2020高考数学一轮复习(考试说明提点+基本脉络贯通+达标小题自测)第七章 数列复习指导 理(pdf)
- 格式:pdf
- 大小:2.46 MB
- 文档页数:24
2020’新课标·高考第一轮总复习同步测试卷文科数学(十三)(概率与统计)时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题6分,共36分.每小题所给的四个选项中只有一项是符合题目要求的.)1.某一考点有64个试室,试室编号为001~064,现根据试室号,采用系统抽样的方法,抽取8个试室进行监控抽查,已抽看了005试室号,则下列可能被抽到的试室号是( )A .051B .052C .053D .0552.某赛季,甲、乙两名篮球运动员都参加了10场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示.若甲运动员的中位数为a ,乙运动员的众数为b ,则a -b 的值是( )A .7B .8C .9D .103.电脑芯片的生产工艺复杂,在某次生产试验中,得到6组数据(x 1,y 1),(x 2,y 2),(x 3,y 3),(x 4,y 4),(x 5,y 5),(x 6,y 6).根据收集到的数据可知x -=10,由最小二乘法求得回归直线方程为y ^=1.3x +5.2,则y 1+y 2+y 3+y 4+y 5+y 6=( )A .50.5B .45.5C .100.2D .109.24.有人发现,附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d.A .99%B .97.5%C .95%D .99.9% 5.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球,都是红球B .至少有一个红球,都是白球C .至少有一个红球,至少有一个白球D .恰有一个红球,恰有二个红球6.关于x 、y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0 所表示的平面区域记为M ,不等式()x -42+()y -32≤1所表示的平面区域记为N ,若在M 内随机取一点,则该点取自N 的概率为( )A.π16B.π8C.14D.12 二、填空题(本大题共4小题,每小题6分,共24分.将各小题的结果填在题中横线上.)7.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始从左到右依次选取两个数字,则选出来的第5个个体的编号为__________.7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 74818.有一组样本数据8,x ,10,11,9,已知它们的平均数为10,则这组数据的方差s 2=__________.9.现从甲、乙、丙、丁4个人中随机选派2人参加某项活动,则甲乙两人中有且只有一个被选中的概率为________.10.如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.三、解答题(本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤.)11.(13分)某大型高端制造公司为响应《中国制造2025》中提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,准备加大产品研发投资,下表是确到0.001);(2)若2020年6月份研发投入为35百万元,根据所求的线性回归方程估计当月产品的销量.参考数据:∑8i =1x i y i =347,∑8i =1x 2i =1 308. 参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为b ^=∑ni =1x i y i -nx -y -∑n i =1x 2i -nx -2,a ^=y --b ^x -.12.(13分)“某奶茶店为了促销准备推出“掷骰子(投掷各面数字为1到6的均匀正方体,看面朝上的点数)赢代金劵”的活动,游戏规则如下:顾客每次消费后,可同时投掷两枚骰子一次,赢得一等奖、二等奖、三等奖和感谢奖四个等级的代金券,用于在以后来店消费中抵用现金.设事件A :“两连号”;事件B :“两个同点”;事件C :“同奇偶但不同点”.①将以上三种掷骰子的结果,按出现概率由低到高,对应定为一、二、三等奖要求的条件;②本着人人有奖原则,其余不符合一、二、三等奖要求的条件均定为感谢奖. 请替该店定出各个等级奖依次对应的事件并求相应概率.13.(14分)某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对列联表:已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为35.(1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.下面是临界值表仅供参考:参考公式:K 2=n ()ad -bc ()a +b ()c +d ()a +c ()b +d (其中n =a +b +c +d).参考答案及解析一、选择题(本大题共6小题,每小题6分,共36分.