结果,在解题的过程中,需要注意相切应分为外切和内切两种情况.11. 已知函数______..结合题中所给的角的取值范围,最后结合二次函数在某个闭区间上的值域求得结果.,故函数的值域为点睛:该题以三角函数为载体,考查二次函数在某个闭区间上的值域问题,在解题的过程中,涉及到的知识点有同角三角函数关系中的平方关系,余弦函数在某个闭区间上的值域,二次函数在某个闭区间上的值域问题,注意对知识点的灵活掌握.12. M,N,则MN的最小值为______.Q到直线的距离d,即为所求.相切于点,求得点Q到直线点睛:该题考查的是应用导数研究曲线上的点与直线上的点之间的距离的最小值,结合图形的特征,可以得到对应的思路是求曲线与直线平行的切线,结合导数的几何意义,从而求得结果,最后应用点到直线的距离求得结果.13. 已知圆心在x轴负半轴上的圆C与yC相交于M,N则实数m=______.【解析】分析:首先根据圆的特点,求得圆的方程,之后将直线的方程与圆的方程联立,利用韦达定理求得两根和与两根积,之后借助于向量垂直的条件,求得实数m的值.详解:设圆C的圆心是,根据题意可知圆的半径是所以圆C,,即故答案为.点睛:该题考查的是有关直线与圆的问题,在解题的过程中,需要注意根据条件,确定圆的方程的时候用到的是圆心到直线的距离等于半径,求得圆心的坐标以及半径长,从而求得结果,之后借助于向量垂直的条件为数量积等于零,从而得答其满足的等量关系式,求得结果.14. 定义在R满足:时,设函数a的取值范围是______.【答案】.a的范围.,即R上单调递减,,所以,即,,可得,如果与其反函数图像相交,则交点一定在直线R点睛:该题考查的是有关参数的范围求解的问题,在解题的过程中,涉及到的知识点有构造新函数,应用题的条件确定函数的单调性,利用最值处理存在性问题,结合单调性求得最值,从而求导结果.二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.)15.(1(2)(2.【解析】分析:(1)首先利用正弦倍角公式将式子转化,之后应用平方关系将整式转化为分式,上下同除,将式子转化为关于的式子,求解即可;(2,结合题中所给的后应用差角公式求得结果.详解:(1(2)∴且为锐角∴点睛:该题考查的是有关三角恒等变换求值的问题,涉及到的知识点有同角三角函数关系式、倍角公式、差角公式,在解题的过程中,正确使用公式是解题的关键.16. 若命题p:关于x命题q:R上是增函数.(1a的取值范围。
江苏省扬州中学2016——2017年度高二下学期数学(文)期中试卷一.填空题(每题5分,合计70分)1. 设全集{}I 1,2,3,4=,集合{}S 1,3=,{}4T =,则()IS T = ▲ .2. 已知复数z =(1i)(12i)+-(i 为虚数单位),则z 的虚部为 ▲ .3.已知函数1()2x f x a -=+,0a >且1a ≠,则()f x 必过定点 ▲ .4.命题“20,0x x ∃<>”的否定是 ▲ 5.“1x >” 是 “11x<” 的 ▲ 条件. 6.若()log (4)a f x ax =-在[,)a +∞上为增函数,则a 的取值范围是 ▲ . 7. 从()()11,1412,149123,149161234,=-=-+-+=++-+-=-+++推广到第个等式为 ▲ .8. 若ABC ∆内切圆半径为,三边长为,,a b c ,则ABC ∆的面积1()2S r a b c =++将这个结论类比到空间:若四面体内切球半径为R ,四个面的面积为1234,,,S S S S ,则四面体的体积V =▲ .9.已知22,,27x y R x y x ∈+=+,则22x y +的最大值为 ▲ . 10.若函数)(x f 定义在R 上的奇函数,且在)0,(-∞上是增函数,又0)2(=f ,则不等式0)1(<+x xf 的解集为 ▲ .11.设函数31,1,()2, 1.x x x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的的取值范围是 ▲ .12.设为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则的取值范围为 ▲ .13. 若函数()313f x x x =-在()2,8t t -上有最大值,则实数的取值范围是 ▲ . 14. 已知函数()()2,x x bx x a a b R λ=-++-∈,若对任意实数,关于的方程()1x a λ=+最多有两个不同的实数解,则实数的取值范围是 ▲ .二.解答题15.已知集合107x A xx ⎧-⎫=>⎨⎬-⎩⎭,{}22220B x x x a a =---<(1)当4a =时,求A B ;(2)若A B ⊆,求实数的取值范围.16. 已知复数112i z =-,234i z =+,为虚数单位.(1)若复数12z az +对应的点在第四象限,求实数的取值范围; (2)若1212z z z z z -=+,求的共轭复数. 17. 已知命题:p 指数函数()(26)xf x a =-在R 上单调递减,命题:q 关于的方程2x -3ax 2210a ++=的两个实根均大于3.若p 或为真,p 且为假,求实数的取值范围.18. 已知函数).2lg()2lg()(x x x f -++= (1)记函数,310)()(x x g x f +=求函数)(x g 的值域;(2) 若不等式m x f >)(有解,求实数m 的取值范围.19.