基于永磁同步发电机的直驱式风电系统建模与仿真
- 格式:pdf
- 大小:2.85 MB
- 文档页数:67
0 引言风能是一种重要的自然资源,风能具有可再生性和无污染的特点,受到了各国的重视,风力发电代替传统发电的比例正逐渐上升。
越来越多的出现在绿色能源应用领域。
而永磁同步风力发电机组由于直接驱动,结构简单,维护成本较低等特点,成为了目前风力发电领域研究的热点,由于永磁风力发电输出的为频率和电压均变化的交流电,需要通过变流装置才能并网运行,因此通过MATLAB、simulik 来建立永磁风力发电系统的模型,以模型为研究对像,考虑合适的控制算法,从而最终得到符合并网条件的交流电。
1 风力机的数学模型风力机以风作为原动力,并将风速转化为机械能的装置。
其捕捉风能的公式为:231(,)M P P R C V ρπλβ=(1)风力机转矩为:2531(,)2MM P T C R ωλθρπλ= (2) w RVωλ=(3)(3)(.)(0.440.0167)sin 0.00184(3)150Cp πλλββλββ−=−−− −(4)传动系统数据模型为:ge m g d JT -T -B dtωω= (5)2 永磁同步发电机数学模型为了分析永磁同步方法电机的动态性能,取永磁体转自中心线为d 轴,沿转子旋转方向超前d 轴90度为q,建立d、q 轴下的数学模型。
其电压、磁链和电磁转矩方程为:电压方程: d d d d e q q q q q q e f u Ri PL i -L i u Ri PL i ωωψ=+=++ (6)式中,Ud 为电压的d 轴分量,uq 为电压的q 轴分量,id 为电流的d 轴分量,iq 为电流的q 轴分量,ld 为等效d 轴电感,R 为定子电阻。
Ld 和Lq 为等效的dq 轴电感。
磁链方程为:d d d f q q q L i L i ψψψ=+=(7)转矩方程为: e p f q T n i ψ=(8)根据上述公式可知,极对数np 是永磁电机的参数,为一常数。
忽略磁效应,永磁体的磁链为常量,如果对于定子d 轴电流控制,使其为0,对于永磁发电机来说,电磁转矩与定子电流成正比关系,可以通过iq 来调节转矩,对电机转速调节可使得系统在最佳叶尖速比下运行,实现最大风能捕获。
风力发电系统模型搭建与仿真分析采用小型永磁同步电机分析模型并且忽略其磁饱和度。
永磁发电机的数学模型如下:(3-8)代表永磁发电机在d 轴流过的电流,u d代表发电机在d 轴上的电压,L d 代表永磁式中id发电机在d 轴上的电感。
i q 代表永磁发电机在q 轴流过的电流,u q 代表发电机在q 轴上的电压,L q 代表永磁发电机在q 轴上的电感。
发电机角速度是①e ,发电机定子电阻是R a ,发电机的电磁转矩是T e 。
发电机永磁体磁链是Ψ。
当转子表面装有磁铁时,有效气隙可视为常数。
这是因为永磁材料相对磁导率大概一致[55] 。
所以d轴与q轴同步电感一致,即L d =L q =L 化简为:(3-9)其中T与成i q 正比。
如果发电机电磁转矩变大,系统中的定子电流也会随之变大,e进而对定子电流进行控制,使得发电机电磁转矩与风力涡轮输出转矩T 均衡,实现最大功率输出。
在仿真平台上搭建风力发电系统最大功率点跟踪仿真模型,模型图如下图3-8 所示。
AC/DC 采用了不可控整流二极管,DC/DC 变换器使用boost 电路,永磁同步发电机模型直接在Matlab 中调用。
将风机半径设为3.5m ,设置初始风速为4m/s 并进行时长4s 的仿真,在2s 时将风速提升至6m/s。
梯度式扰动观察法中最大功率点跟踪模块的控制策略如图3-9 所示。
图3-8 风力发电系统的控制模型Fig.3-8 Control model of wind power generation system28图 3-9 风力发电最大功率跟踪模块Fig.3-9 Wind power generation maximum power tracking module永磁同步电机参数情况如下表 3-1 所示。
表 3-1 永磁同步电机参数Tab.3-1 Parameter of synchronous machine名称参数大小额定转速(rad/s ) 40 转动惯量(kg/m 2) 0. 189 定子绕组电阻 (Ω) 0.05 定子绕组电感( m H )7. 15 极对数 34 磁链(Wb )0. 1892风力发电系统最大功率跟踪仿真曲线如图 3-10 和 3-11 所示。