每小题所给的四个选项中只有一项是符合题目要求的.)1.某一考点有64个试室,试室编号为001~064,现根据试室号,采用系统抽样的方法,抽取8个试室进行监控抽查,已抽看了005试室号,则下列可能被抽到的试室号是( )A .051B .052C .053D .055【解析】每八个抽取一个,第一个是005,故后面编号为005+8k ,当k =6时,编号为053.2.某赛季,甲、乙两名篮球运动员都参加了10场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示.若甲运动员的中位数为a ,乙运动员的众数为b ,则a -b 的值是( )A .7B .8C .9D .10【解析】∵甲运动员的中位数为a ,∴a =19+172=18, ∵乙运动员的众数为b ,∴b =11,∴a -b =18-11=7. 3.电脑芯片的生产工艺复杂,在某次生产试验中,得到6组数据(x 1,y 1),(x 2,y 2),(x 3,y 3),(x 4,y 4),(x 5,y 5),(x 6,y 6).根据收集到的数据可知x -=10,由最小二乘法求得回归直线方程为y ^=1.3x +5.2,则y 1+y 2+y 3+y 4+y 5+y 6=( )A .50.5B .45.5C .100.2D .109.2【解析】由y -=1.3x -+5.2 ,且x -=10可知 y -=1.3×10+5.2=18.2.所以y 1+y 2+y 3+y 4+y 5+y 6=18.2×6=109.2所以选D.4.有人发现,附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d.A .99%B .97.5%C .95%D .99.9%【解析】∵K 2=168×(68×38-20×42)288×80×110×58≈11.377.∵11.377>10.828.∴有99.9%的把握认为看电视与人变冷漠有关系,故答案为D. 5.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球,都是红球 B .至少有一个红球,都是白球C .至少有一个红球,至少有一个白球D .恰有一个红球,恰有二个红球【解析】在各选项中所涉及到的四对事件中,选项B 和D 中的两对事件是互斥事件,同时,发现B 所涉及事件是一对对立事件.D 中的这对事件可以都不发生,故不是对立事件.6.关于x 、y 的不等式组⎩⎪⎨⎪⎧x ≤4,y ≥2,x -y +2≥0所表示的平面区域记为M ,不等式()x -42+()y -32≤1所表示的平面区域记为N ,若在M 内随机取一点,则该点取自N 的概率为( )A.π16B.π8C.14D.12【解析】M 的面积为12×4×4=8,半圆的面积为π2,故概率为π16.二、填空题(本大题共4小题,每小题6分,共24分.将各小题的结果填在题中横线上.)7.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始从左到右依次选取两个数字,则选出来的第5个个体的编号为__________.7816 6572 0802 6314 0702 4369 9728 0198 3204 9234 4935 8200 3623 4869 6938 7481【解析】由随机数表第1行的第9列和第10列数字开始由左到右依次取数,第一个数为08;第二个数为02; 63>20,第三个数为14; 第四个数为07;02重复舍去,43>20,69>20,97>20,28>20,第五个数为01.故答案为01.8.有一组样本数据8,x ,10,11,9,已知它们的平均数为10,则这组数据的方差s 2=__________.【解析】∵该组样本的平均数为10,∴(8+x +10+11+9)÷5=10,∴x =12,∴s 2=15(4+4+0+1+1)=2.9.现从甲、乙、丙、丁4个人中随机选派2人参加某项活动,则甲乙两人中有且只有一个被选中的概率为________.【解析】从甲、乙、丙、丁4个人中随机选取两人,共有:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁),六种选法.其中甲乙两人中有且只有一个被选中,则有(甲,丙),(甲,丁),(乙,丙),(乙,丁),四种选法.故所求概率为46=23.10.如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.【解析】连结AC ,∵tan ∠CAB =BC AB =13=33,∴∠CAB =30°,满足条件的事件是射线AP 在∠CAB 内且AP 与BC 相交时,即射线AP 与线段BC 有公共点,∴所求概率为P =∠CAB ∠DAB =30°90°=13.三、解答题(本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤.)11.(13分)某大型高端制造公司为响应《中国制造2025》中提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,准备加大产品研发投资,下表是确到0.001);(2)若2020年6月份研发投入为35百万元,根据所求的线性回归方程估计当月产品的销量.参考数据:∑8i =1x i y i =347,∑8i =1x 2i =1 308. 