某制药厂生产某种颗粒状粉剂,由医药代表负责推销,若每包药品的生产成本为元,推销费用为()13t t ≤≤元,预计当每包药品销售价为元时,一年的市场销售量为()220x -万包,若从民生考虑,每包药品的售价不得高于生产成本的00250,但为了鼓励药品研发,每包药品的售价又不得低于生产成本的00200(1) 写出该药品一年的利润()w x (万元)与每包售价的函数关系式,并指出其定义域; (2) 当每包药品售价为多少元时,年利润()w x 最大,最大值为多少? 20.已知函数()ln f x x =.(1)求函数()f x 的图象在1x =处的切线方程; (2)若函数()k y f x x =+在21[,)e+∞上有两个不同的零点,求实数的取值范围; (3)是否存在实数,使得对任意的1(,)2x ∈+∞,都有函数()ky f x x=+的图象在()xe g x x=的图象的下方?若存在,请求出最大整数的值;若不存在,请说理由.(参考数据:ln 20.6931=,121.6487e =).江苏省扬州中学2016——2017年度高二下学期数学(文)期中试卷参考答案1. {}2,4;2. 1-;3. ()1,3;4.20,0x x ∀≥≤; 5. 充分不必要;6. ),2(∞+; 7. ()()()1122212311123n n n n ---+++-=-++++;8.)(r 314321S S S S +++;9. 9+ 10. 01x <<或-31x <<-; 11. 23a ≥; 12. 8,7⎛⎤-∞- ⎥⎝⎦;13. (3,-;14. (()),11,31⎡-∞-⋃-⋃++∞⎣15. 解:(1)()1,6AB =. (2)实数的取值范围是(,7][5,)-∞-⋃+∞16. 解:(1),)24()31(21i a a az z -++=+由题意得,024031⎩⎨⎧<->+a a 解得).21,31(-∈a(2).1,12462)43()21()43()21(2121i z i iii i i i z z z z z +-=--=+--=++-+--=+-=17. 解:7:32p a <<, 记()22321g x x ax a =-++,由()0g x =的两根均大于得:()()2229421035322399210a a aa g a a ⎧∆=-+≥⎪⎪>⇔>⎨⎪⎪=-++>⎩,所以,5:2q a >. 由于p 或为真,p 且为假,所以,532a <≤或72a ≥. 18.解:(1)定义域),2,2(-)4lg()(2x x f -=,∴43310)(2)(++-=+=x x x x g x f ,对称轴为,23=x ∴)(x g 的值域为].425,6(- (2)∵m x f >)(有解,∴max )(x f m <,令]4,0(,42∈-=t x t ,∴4lg )(max =x f ,∴.4lg <m19.解: (1)由题意,()()()[]()262012,15w x x t x x =---∈(2) ()()()()()22322026203203t w x x x t x x x +⎛⎫'=-----=---⎪⎝⎭① 当12t ≤≤时,232123t +≤,()0w x '≤在[]12,15上恒成立,即()w x 为减函数,所以,()()max1238464w x w t ==-万元②当23t <≤时,()23212,153t +∈,当232123t x +<<时()0w x '>, 当232153t x +<<时,()0w x '<,即()w x 在23212,3t +⎛⎫⎪⎝⎭上为增函数,在232,153t +⎛⎫ ⎪⎝⎭上为减函数,所以,()()3max232414327t w x w t +⎛⎫==- ⎪⎝⎭万元 20.解:(1)因为1()f x x'=,所以(1)1f '=,则所求切线的斜率为, ……………2分 又(1)ln10f ==,故所求切线的方程为1y x =-. ................4分 (2)因为()ln k k f x x x x +=+,则由题意知方程ln 0k x x +=在21,e ⎡⎫+∞⎪⎢⎣⎭上有两个不同的根.由ln 0kx x+=,得ln k x x -=, ……………6分 令()ln g x x x =,则()ln 1g x x '=+,由()0g x '=,解得1x e=. 当211,x e e ⎡⎫∈⎪⎢⎣⎭时,()0g x '<,()g x 单调递减;当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>,()g x 单调递增,所以当1x e =时,()g x 取得最小值为11()g e e=-. ……………8分又2212()g e e=-,(1)0g =(图象如右图所示),所以212k e e -<-≤-,解得221k e e≤<. ……………10分 (3)假设存在实数满足题意,则不等式ln x k e x x x +<对1(,)2x ∈+∞恒成立.即ln xk e x x <-对1(,)2x ∈+∞恒成立.令()ln xh x e x x =-,则()ln 1xh x e x '=--, ……12分令()ln 1x r x e x =--,则1()xr x e x'=-, 因为()r x '在1(,)2+∞上单调递增,121()202r e '=-<,(1)10r e '=->,且()r x '的图象在1(,1)2上不间断,所以存在01(,1)2x ∈,使得0()0r x '=,即0010xe x -=,则00ln x x =-,所以当01(,)2x x ∈时,()r x 单调递减;当0(,)x x ∈+∞时,()r x 单调递增,则()r x 取到最小值000001()ln 11xr x e x x x =--=+-110≥=>,…14分 所以()0h x '>,即()h x 在区间1(,)2+∞内单调递增.所以11221111()ln ln 2 1.995252222k h e e ≤=-=+=,所以存在实数满足题意,且最大整数的值为. ……………16分。