直驱永磁同步风力发电机组建模与仿真作者:王旭峰来源:《科技视界》 2015年第1期王旭峰(安徽理工大学电气与信息工程学院,安徽淮南 232001)【摘要】本文针对兆瓦级的永磁直驱同步风电机组(D-PMSG)多运行于并网发电状态,在DIgSILENT/PowerFactory仿真软件中搭建了基于双PWM全功率变流器的D-PMSG并网仿真模型;阐述了系统的运行原理,对机侧和网侧的变流器的控制策略进行了详细的分析,该系统能够实现风能最大功率追踪以及并网控制,仿真结果验证了所建模型的正确性和控制策略的可行性。
【关键词】风力发电;永磁直驱同步发电机;双PWM变换器;并网;DIgSILENT/PowerFactory作者简介:王旭峰(1992.05—),男,汉族,安徽天长人,硕士研究生,安徽理工大学电气与信息工程学院,主要研究方向为风力发电并网。
0引言目前,大规模风电场大多采用双馈异步发电机,但其存在很多缺陷。
特别在低电压穿越能力方面,因为双馈机的定子直接与电网相连,当电网发生故障或电压出现波动时会对发电机的正常运行产生很大影响。
永磁直驱同步风力发电机(permanent magnet synchronous generator, PMSG)因其没有故障率较高的齿轮传动,噪音小以及维护成本低等独特优势,已经成为风力发电领域重要研究方向。
直驱式永磁同步风电机组需经过全功率变流器才能接入电网,目前应用最多的是“AC-DC-AC”变流方式,其中采用背靠背四象限电压源型变流器的联网方式由于控制灵活而越来越受到重视。
1永磁同步风电机组结构该直驱永磁风力系统主要采用双PWM背靠背方案,其结构如图1所示。
永磁同步发电机定子通过背靠背变流器和电网连接,能够实现网侧的独立控制,并把电网不对称故障的影响最大限度的控制在网侧。
机侧PWM变流器的主要作用是控制风力发电机的运行,并实现最大风能跟踪。
网侧PWM变流器的主要作用是提供稳定的直流母线电压,并实现网侧的单位功率因数控制。
直驱式永磁同步风力发电机组建模及其控制策略一、本文概述随着全球能源需求的持续增长和环境保护的日益紧迫,风力发电作为一种清洁、可再生的能源形式,正受到越来越多的关注。
直驱式永磁同步风力发电机(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator, DDPMSG)作为一种新型风力发电技术,以其高效率、高可靠性以及低维护成本等优点,逐渐成为风力发电领域的研究热点。
本文旨在对直驱式永磁同步风力发电机组的建模及其控制策略进行深入研究。
文章将介绍直驱式永磁同步风力发电机的基本结构和工作原理,为后续建模和控制策略的研究奠定基础。
接着,文章将详细阐述直驱式永磁同步风力发电机组的数学建模过程,包括机械部分、电气部分以及控制系统的数学模型,为后续控制策略的设计提供理论支持。
在控制策略方面,本文将重点研究直驱式永磁同步风力发电机组的最大功率点跟踪(Maximum Power Point Tracking, MPPT)控制和电网接入控制。
最大功率点跟踪控制旨在通过调整发电机组的运行参数,使风力发电机组在不同风速下都能保持最佳运行状态,从而最大化风能利用率。
电网接入控制则关注于如何确保发电机组在并网和孤岛运行模式下的稳定运行,以及如何在电网故障时实现安全可靠的解列。
本文还将探讨直驱式永磁同步风力发电机组的控制策略优化问题,以提高发电机组的运行效率和稳定性。
通过对控制策略进行优化设计,可以进一步减少风力发电机组的能量损失,提高风电场的整体经济效益。
本文将对直驱式永磁同步风力发电机组的建模及其控制策略进行总结,并展望未来的研究方向和应用前景。
通过本文的研究,可以为直驱式永磁同步风力发电机组的实际应用提供理论指导和技术支持,推动风力发电技术的持续发展和优化。
二、直驱式永磁同步风力发电机组的基本原理直驱式永磁同步风力发电机组(Direct-Drive Permanent Magnet Synchronous Wind Turbine Generator,简称DD-PMSG)是一种将风能直接转换为电能的装置,其基本原理基于风力驱动、机械传动、电磁感应和电力电子控制等多个方面。
永磁直驱式变桨距风力发电机组的建模与控制1 引言永磁直驱式风力发电机组是我国风力发电机组的主流机型之一。
永磁风力发电机通过增加极对数,降低发电机转速,从而能够与风力机直接相连,取消了增速齿轮箱。
由于没有传统风力发电系统故障率很高的齿轮箱,直驱式风力发电系统稳定性和效率大大提高,且有效地抑制了噪声,具有比较广泛的市场应用前景。