参考公式:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ).其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为b ^=∑ni =1x i y i -nx -y -∑n i =1x 2i -nx -2,a ^=y --b ^x -.【解析】(1)因为x -=11,y -=3.所以b ^=∑ni =1x i y i -nx -y -∑n i =1x 2i -nx -2=347-8×11×31 308-8×121=83340≈0.244.a ^=y --b ^x -=3-83340×11≈0.315,所以y 关于x 的线性回归方程为y -=0.244x +0.315.(2)当x =35时,y -=0.244×35+0.315=8.855(万台).12.(13分)“某奶茶店为了促销准备推出“掷骰子(投掷各面数字为1到6的均匀正方体,看面朝上的点数)赢代金劵”的活动,游戏规则如下:顾客每次消费后,可同时投掷两枚骰子一次,赢得一等奖、二等奖、三等奖和感谢奖四个等级的代金券,用于在以后来店消费中抵用现金.设事件A :“两连号”;事件B :“两个同点”;事件C :“同奇偶但不同点”.①将以上三种掷骰子的结果,按出现概率由低到高,对应定为一、二、三等奖要求的条件;②本着人人有奖原则,其余不符合一、二、三等奖要求的条件均定为感谢奖. 请替该店定出各个等级奖依次对应的事件并求相应概率.【解析】由题意知,基本事件总数为36,枚举如下:1-1,1-2,1-3,1-4,1-5,1-6,2-1,2-2,2-3,2-4,2-5,2-6,3-1,3-2,3-3,3-4,3-5,3-6,4-1,4-2,4-3,4-4,4-5,4-6,5-1,5-2,5-3,5-4,5-5,5-6,6-1,6-2,6-3,6-4,6-5,6-6.事件A 共包含10个基本事件,枚举如下:1-2,2-1,2-3,3-2,3-4,4-3,4-5,5-4,5-6,6-5.∴P(A)=1036=518;事件B 共包含6个基本事件,枚举如下:1-1,2-2,3-3,4-4,5-5,6-6,∴P(B)=636=16;事件C 共包含12个基本事件,枚举如下:1-3,1-5,2-4,2-6,3-1,3-5,4-2,4-6,5-1,5-3,6-2,6-4,∴P(C)=1236=13;∴P(B)<P(A)<P(C),∴事件B :“两个同点”对应一等奖,概率为16;事件A :“两连号”对应二等奖,概率为518;事件C :“同奇偶但不同点”对应三等奖,概率为13;其余事件对应感谢奖,概率为1-518-16-13=29.13.(14分)某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下2×2列联表:已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为35.(1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.下面是临界值表仅供参考:参考公式:K 2=n ()ad -bc ()a +b ()c +d ()a +c ()b +d (其中n =a +b +c +d).【解析】(1)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为35,所以喜欢游泳的学生人数为100×35=60人,其中女生有20人,则男生有40人,列联表补充如下:(2)因为K 2=100(40×30-20×10)60×40×50×50≈16.67>10.828,所以有99.9%的把握认为喜欢游泳与性别有关.(3)5名学生中喜欢游泳的3名学生记为a ,b ,c ,另外2名学生记为1,2,任取2名学生,则所有可能情况为(a ,b)、(a ,c)、(a ,1)、(a ,2)、(b ,c)、(b ,1)、(b ,2)、(c ,1)、(c ,2)、(1,2),共10种.其中恰有1人喜欢游泳的可能情况为(a ,1)、(a ,2)、(b ,1)、(b ,2)、(c ,1)、(c ,2),共6种,所以,恰好有1人喜欢游泳的概率为610=35.。
题组层级快练(四十二)1.已知a ,b ,c ,d 均为实数,有下列命题: ①若ab>0,bc -ad>0,则c a -db >0;②若ab>0,c a -db >0,则bc -ad>0;③若bc -ad>0,c a -db >0,则ab>0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3答案 D解析 对于①,∵ab>0,bc -ad>0,c a -d b =bc -ad ab >0,∴①正确;对于②,∵ab>0,又c a -db >0,即bc -ad ab >0,∴②正确;对于③,∵bc -ad>0,又c a -db >0,即bc -ad ab >0,∴ab>0,∴③正确.2.若a ,b 是任意实数,且a>b ,则下列不等式成立的是( ) A .a 2>b 2 B.ba<1 C .lg(a -b)>0 D .(13)a <(13)b答案 D解析 方法一:利用性质判断.方法二(特值法):令a =-1,b =-2,则a 2<b 2,b a >1,lg(a -b)=0,可排除A ,B ,C 三项.