江苏省扬州中学2017-2018学年高二年级期中考试高二数学一、填空题:1.直线012:=+-y x l 的斜率为 .2.命题R x p ∈∃:,使得012≤+x 的否定为 . 3.直线02:=-+k y kx l 经过定点的坐标为 .4.若命题),(4:112121R y x y x p ∈<+,命题:q 点),(11y x 在圆422=+y x 内,则p 是q 的条件.5.已知两条直线22:1+=+a ay x l ,1:2+=+a y ax l ,若21l l ⊥,则=a .6.命题:p “若b a >,则ba 11<”的否命题是 (填:真、假)命题. 7.两圆04816622=-+-+y x y x 与0448422=--++y x y x 的公切线条数为 .8.若直线02=--y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为 .9.离心率为2且与椭圆192522=+y x 有共有焦点的双曲线方程是 . 10.椭圆12622=+y x 和双曲线11-322=y x 的公共焦点21,F F ,P 是两曲线的一个交点,那么21cos PF F ∠的值是 .11.在平面直角坐标系xoy 中,由不等式⎪⎩⎪⎨⎧≤++≥+--100222222y x yy x x 所确定的图形的面积为 .12.椭圆)0(12222>>=+b a by a x 的右焦点为F ,过原点O 的直线交椭圆于点P A ,,且PF 垂直于x 轴,直线AF 交椭圆于点B ,PA PB ⊥,则该椭圆的离心率=e .13.在平面直角坐标系xoy 中,抛物线x y 22=的焦点为F ,设M 是抛物线上的动点,则MFMO的最大值为 .14.已知对于点)12,0(A ,)9,10(B ,)0,8(C ,)7,4(-D ,存在唯一一个正方形S 满足这四个点在S 的不同边所在直线上,设正方形S 面积为k ,则k 10的值为 . 二、解答题15.已知命题:p “方程11922=-+-k y k x 表示焦点在x 轴上的椭圆”,命题:q “方程1222=+-ky k x 表示双曲线”. (1)若p 是真命题,求实数k 的取值范围; (2)若“p 或q ”是真命题,求实数k 的取值范围.16.已知圆M 的方程为1)2(22=-+y x ,直线l 的方程为02=-y x ,点p 在直线l 上,过p点作圆M 的切线PB PA ,,切点为B A ,. (1)若060=∠APB ,试求点P 的坐标;(2)若P 点的坐标为)1,2(,过P 作直线与圆M 交于D C ,两点,当2=CD 时,求直线CD 的方程.17. 古希腊有一著名的尺规作图题“倍立方问题”:求作一个正方体,使它的体积等于已知立方体体积的2倍,倍立方问题可以利用抛物线(可尺规作图)来解决,首先作一个通径为a 2(其中正数a 为原立方体的棱长)的抛物线1C ,如图,再作一个顶点与抛物线1C 顶点O 重合而对称轴垂直的抛物线2C ,且与1C 交于不同于点O 的一点P ,自点P 向抛物线1C 的对称轴作垂线,垂足为M ,可使以OM 为棱长的立方体的体积为原立方体的2倍. (1)建立适当的平面直角坐标系,求抛物线1C 的标准方程;(2)为使以OM 为棱长的立方体的体积为原立方体的2倍,求抛物线2C 的标准方程(只须以一个开口方向为例).18. 如图,AOB ∆的顶点A 在射线)0(3:>=x x y l 上,B A ,两点关于x 轴对称,O 为坐标原点,且线段AB 上有一点M 满足3||||=∙MB AM ,当点A 在l 上移动时,记点M 的轨迹为W .(1)求轨迹W 的方程;(2)设)0,(m P 为x 轴正半轴上一点,求||PM 的最小值)(m f .19. 已知椭圆C :)0(12422>>=+b a y x 上顶点为D ,右焦点为F ,过右顶点A 作直线DF l //,且与y 轴交于点),0(t P ,又在直线t y =和椭圆C 上分别取点Q 和点E ,满足OE OQ ⊥(O 为坐标原点),连接EQ .(1)求t 的值,并证明直线AP 与圆222=+y x 相切;(2)判断直线EQ 与圆222=+y x 是否相切?若相切,请证明;若不相切,请说明理由.20. 已知椭圆C :1121622=+y x 左焦点F ,左顶点A ,椭圆上一点B 满足x BF ⊥轴,且点B 在x 轴下方,BA 连线与左准线l 交于点P ,过点P 任意引一直线与椭圆交于D C ,,连结BC AD ,交于点Q ,若实数21,λλ满足:CQ BC 1λ=,DA QD 2λ=.(1)求21,λλ的值;(2)求证:点Q 在一定直线上.试卷答案一、填空题1.22. R x ∈∀,使得012>+x 3. )0,2( 4.充要 5.0 6.假 7.28.0或4 9. 112422=-y x 10. 31 11. π50 12. 2213. 33214.1936 二、解答题15.(1)命题p :“方程11922=-+-k y k x 表示焦点在x 轴上的椭圆”,则⎩⎨⎧>-->-0119k k k ,解得51<<k .(2)命题:q “方程1222=+-ky k x 表示双曲线”,则0)2(<-k k ,解得2>k 或0<k . 若“p 或q ”是真命题,则q p ,至少一个是真命题,即一真一假或全为真. 则⎩⎨⎧≤≤<<2051k k 或⎩⎨⎧><≥≤2051k k k k 或或或⎩⎨⎧<><<0251k k k 或,所以21≤<k 或0<k 或5≥k 或52<<k . 