图1 风力发电系统结构2 永磁直驱式并网型变桨距风力发电机组的结构永磁同步发电机的同步速较低,输出电压较低。
考虑到电网电压较高,电网与电机之间的能量变换装置,必须要有较大幅度的升压能力。
考虑到变压器体积较大,实际系统中,发电机组运送到塔顶成本较高,所以本文采取方法是直流母线侧先升压再进行并网逆变。
本文采用的机组方案如图1所示。
图2 桨距调节控制系统3 风力机的建模风力机建模一般只考虑其风能利用系数而忽略风力机的空气动力学过程。
本文即采用风力机的风能利用系数来建立其仿真模型。
图3 机侧电流内环控制系统风力机仿真模型的建立主要基于以下三个方程:(1)这里Cp-λ曲线采用文献[1]中给出的公式:(2)其中: (3)采用c1=,c2=116,c3=,c4=5,c5=21,c6=。
考虑到是发电机,建模时转矩要取反。
图4 网侧逆变器电流内环控制系统4 控制系统的设计桨距调节控制系统的设计当系统存在显著的不确定因素时,设计高精度的控制系统,必须研究控制系统在不确定情况下的鲁棒性。
PID控制器能够在很宽的运行条件下具有比较好的鲁棒性,并且形式简单,易于操作。
这里采用PID控制器来进行机组在高风速区的桨距调节。
变桨距风力发电系统在低风速区进行最大风能跟踪,节距角为零,即不进行变桨距调节。
图5 网侧逆变器电压外环控制系统风力机和发电机不经过增速齿轮箱而直接联接,传动系统的动态方程如下[4]:(4)式中,J是风轮转动惯量;ω是风轮转动的角速度;B是发电机的摩擦系数;Ta是风轮的气动转矩;Te是发动机获得的电磁转矩。
基于PSCAD的永磁同步风力发电机模型与仿真引言永磁同步风力发电机是当前广泛应用于风力发电领域的一种发电机类型。
它具有高效、低成本和可靠性高的特点,因此被广泛用于风力发电系统中。
为了更好地理解和分析永磁同步风力发电机的性能,需要进行相关的建模和仿真。
PSCAD是一种被广泛应用于电力系统仿真的软件工具,具有强大的仿真功能和友好的用户界面。
本文将介绍基于PSCAD的永磁同步风力发电机的模型建立和仿真步骤。
永磁同步风力发电机模型永磁同步风力发电机的基本原理永磁同步风力发电机是一种将风能转化为电能的装置。
它由风轮、发电机和控制系统三部分组成。
风轮接受风能并转动,发电机将机械能转化为电能,控制系统用于调节发电机的工作状态。
永磁同步风力发电机的基本原理是利用电磁感应法,通过风轮驱动发电机转动,使导体在磁场作用下产生感应电势,从而实现发电。
PSCAD中永磁同步风力发电机模型的建立首先需要在PSCAD中选择合适的电气元件进行建模,如发电机、风轮和控制系统等。
对于永磁同步风力发电机的模型建立,可以考虑以下几个方面:1.发电机模型:选择合适的发电机模型,可以根据发电机的特性来选择合适的电气元件进行建模。
一般来说,可以选择三相感应发电机或者永磁同步发电机模型。
2.风轮模型:选择合适的风轮模型,可以考虑风轮的转动惯量、风速、风向等因素。
一般来说,可以选择转动质量、转动惯量等参数进行建模。
3.控制系统模型:选择合适的控制系统模型,可以考虑对发电机转速、电压等进行调节。
一般来说,可以选择PID控制器等控制系统进行建模。
PSCAD中永磁同步风力发电机模型的仿真步骤1.创建PSCAD项目:在PSCAD软件中创建新的项目,选取适当的工程设置和仿真参数。
2.导入电气元件模型:选择合适的电气元件模型,如发电机、风轮和控制系统等,在PSCAD中导入相应的电气元件模型。
3.连接电气元件:使用线缆进行电气元件的连接,建立起完整的永磁同步风力发电机系统。
Modeling and Simulation of Direct-driver
Permanent Wind Power System Based on
Matlab/Simulink
作者: 赵立邺 孟镇
作者机构: 沈阳农业大学信息与电气工程学院,沈阳110161
出版物刊名: 农业网络信息
页码: 30-32页
年卷期: 2011年 第2期
主题词: 直驱 永磁同步发电机 Matlab/Simulink 仿真
摘要:直驱式风力发电系统不需要电励磁、噪声小、维护费用低、控制简单,在风力发电系统中越来越受到欢迎。
在Matlab/Simulink环境下,建立了直驱式永磁同步发电机的风力发电系统仿真模型,模型通过对风速、风力机、永磁同步发电机、全功率变流器进行理论分析实现模型搭建,最终建成整个风力发电系统模型。
仿真结果表明,系统能够在不同风速下稳定运行,最终输出的电压波形近似正弦,谐波含量小。