故选D.3.设a ∈R ,则a>1是1a <1的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 若a>1,则1a <1成立;反之,若1a <1,则a>1或a<0.即a>1⇒1a <1,而1a <1a>1,故选A.4.(2019·广东东莞一模)设a ,b ∈R ,若a +|b|<0,则下列不等式成立的是( )A .a -b>0B .a 3+b 3>0C .a 2-b 2<0D .a +b<0答案 D5.设a ,b 为实数,则“0<ab<1”是“b<1a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 一方面,若0<ab<1,则当a<0时,0>b>1a ,∴b<1a 不成立;另一方面,若b<1a ,则当a<0时,ab>1,∴0<ab<1不成立,故选D.6.(2016·天津)设a ,b ∈R ,则“a>b”是“a|a|>b|b|”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 当b<0时,显然有a>b ⇔a|a|>b|b|; 当b =0时,显然有a>b ⇔a|a|>b|b|;当b>0时,由a>b 有|a|>|b|,所以a>b ⇔a|a|>b|b|. 综上可知a>b ⇔a|a|>b|b|,故选C.7.(2019·山东师大附中模拟)已知0<a<b ,且a +b =1,下列不等式成立的是( ) A .log 2a>0 B .2a -b >1C .2ab >2D .log 2(ab)<-2答案 D解析 方法一(特殊值法):取a =14,b =34验证即可.方法二:(直接法)由已知,0<a<1,0<b<1,a -b<0,0<ab<14,log 2(ab)<-2,故选D.8.设0<b<a<1,则下列不等式成立的是( ) A .ab<b 2<1 B .log 12b<log 12a<0C .2b <2a <2D .a 2<ab<1答案 C解析 方法一(特殊值法):取b =14,a =12.方法二(单调性法): 0<b<a ⇒b 2<ab ,A 不对;y =log 12x 在(0,+∞)上为减函数,∴log 12b>log 12a ,B 不对;a>b>0⇒a 2>ab ,D 不对,故选C.9.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,若两人步行速度、跑步速度均相同,则( ) A .甲先到教室 B .乙先到教室 C .两人同时到教室 D .谁先到教室不确定答案 B解析 设步行速度与跑步速度分别为v 1和v 2显然0<v 1<v 2,总路程为2s ,则甲用时间为sv 1+s v 2,乙用时间为4s v 1+v 2, 而s v 1+s v 2-4s v 1+v 2=s (v 1+v 2)2-4sv 1v 2v 1v 2(v 1+v 2)=s (v 1-v 2)2v 1v 2(v 1+v 2)>0, 故s v 1+s v 2>4s v 1+v 2,故乙先到教室. 10.(2019·浙江台州一模)下列四个数中最大的是( ) A .lg2 B .lg 2 C .(lg2)2 D .lg(lg2) 答案 A解析 因为lg2∈(0,1),所以lg(lg2)<0;lg 2-(lg2)2=lg2(12-lg2)>lg2(12-lg 10)=0,即lg 2>(lg2)2;lg2-lg 2=12lg2>0,即lg2>lg 2.所以最大的是lg2.11.设a =log 36,b =log 510,c =log 714,则( ) A .c>b>a B .b>c>a C .a>c>bD .a>b>c答案 D解析 a =log 36=1+log 32,b =log 510=1+log 52,c =log 714=1+log 72,则只要比较log 32,log 52,log 72的大小即可,在同一坐标系中作出函数y =log 3x ,y =log 5x ,y =log 7x 的图像,由三个图像的相对位置关系,可知a>b>c ,故选D.12.已知实数x ,y ,z 满足x +y +z =0,且xyz>0,设M =1x +1y +1z ,则( )A .M>0B .M<0C .M =0D .M 不确定答案 B解析 ∵(x +y +z)2=x 2+y 2+z 2+2(xy +yz +zx)=0,∴xy +yz +zx<0,∴M =1x +1y +1z =yz +zx +xyxyz<0.13.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________.答案 (-3π2,π2)解析 ∵-π2<α<β<π2,∴-π<α-β<0.∵2α-β=α+α-β,∴-3π2<2α-β<π2.(2)若1<α<3,-4<β<2,则α-|β|的取值范围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.又∵1<α<3,∴-3<α-|β|<3. (3)若-1<a +b<3,2<a -b<4,则2a +3b 的取值范围为________. 答案 (-92,132)解析 设2a +3b =x(a +b)+y(a -b),则⎩⎪⎨⎪⎧x +y =2,x -y =3,解得⎩⎨⎧x =52,y =-12.