所以0<k 或1>k .16.(1)设),2(m m P ,由条件可知2=MP ,所以4)2()2(22=-+m m ,解之得:0=m ,54=m , 故所求点P 的坐标为)0,0(P 或)54,58(P(2)设直线CD 的方程为:)2(1-=-x k y ,易知k 存在,由题知圆心M 到直线CD 的距离为22,所以21|12|22k k +--=,解得:1-=k 或71-. 故所求直线CD 的方程为:03=-+y x 或097=-+y x . 17.(1)以O 为原点,OM 为x 轴正向建立平面直角坐标系, 由题意,抛物线1C 的通径为a 2,所以标准方程为ax y 22=.(2)设抛物线)0(:22>=m my x C ,又由题意,3222a x OM P ==,所以a x p 32=,代入ax y 22=,得:23222a y p =,解得:a y p 34=所以点)4,2(33a a P 代入my x =2 得:a m a 3234)2(=,解得:a m = 所以抛物线2C 为:ay x =2.18.(1)因为B A ,两点关于x 轴对称, 所以AB 边所在直线与y 轴平行,设),(y x M ,由题意,得)3,(x x A ,)3,(x x B -, 所以y x AM -=3||,x y MB 3||+=, 因为3||||=∙MB AM ,所以3)3)(3(=+-x y y x ,即1322=-y x , 所以点M 的轨迹W 的方程为1322=-y x )1(≥x (2)设),(y x M ,则22)(||y m x MP +-=,因为点M 在1322=-y x )1(≥x ,所以3322-=x y , 所以32433)(||2222-+-=-+-=m mx x x m x MP 343)4(422-+-=m m x若14<m,即4<m ,则当1=x 时,|1|||min -=m MP ; 若14≥m,即4≥m ,则当4m x =时,12321||2min -=m MP 所以,||PM 的最小值⎪⎩⎪⎨⎧≥-<<-=4,1232140|,1|)(2m m m m m f . 19.(1)由题设)2,0(D ,)0,2(F ,)0,2(A , 又DF AP //,所以DF AP k k =,可得:2=t , 所以122:=+yx AP ,即2=+y x , 所以22|2|=-=d ,为圆222=+y x 的半径, 所以直线AP 与圆222=+y x 相切.(2)设)2,(0x Q ,),(11y x E ,由OE OQ ⊥,则⊥,可得02110=+y x x , 而EQ :0)(2)2()()2(0101011=-+-----x x x y y x x x y20121101201210101)()2(|2|)()2(|)(2)2(-|x x y x x y x x y x x x y d -+--=-+--+-=由02110=+y x x 得1102x y x -=代入上式, 得42))(4(||2)2()2(||221212122121212121212121212121++=+++=++-+=x x y y x x x y y x y x x y d又422121=+y x ,212124y x -=,代入上式得:2=d所以直线EQ 与圆222=+y x 相切.20.(1)因为)0,2(-F ,由x BF ⊥轴,由对称轴不妨设)3,2(--B ,则直线)4(23:+-=x y AB 又左准线8:-=x l ,所以)6,8(-P ,又CQ BC 1λ=,所以111λλ++=PQPB PC同理:由2λ=,得:221λλ++=又23=,所以11123λλ++=PQPA 又//,比较系数得:12312λλ=,所以2321=∙λλ(2)证明:设点),(11y x C ,),(22y x D ,),(00y x Q 由1λ=,得101112λλ++-=x x ,11113λλ++-=y y代入椭圆方程484322=+y x ,得:48)13(4)12(321012101=++-+++-λλλλy x ,整理得:0)962412()4843(100212020=++--+λλy x y x显然01≠λ,所以48439624122020001-+++=y x y x λ 同理:由2λ=,得:220214λλ+-=x x ,221λ+=y y代入椭圆方程484322=+y x ,得:48)1(4)14(32202220=+++-λλλyx同理可得:96244843020202+-+=x y x λ又由(1)2321=λλ,所以2396244843484396241202020202000=+-+∙-+++x y x y x y x整理得:0200=+-y x 即点Q 在定直线02=+-y x 上.。
江苏省邗江中学2017—2018学年度第二学期高二数学期中试卷(理科)一、填空题(本题包括14小题,每小题5分,共70分.)1. 设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩CU M___.【答案】{﹣2,﹣1,0}【解析】分析:根据交集的定义求解:详解:P∩CU M点睛:1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 命题“?x∈[0,1],x2﹣1≥0”是____命题.(选填“真”或“假”)【答案】真【解析】分析:判断存在性问题真假性,可以通过举例子肯定结论,如要否定,需证明所有都不满足.详解:因为,所以命题“?x∈[0,1],x2﹣1≥0”是真命题.点睛:判定全称命题“”是真命题,需要对集合中的每个元素,证明成立;要判定一个全称命题是假命题,只要举出集合中的一个特殊值,使不成立即可.