又因为-52<52(a +b)<152,-2<-12(a -b)<-1,所以-92<52(a +b)-12(a -b)<132.即-92<2a +3b<132.14.设α∈(0,12),T 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________.答案 T 1<T 2解析 T 1-T 2=(cos1cosα-sin1sinα)-(cos1cosα+sin1sinα)=-2sin1sinα<0.15.(1)若a>1,b<1,则下列两式的大小关系为ab +1________a +b. 答案 <解析 (ab +1)-(a +b)=1-a -b +ab =(1-a)(1-b),∵a>1,b<1,∴1-a<0,1-b>0,∴(1-a)(1-b)<0,∴ab +1<a +b. (2)若a>0,b>0,则不等式-b<1x <a 的解集为________.答案 (-∞,-1b )∪(1a,+∞)解析 由已知,得-b<0,a>0,∴1x ∈(-b ,a)=(-b ,0)∪{0}∪(0,a).∴x ∈(-∞,-1b )∪(1a,+∞).16.设a>b>c>0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________. 答案 z>y>x解析 方法一(特值法):取a =3,b =2,c =1验证即可.方法二(比较法):∵a>b>c>0,∴y 2-x 2=b 2+(c +a)2-a 2-(b +c)2=2c(a -b)>0,∴y 2>x 2,即y>x.z 2-y 2=c 2+(a +b)2-b 2-(c +a)2=2a(b -c)>0, 故z 2>y 2,即z>y ,故z>y>x.17.已知a +b>0,比较a b 2+b a 2与1a +1b 的大小.答案a b 2+b a 2≥1a +1b解析 a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2=(a -b)⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b>0,(a -b)2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b. 18.已知a>0且a ≠1,比较log a (a 3+1)和log a (a 2+1)的大小. 答案 log a (a 3+1)>log a (a 2+1) 解析 当a>1时,a 3>a 2,a 3+1>a 2+1. 又y =log a x 为增函数,所以log a(a3+1)>log a(a2+1);当0<a<1时,a3<a2,a3+1<a2+1.又y=log a x为减函数,所以log a(a3+1)>log a(a2+1).综上,对a>0且a≠1,总有log a(a3+1)>log a(a2+1).。
第七单元立体几何1.编写意图立体几何的主要内容是空间几何体和空间点、线、面的位置关系,在高考试题中多以中、低档题的形式出现,因此,编写时主要考虑以下两个方面:(1)注重从文字、符号、图形语言这三个方面对本单元的公理、定理进行分析,并通过典型例题使学生达到熟练掌握及应用的目的.(2)空间想象能力是学习立体几何最基本的能力要求,选择例题时应注重培养学生识图、作图和用图的能力.2.教学建议本单元的重点是空间元素之间的平行与垂直关系、空间几何体的表面积与体积,并注重画图、识图、用图能力的提高,在复习时我们要注重以下两点:(1)注重提高空间想象能力与逻辑思维能力.在复习过程中,明确已知元素之间的位置关系及度量关系,借助图形来反映并思考未知的空间形状与位置关系,能从复杂图形中分析出基本图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算.(2)归纳总结,规范训练.复习中要抓主线、攻重点,针对重点内容加以训练,如平行和垂直是位置关系的核心,而线面垂直又是核心中的核心.要加强数学思想方法的总结与提炼,立体几何中蕴含着丰富的思想方法,如化归与转化思想,将空间问题转化成平面问题来解决,以及线线、线面、面面关系的相互转化.要规范例题讲解与作业训练,例题讲解要重视作、证、求三个环节,符号语言表达要规范、严谨.另外,要适度关注对平行、垂直的探究,关注对条件或结论不完备情景下的开放性问题的探究.3.课时安排本单元包括5讲、1个小题必刷卷(十)、1个解答必刷卷(四)、1个单元测评卷,第42讲建议2课时完成,其余各讲及考卷各1课时完成,大约共需9课时.第39讲空间几何体的结构特征及三视图和直观图、表面积与体积考试说明1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解柱、锥、台、球的表面积和体积的计算公式.【课前双基巩固】知识聚焦1.(1)平行全等平行平行且相等一点一点平行四边形三角形梯形(2)垂直一点一点矩形等腰三角形等腰梯形圆矩形扇形扇环2.(1)正侧俯(2)①长对正高平齐宽相等②正侧正俯侧俯3.(1)斜二测画法(2)①垂直②平行于坐标轴不变一半4.2πrl πrl π(r+r')l5.S底h S底h 4πR2πR3对点演练1.五棱柱三棱柱[解析] 根据多面体的结构特征知,两个几何体都以前、后两个面为底,则剩下的几何体是五棱柱,截去的几何体是三棱柱.2.侧视图俯视图[解析] 根据三视图的概念知,图②是侧视图,图③是俯视图.3.a2[解析] 如图所示是实际图形和直观图.由图可知,A'B'=AB=a,O'C'=OC=a,在直观图中作C'D'⊥A'B',垂足为D',则C'D'=O'C'= a.=A'B'·C'D'=×a×a=a2.∴S△A'B'C'4.3π+4π[解析] 由三视图可知,该几何体是二分之一个圆柱,表面积S=π×12+22+π×1×2=3π+4,体积V=π×12×2=π.5.[解析] 把圆锥侧面沿过点P的母线展开成如图所示的扇形.由题意知OP=OP'=4 m,PP'=4m,则cos∠POP'=-(=-,所以∠POP'=.设底面圆的半径为r,则2πr=×4,所以r=m.6.0[解析] ①的说法错误,只有取的两点的连线平行于旋转轴时两点的连线才是母线;②的说法错误,如图a所示,“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”;③的说法错误,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图b所示,它是由两个同底圆锥组成的几何体;④的说法错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等;⑤的说法错误,如图c所示的几何体,满足有两个平面互相平行,其余各面都是平行四边形,但这个多面体不是棱柱.7.2,4[解析] 由三视图可知,正三棱柱的高为2,底面正三角形的高为2,故底面边长为4.8.48[解析] 由三视图可知,该几何体的上面是一个长为4,宽为2,高为2的长方体,下面是一个放倒的四棱柱,四棱柱的高为4,底面是梯形,梯形的上、下底分别为2,6,高为2,所以长方体的体积为4×2×2=16,四棱柱的体积为4××2=32,所以该几何体的体积为32+16=48.9.三棱柱32π[解析] 由三视图可知,该几何体是底面为等腰直角三角形,高为4的三棱柱,则外接球的半径R=×(=2,则该几何体的外接球的表面积S=4π×(2)2=32π.【课堂考点探究】例1[思路点拨] (1)还原出几何体,找出满足条件的三角形即可;(2)根据题意,画出编号为①②③的三棱锥可能的直观图,判断是否存在侧面与底面互相垂直的情况即可.(1)C(2)①②[解析] (1)由三视图可得该几何体的直观图如图所示,且PD⊥平面ABCD,∴△PAD 和△PDC均为直角三角形.又∵PD⊥AB,AB⊥AD,PD∩AD=D,∴AB⊥平面PAD,∴AB⊥PA,∴△PAB 为直角三角形.故选C.(2)编号为①的三棱锥的直观图可能是图(i)中的三棱锥P-ABC,其中PC⊥平面ABC,则平面PAC⊥平面ABC,平面PBC⊥平面ABC,满足题意;编号为②的三棱锥的直观图可能是图(ii)中的三棱锥P-ABC,易知平面PBC⊥平面ABC,满足题意;编号为③的三棱锥的直观图可能是图(iii)中的三棱锥P-ABC,不存在与底面互相垂直的侧面.故满足题意的三棱锥的编号是①②.变式题(1)A(2)③[解析] (1)在直观图中平面图形为正方形,对角线长为,所以原图形为平行四边形,位于x轴上的边长为1,位于y轴上的对角线长为2.(2)由俯视图可知三棱锥的底面是边长为2的正三角形,由侧视图可知三棱锥的一个侧面垂直于底面,且高为2.当正视图为等腰三角形时,三角形的高为2,且中线为虚线,排除①④.当正视图为直角三角形时,该几何体的直观图如图所示,其中PC⊥底面ABC.故其正视图是直角边长为2的等腰直角三角形,中间的线是看不见的棱PA形成的投影,应为虚线.故答案为③.例2[思路点拨] (1)根据三视图可确定该几何体的直观图,确定底面积和高,进而求出体积;(2)由母线与底面的夹角可得圆锥母线与底面半径的关系,再由三角形面积公式可求得底面半径,从而求得圆锥的侧面积.(1)A(2)40π[解析] (1)由三视图得几何体的直观图为三棱锥A-BCD(如图),其中BC=4,设O 为BC的中点,连接OA,OD,则AO=CO=BO=DO=2,AO⊥平面BCD,DO⊥BC,则该几何体的体积V=××4×2×2=,故选A.(2)设圆锥的底面圆的半径为r,因为SA与圆锥底面所成角为45°,所以SA=r.由cos∠ASB=得sin∠ASB=,所以SA·SB·sin∠ASB=×r×r×=5,所以r2=40,所以圆锥的侧面积为πr2=40π.变式题 (1)A (2)[解析] (1)设圆台较小底面的半径为r ,则另一底面的半径为3r.由S=π(r+3r )×3=84π,解得r=7.故选A .(2)四棱锥M - EFGH 的高为,底面积为,故其体积为×× =.例3 [思路点拨] (1)由正视图、侧视图、俯视图均为等腰直角三角形,知该几何体的外接球相当于一个棱长为2的正方体的外接球,故外接球的直径是该正方体的体对角线长,进而求得外接球的表面积;(2)圆柱底面圆的半径、高的一半、外接球的半径构成直角三角形,可求得圆柱底面圆的半径r= - =,进而求圆柱的体积.(1)D (2)B [解析] (1)由三视图可知,该几何体的外接球相当于一个棱长为2的正方体的外接球,∴外接球的直径为 =2 ,∴该几何体的外接球的表面积为4×π×( )2=12π,故选D . (2)由圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则圆柱底面圆的半径r= - =,故圆柱的体积V=πr 2h=.