要判断存在性命题是真命题,只要在限定集合内至少能找到一个,使成立即可,否则就是假命题.3. 已知复数z=i(2+i),则|z|=___.【答案】【解析】分析:先计算复数,再根据复数的模的定义求结果.详解:点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为4. 若=,则x的值为___.【答案】1或3【解析】分析:根据组合数性质,列方程,解得x的值.详解:或或点睛:组合数有关性质5. 用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是____.【答案】1+2+3+4【解析】试题分析:本题考查的知识点是数学归纳法的步骤,由等式,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案.解:在等式中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故答案为:1+2+3+4点评:在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.6. 在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p(0<p<1)的取值范围是_______.【答案】(0.4,1)【解析】由题意知.7. 在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l与曲线C交于A,B两点,则线段AB的长为__.【解析】分析:先根据加减消元法得直线的普通方程,再根据将曲线C的极坐标方程化为直角坐标方程,联立方程组解得交点坐标,最后根据两点间距离公式求结果.详解:,由得或,因此..................8. 已知(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7,a∈R,若a0+a1+a2+…+a6+a7=0,则a3=___.【答案】-5【解析】分析:先根据赋值法求a,再根据x3项系数求a3.详解:令,得因此点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.9. 如果复数z的模不大于1,而z的虚部的绝对值不小于,则复平面内复数z的对应点组成图形的面积是___.【答案】【解析】分析:先根据复数的模以及复数的虚部列不等式,再根据扇形面积减去三角形面积详解:设,则,如图,因此复平面内复数z的对应点组成图形为两个弓形,其面积为扇形面积减去三角形面积是点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为10. 观察下列各等式:55=3125,56=15625,57=78125,…,则52018的末四位数字为__.【答案】5625【解析】分析:先根据等式依次计算末四位数字,再根据规律确定周期,最后根据周期确定结果.详解:55,56,57,58,59末四位数字为3125,5625,8125,0625,3125,从而周期为4,因此52018的末四位数字为56的末四位数字,即为5625.点睛:找寻规律的方法有:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.11. 根据浙江省新高考方案,每位考生除语、数、外3门必考科目外,有3门选考科目,并且每门选考科目都有2次考试机会,每年有两次考试时间,某考生为了取得最好成绩,将3门选考科目共6次考试机会安排在高二与高三的4次考试中,且每次至多考2门,则该考生共有___ 种不同的考试安排方法.【答案】114【解析】分析:先确定分配方案为2211或2220,再确定排列数.详解:分配方案为2211时,排列数为,分配方案为2220时,排列数为,因此安排方法为点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.12. 如图,在正三棱柱ABC﹣A1B1C1中,AB=1,AA1=2,则二面角C1﹣AB﹣C的余弦值为 ___.【答案】【解析】分析:过C作CM垂直AB 于M,则根据三垂线定理以及二面角定义可得∠C1MC为二面角C1﹣AB﹣C的平面角,再解三角形得结果.详解:过C作CM垂直AB 于M,连C1M,则由三垂线定理得C1M垂直AB,因此∠C1MC为二面角C1﹣AB﹣C的平面角,所以点睛:二面角找垂面,即找棱垂直的平面,得到平面角之后再解三角形即可13. 化简:=____(用m、n表示).【答案】【解析】试题分析:设(1)则函数中含项的系数为,(2)(1)-(2)得,即,化简得,∴函数中含项的系数,即是等式右边含项的系数,∵等式右边含项的系数为即,∴.故答案为:.考点:排列与组合;二项式定理与性质.14. 设A,B是集合{a1,a2,a3,a4,a5}的两个不同子集,若使得A不是B的子集,B也不是A的子集,则不同的有序集合对(A,B)的组数为____.【答案】570【解析】分析:分类依次讨论有序集合对(A,B)的组数,根据子集元素个数分类讨论,最后根据加法原理求组数.详解:不同的有序集合对(A,B)的组数为点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.二、解答题:(15、16题均为14分,17、18题均为15分,19、20题均为16分,请在答题纸的指定区域内答题,并写出必要的计算、证明、推理过程.)15. 已知集合A是函数y=lg(20﹣8x﹣x2)的定义域,集合B是不等式x2﹣2x+1﹣a2≥0(a >0)的解集,p:x∈A,q:x∈B.