例4 [思路点拨] (1)设球O 的半径为R ,因为球O 与圆柱的上、下底面及母线均相切,所以圆柱的底面圆的半径为R ,高为2R ,再利用圆柱、球的体积公式求出V 1,V 2即可;(2)设正四面体的棱长为a ,可得到正四面体的表面积和内切球的表面积(用a 表示),然后求出.(1) (2)[解析] (1)设球O 的半径为R ,因为该球与圆柱的上、下底面及母线均相切,所以圆柱的底面圆的半径为R ,圆柱的高为2R.故圆柱O 1O 2的体积V 1=2πR 3,球O 的体积V 2=πR 3,所以 ==.(2)设正四面体的棱长为a ,则正四面体的表面积S 1=4××a 2= a 2,其内切球半径r 为正四面体高的,即r=×a=a ,因此内切球表面积S 2=4πr 2=,则 = =. 应用演练1.C [解析] 平面ACD 1截球O 的截面为△ACD 1的内切圆.因为正方体的棱长为1,所以AC=CD 1=AD 1= ,所以△ACD 1的内切圆的半径r= ,所以截面面积S=πr 2=. 2.A [解析] 由正弦定理得2r== °=2,其中r 为△ABC 的外接圆半径,故r=1.设三棱锥P - ABC 的外接球的半径为R ,则R 2=r 2+2=2,即R= ,故三棱锥P - ABC 的外接球的体积为R 3=π. 3.B [解析] 在△ABC 中,由BC ⊥AC ,得AB= = =13.设该三棱锥内切球的半径为R ,由已知易知Rt △ABC 的内切圆的半径与该三棱锥内切球的半径相等,则该内切球的半径R=-=2,该三棱柱的高h=2R=4,∴该三棱柱的表面积S=2××5×12+(5+12+13)×4=180.故选B.4.π[解析] 设AC=m(2>m>0),则BC=-,四棱锥-=×2m×-=m-,∴当m-最大时,最大,m-=(- ≤(-=2,当且仅当m=时,取等号,∴四棱锥-当“阳马”即四棱锥B-A1ACC1的体积最大时,AC=BC=,此时三棱柱ABC-A1B1C1的外接球就是以CA,CB,CC为共顶点的棱的长方体的外接球,外接球的直径等于长方体的体对角线长,设外接球的半1径为R,则4R2=CA2+CB2+C=2+2+4=8,即R=,故三棱柱ABC-A1B1C1的外接球的体积为πR3=π.【备选理由】空间几何体的结构特征、三视图与直观图及空间几何体的表面积、体积、空间几何体与球的切、接为本讲的主要内容.例1考查的是三视图的识别;例2重在考查由三视图还原直观图的能力,并考查简单的组合体表面积的计算,注意不要忽略一些面的面积;例3考查球与多面体的关系及补形法的应用;例4考查棱锥内切球半径的计算问题.例1[配例1使用] [2018·重庆三诊]一个正三棱柱的三视图如图所示,若该三棱柱的外接球的表面积为32π,则侧视图中x的值为()A.6B.4C.3D.2[解析] C设正三棱柱的底面边长为a,则底面三角形的外接圆的半径为 a.设该三棱柱外接球的半径为R,结合正三棱柱的外接球的球心在上、下底面的外心连线的中点处,则有R=,由该三棱柱的外接球的表面积为32π,得4π4+a2=32π,从而解得a=2,因为侧视图中x对应的边为底面三角形的边的高线,所以x=×2=3,故选C.例2 [配例2使用] [2018·衡水中学月考] 如图是某个几何体的三视图,则这个几何体的表面积为( )A .π+4 +4B .2π+4 +4C .2π+4 +2D .2π+2 +4[解析] B 由三视图可知该几何体是由半个圆柱与三棱柱组成的几何体.其直观图如图所示.其表面积S=2×π·12+2××2×1+π×2×1+( + +2)×2-2×1=2π+4 +4,故选B .例3 [配例3使用] [2018·衡水中学七调] 如图所示,AA 1,BB 1均垂直于平面ABC 和平面A 1B 1C 1,∠BAC=∠A 1B 1C 1=90°,AC=AB=AA 1=B 1C 1= ,则多面体ABC-A 1B 1C 1的外接球的表面积为 .[答案] 6π[解析] 该几何体可以补形成棱长为2的正方体,正方体的外接球即为该多面体的外接球,正方体的外接球直径为其体对角线长,长度为 × = ,则该多面体的外接球的半径r=,故该多面体的外接球的表面积为4πr 2=6π.例4 [配例4使用] [2018·陕西西工大附中模拟] 如图所示,在四棱锥P-ABCD 中,底面ABCD 是边长为m (m>0)的正方形,PD ⊥底面ABCD ,且PD=m ,PA=PC= m ,若在这个四棱锥内放一个球,则此球的最大半径是 .[答案](2- )m[解析] 当球与四棱锥P - ABCD 的各个面都相切时,球的半径最大.由PD ⊥底面ABCD ,得PD ⊥AD.又PD=m ,PA= m ,则AD=m.设四棱锥P-ABCD 的内切球的球心为O ,半径为R ,连接OA ,OB ,OC ,OD ,OP (图略),易知V 四棱锥P-ABCD =V 四棱锥O-ABCD +V 三棱锥O-PAD +V 三棱锥O-PAB +V 三棱锥O-PBC +V 三棱锥O-PCD,即 ×m 2×m= ×m 2×R+ × ×m 2×R+ × × m 2×R+ × × m 2×R+ ××m 2×R ,解得R=(2- )m ,所以此球的最大半径是(2- )m.第40讲 空间点、直线、平面之间的位置关系考试说明 1.理解空间直线、平面位置关系的定义. 2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.【课前双基巩固】 知识聚焦1.