(1)若A∩B=?,求实数a的取值范围;(2)若¬p是q的充分不必要条件,求实数a的取值范围.【答案】(1)a≥11(2)0<a≤1【解析】试题分析:(1)分别求函数的定义域和不等式()的解集化简集合A,由得到区间端点值之间的关系,解不等式组得到的取值范围;(2)求出对应的的取值范围,由是的充分不必要条件得到对应集合之间的关系,由区间端点值的关系列不等式组求解的范围.试题解析:(1)由题意得,或,若,则必须满足,解得,∴的取值范围为.(2)易得或.∵是的充分不必要条件,∴或是或的真子集,则,其中两个等号不能同时成立,解得,∴a的取值范围为.16. 在直角坐标系xOy中,圆C的参数方程为(α为参数),以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系.(1)写出圆C的极坐标方程及圆心C的极坐标;(2)直线l的极坐标方程为与圆C交于M,N两点,求△CMN的面积.【答案】(1),圆心C(2,)(2)【解析】分析:(1)先根据三角形同角关系消参数得圆C圆心直角坐标以及圆方程的直角坐标方程,再根据将直角坐标化为极坐标,(2)将直线极坐标方程代入圆极坐标方程得交点极坐标,再根据三点极坐标关系求三角形面积.详解:(1)极坐标(ρ,θ)与直角坐标(x,y)的对应关系为:,所以,根据sin2α+cos2α=1,消元得()2﹣(ρsinθ﹣1)2=4,化简得:.因为圆心C直角坐标为(,1),∴极坐标为(2,).(2)联立,得交点极坐标M(0,0),N(2,),所以|MN|=2,|MC|=2,所以△CMN的面积.点睛:(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.17. 如图,在三棱锥中,已知都是边长为的等边三角形,为中点,且平面,为线段上一动点,记.(1)当时,求异面直线与所成角的余弦值;(2)当与平面所成角的正弦值为时,求的值.【答案】(1)(2)【解析】分析:(1)建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互补得结果,(2)建立空间直角坐标系,设立各点坐标,利用方程组求平面的一个法向量,再根据向量数量积求向量夹角,最后根据线面角与向量夹角互余列等量关系,解得结果,详解:连接CE,以分别为轴,建立如图空间直角坐标系,则,因为F为线段AB上一动点,且,则,所以.(1)当时,,,所以.(2),设平面的一个法向量为=由,得,化简得,取设与平面所成角为,则.解得或(舍去),所以.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.18. 观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律下去(1)写出第5个等式;(2)你能做出什么一般性的猜想?请用数学归纳法证明你的猜想.【答案】(1)5+6+7+…+13=81(2)见解析【解析】分析:(1)等式左边第一数为n,连续加2n-1个数,右边为平方数,为(2n﹣1)2,即得第5个等式;以及一般性的猜想,(2)数学归纳法证明时关键找出n=k+1时与n=k 关系,再代入归纳假设,经过计算可得结论.详解:(1)第5个等式 5+6+7+…+13=81(2)猜测第n个等式为n+(n+1)+(n+2)+…(3n﹣2)=(2n﹣1)2证明:(1)当n=1时显然成立;(2)假设n=k(k≥1,k∈N+)时也成立,即有k+(k+1)+(k+2)+…(3k﹣2)=(2k﹣1)2…(8分)那么当n=k+1时左边=(k+1)+(k+2)+…+(3k﹣2)+(3k﹣1)+(3k)+(3k+1)=k+(k+1)+(k+2)+…+(3k﹣2)+(2k﹣1)+3k+3k+1=(2k﹣1)2+(2k﹣1)+(3k)+(3k+1)=4k2﹣4k+1+8k=(2k+1)2=[2(k+1)﹣1]2而右边=[2(k+1)﹣1]2这就是说n=k+1时等式也成立.根据(1)(2)知,等式对任何n∈N+都成立.点睛:找寻规律的方法有:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.19. 邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.【答案】(1)(2)见解析【解析】试题分析:(1)由已知得,即可得到事件的概率.(2)由题意得,得到随机变量的所有可能取值,求得随机变量取每个值的概率,即可得到随机变量的分布列,并计算其数学期望.试题解析:(1)由已知得.所以事件发生的概率为.(2)随机变量的所有可能取值为0,1,2计算,,;所以随机变量的分布列为:随机变量的数学期望为.点睛:本题主要考查了概率的计算及随机变量的分布列、数学期望,此类问题的解答中主要认真审题,正确把握试验的条件,合理求解每个取值对应的概率是解答的关键,同时注意概率公式的应用和准确计算.视频20. 已知…,.记.(1)求的值;(2)化简的表达式,并证明:对任意的,都能被整除.【答案】(1)30(2)见解析试题解析:由二项式定理,得(i0,1,2,…,2n+1).(1);(2)∵∴.∴.∵∴能被整除.。
江苏省扬州中学2018-2019年度第二学期期中考试高二数学(理科)一、填空题(每小题5分,共计70分)。
1. 命题“∃x ∈R ,x 2+x >0”的否定是________________________.∀x ∈R ,x 2+x ≤02. 若复数z 满足:z ·(1+i)=2,则|z |= . 23. 若f (x )=x 3,其导数满足f '(x 0)=3,则x 0的值为____________.±14. 命题“x 2-x -2=0”是命题“x =-1”的 条件.必要不充分5. 投掷两个骰子,向上的点数之和为12的概率为_________.1366. 若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为_________. (1,0)7. 有3名男生4名女生排成一排,要求男生排在一起,女生也排在一起,有______种不同的排列方法.(用数字作答)2888. 在数学归纳法的递推性证明中,由假设n =k 成立推导n =k +1成立时,f (n )=1+12+13+···+12n -1增加的项的个数是______________项.(用k 表示)2k 9. 若数列{a n }为等差数列,定义b n =a n +1+a n +2+a n +33,则数列{b n }也为等差数列。
类比上述性质,若数列{a n }为等比数列,定义数列{b n }:b n =________________,则数列{b n }也为等比数列. 3a n +1a n +2a n +310. (1+ax )6的展开式中二项式系数的最大值为___________.(用数字作答)C 36=20 11. 若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的最小值为________.12.12. 若函数f (x )=x 3+3x 对任意的m ∈[-2,2],不等式f (mx -2)+f (x )<0恒成立,则实数x 的取值范围是_______________.(-2,23)13. 已知f (x )是定义在R 上的奇函数,f (1)=0,且对任意x >0都有x ·f '(x )-f (x )>0成立,则不等式x 2·f (x )>0的解集是 . (-1,0)∪(1,+∞) 14. 设曲线f (x )=(ax -1)·e x 在点A (x 0, y 1)处的切线为l 1,g (x )=(1-x )·e −x 在点B (x 0, y 2)处的切线为l 2,若存在x 0∈[0,32],使得l 1⊥l 2,则实数a 的取值范围是_________.解:f '(x )=(ax -1+a )e x ,g '(x )=(x -1-1)e −x ,∵存在x 0∈[0,32],使得f '(x 0)·g '(x 0)=-1,即(ax 0-1+a )·(x 0-2)=-1∴a ·(x 0+1)=-1x 0-2+1∴a =x 0-3x 0-2·1x 0+1,令t =x -3∈[-3,-32],y =t(t +4)(t +1)=1t +4t+5 ∵-133≤t +4t ≤-4,∴1≤y ≤32,∴答案为⎣⎡⎦⎤1,32. 二、解答题(共6大题,共计90分)。
江苏省扬州中学2017—2018学年第二学期期中考试
高二数学试卷(文科) 2018.4
本卷满分:160分 考试时间:120分钟
一、填空题:每题5分,14小题,满分70分 1.已知全集U Z =,集合
{}
2
20,M x
x x x Z =
--
<∈,
{}
1,0,1,2N =-,则
()U C M N ⋂= .
2.命题“若1x ≥,则2
421x x -+≥-”的否命题为 .
3.设复数z 满足
()1i 2i z +=,则z = .
4.设x R ∈,则“1x <”是“20x x -<”的 条件.(填“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”)
5.已知函数
R a x x x f ∈-=
,31)(23
,则曲线
()y f x =在点()()3,3f 处的切线方程为 .
6.已知函数⎩⎨⎧<-≥+=.0,2,0,2)(22x x x x x x x f 若
()
()a f a f >-2
2,则实数a 的取值范围是 .
7.若方程()01222
=-+-+k x k x 有两个实数根,一根在区间()1,0内,另一根在区间()2,1内,
则实数k 的取值范围 .
8.函数2()||f x x x t =+-在区间[1,2]-上的最大值为4,则实数t = . 9.已知三角形的三边分别为,,a b c ,内切圆的半径为r ,则三角形的面积为()1
2s a b c r =
++;
四面体的四个面的面积分别为1234,,,s s s s ,内切球的半径为R .类比三角形的面积可得四面
体的体积为 . 10.已知()
f x ' 是奇函数
()f x 的导函数,
()10
f -=,当0x >时,
()()0
xf x f x '->,
则使得
()0
f x >成立的x 的取值范围是 .
11.已知
1log (2)n n a n +=+(*n N ∈)
,观察下列算式:
1223lg3lg 4
log 3log 4lg 2lg3a a ⋅=⋅=
⋅
2=;
123456a a a a a a 237log 3log 4log 8
=⋅…lg3lg 4lg8
3
lg 2lg3lg 7=
⋅=…;若12
2016m a a a =…(*m N ∈),则m 的值为 . 12.定义区间
[]21,x x 长度为)(1212x x x x >-,已知函数
()
)0,(1
)(22
≠∈-+=
a R a x a x a a
x f 的定义域与值域都是[]n m ,,
则区间[]n m ,取最大长度时a 的值为 .
13.已知
()f x 是以
2e
为周期的R 上的奇函数,当
()
0,x e ∈, ()ln f x x =,若在区间[]e e 2,-,
关于x 的方程
()1
f x kx =+恰好有4个不同的解,则k 的取值集合是 .
14.已知a 为常数,函数22()(11)x a x x f a x -+-=
-的最大值为1,则a 的所有值
为 .
二、解答题:6小题,满分90分. 15. (本小题满分14分) (1)计算:
i
i
423-+-; (2)在复平面内,复数()()
i m m m z 222--++=对应的点在第一象限,求实数m 的取值范围.
16. (本小题满分14分)
已知R a ∈,命题p :“[]0,2,12≥-∈∀a x x ”,命题q :“022,2=-++∈∃a ax x R x ”. (1)若命题p 为真命题,求实数a 的取值范围;
(2)若命题“p ∨q ”为真命题,命题“p ∧q ”为假命题,求实数a 的取值范围. 17. (本小题满分15分) 已知函数
()2f x x x a x
=-+.
(1)当3=a 时,方程m x f =)(的解的个数;
(2)对任意[1,2]x ∈时,函数()f x 的图象恒在函数()21g x x =+图象的下方,求a 的取值范围.
18. (本小题满分15分)
一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x 万件并全部销售完,每万件的销售收入为x -4万元,且每万件国家给予补助x
x x e e 1
ln 22--
万元.(e 为自然对数的底数,e 是一个常数) (Ⅰ)写出月利润)(x f (万元)关于月产量x (万件)的函数解析式;
(Ⅱ)当月产量在[
]e 2,1万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件).(注:月利润=月销售收入+月国家补助﹣月总成本) 19. (本小题满分16分)
(1)用分析法证明:当0x ≥, 0y ≥时, 22y x y x ≥+-;
(2)证明:对任意x R ∈,
1
31x x --+, 2x x +, 21x --这3个值至少有一个不小于0. 20.(本小题满分16分)
已知函数
2
()1,()ln ,()f x x ax a g x x a R =+++=∈. (1)当1a =时,求函数()()y f x g x =-的单调区间;
(2)若存在与函数(),()f x g x 的图象都相切的直线,求实数a 的取值范围.
命题人:王祥富、徐孝慧 审核人:江金彪
文科答案:
1、
{}
1,2-
2、若1<x ,则1242
-<+-x x 3、2 4、充分不必要条件 5、390x y --= 6、()1,2- 7、3221<<k
8、2=t 或415=t
9、
()R s s s s V 43213
1
+++=
10、()()
1,01,-+∞
11、2016
2
2-
12、3 13.
⎭
⎬
⎫⎩⎨⎧--e e 21,1
14. 352a ±=
二、解答题: 15、(1)i 2
12
1--;
(2)()()+∞⋃--∈,21,2m 16.解:(1)(]1,∞-; (2)121<<->a a 或.
17.(1)当a =3时,⎪⎩⎪⎨
⎧<-≥-=3,53
,)(22x x x x x x x f ,
当6=m 或425
时,方程有两个解;
当6<m 或
425
>
m 时,方程一个解;
当
425
6<
<m 时,方程有三个解.
(2) 由题意知)()(x g x f <恒成立,即1||<-a x x 在x ∈[1,2]上恒成立,x a x 1
||<
-在x ∈[1,2]上
恒成立
x x a x x 11+
<<-
在x ∈[1,2]上恒成立,∴223
<<a
18.解:(Ⅰ)由于:月利润=月销售收入+月国家补助﹣月总成本,可得
(Ⅱ)f (x )=﹣x 2+2(e +1)x ﹣2elnx ﹣2的定义域为[1,2e ],
且
列表如下:
x (1,e) e (e,2e]
f'(x)+0 ﹣
f(x)增极大值f(e)减
由上表得:f(x)=﹣x2+2(e+1)x﹣2elnx﹣2在定义域[1,2e]上的最大值为f(e).
且f(e)=e2﹣2.即:月生产量在[1,2e]万件时,该公司在生产这种小型产品中所获得的月利润最大值为f(e)=e2﹣2,此时的月生产量值为e(万件).
19.【解析】
(1)要证不等式成立,只需证
22
x y x y
+≥+
成立,
即证:()()
22
22
x y x y
+≥+
成立,
即证:
2222
x y xy x y
++≥+
成立,
即证:20
xy≥
成立,
因为
0,0,
x y
≥≥所以20
xy≥
,所以原不等式成立.
(2)假设
12
31,,21
x x x x x
--++--
这3个值都小于0,
即
12
310,0,210 x x x x x
--+<+<--<
则
12
320
x x x
-+-<,(*)
而
()2
11
2
323110 x x
x x x
--
+-=+--≥
.
这与(*)矛盾,所以假设不成立,即原命题成立.
20.【解析】(1)函数的定义域为
当时,,
所以
所以当时,,当时,,
所以函数在区间单调递减,在区间单调递增。
(2)设函数上点与函数上点处切线相同,
则
所以
所以,代入得:
设,则
不妨设则当时,,当时,
所以在区间上单调递减,在区间上单调递增,
代入可得:
设,则对恒成立,
所以在区间上单调递增,又
所以当时,即当时,
又当时
因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线相同.
又由得:
所以单调递减,因此
所以实数的取值范围是.。