两点 不在一条直线上 有且只有一条 互相平行2.相交 平行3.(1)相交直线 平行直线 任何 (2)①锐角(或直角) ②0,(3)相等或互补4.1 0 无数 0 无数 对点演练1.④ [解析] 当三点共线时,过三点有无数个平面,①中的说法错误;当三条直线共点时,不能确定一个平面,②中的说法错误;一个圆是平面图形,两个相交的圆不一定在一个平面内,③中的说法错误;两条平行直线确定一个平面,第三条直线与这两条平行直线都相交,所以第三条直线在这个平面内,所以④中的说法正确.2.相交或异面[解析] 当直线c在直线a与b确定的平面内时,a与c相交;当直线c与直线a,b确定的平面相交时,a与c异面.3 .l∥α或l⊂α[解析] 当距离不为零时,l∥α;当距离为零时,l⊂α.4.4,6,7,8[解析] 如图(1),可分成4部分(三个平面互相平行);如图(2)(3),可分成6部分(两种情况);如图(4),可分成7部分;如图(5),可分成8部分.5.(1)AC=BD (2)AC=BD且AC⊥BD [解析] (1)∵四边形EFGH为菱形,∴EF=EH,∵EF AC,EH BD,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF AC,EH BD,∴AC=BD且AC⊥BD.6.④[解析] ①②③中的a与b还有可能平行或相交,由异面直线的定义可知④的说法正确.7.b与α相交或b⊂α或b∥α[解析] 易知b与α相交或b⊂α或b∥α.8.无数[解析] 在EF上任意取一点M,则直线A1D1与M确定一个平面(如图所示),这个平面与CD有且仅有1个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点,而直线MN与三条直线A1D1,EF,CD都有交点.故满足题意的直线有无数条.9.45°60°[解析] ∵FG∥BC,∴∠EGF为异面直线BC与EG所成的角(或其补角),∵tan∠EGF==1,∴∠EGF=45°.∵BF∥AE,∴∠GBF为异面直线AE与BG所成的角(或其补角),∵tan∠GBF===,∴∠GBF=60°.【课堂考点探究】例1[思路点拨] 利用平面的基本性质进行判断.解:(1)错误.若AC1⊂平面CC1B1B,又BC⊂平面CC1B1B,所以A∈平面CC1B1B,且B∈平面CC1B1B, 所以AB⊂平面CC1B1B,与AB⊄平面CC1B1B矛盾,故AC1⊄平面CC1B1B.(2)正确.因为O,O1是两平面的两个公共点,所以平面AA1C1C与平面BB1D1D的交线为OO1.(3)错误.因为A,O,C三点共线,所以由点A,O,C不可以确定一个平面.(4)正确.因为点A,C1,B1不共线,所以A,C1,B1三点确定平面α,又四边形AB1C1D为平行四边形,连接B1D,设AC1∩B1D=O2,所以O2∈α,又B1∈α,所以B1O2⊂α,又D∈B1O2,所以D∈α.(5)正确.若l与m相交,则交点是两平面的公共点,而直线CD为两平面的交线,所以交点一定在直线CD 上.变式题证明:(1)连接EF,CD1,A1B,如图.∵E,F分别是AB,AA的中点,1.∴EF∥BA1又BA1∥CD1,∴EF∥CD,1∴E,C,D,F四点共面.1(2)∵EF∥CD1,EF<CD1,∴延长D1F,CE,F必相交,设交点为P,如图,CE与D1则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.延长DA,又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.F,DA三线共点.∴CE,D1例2[思路点拨] (1)利用相关定义、定理判断;(2)由条件得n在α内,m不在α内,A是直线m与α的交点,从而得出m,n的位置关系.(1)B(2)D[解析] (1)①的结论错误,两条直线不相交,则它们可能平行,也可能异面;②由公理4可知结论正确;③的结论错误,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知结论正确.故选B.(2)∵A∈m,A∈α,m⊄α,∴A是m和平面α的交点,∵n⊂α,∴m和n可能异面或相交(特殊情况可垂直),一定不平行.变式题(1)D(2)D[解析] (1)连接D1E并延长,与AD交于点M,因为A1E=2ED,所以M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,所以N为AD的中点,所以M,N重合,且=,=,所以=,所以EF∥BD1.(2)对于A,若直线a,b与平面α所成的角都是30°,则这两条直线平行、相交或异面,故A中说法错误;对于B,若直线a,b与平面α所成的角都是30°,则这两条直线可能垂直,如图所示,直角三角形ACB 的直角顶点C在平面α内,边AC,BC可以与平面α都成30°角,故B中说法错误;对于C,若直线a,b平行,则这两条直线可以都与平面α相交或都在平面α内,故C中说法错误;对于D,若直线a,b都与平面α垂直,则a∥b,故D中说法正确.故选D.例3[思路点拨] (1)将直三棱柱ABC-A1B1C1补形为直四棱柱ABCD-A1B1C1D1,连接DC1,则∠BCD(或其补角)为异面直线所成的角,利用余弦定理解之即可;(2)利用三角形中位线定理把异面直线1所成的角转化成平面角.(1)C(2 60°[解析] (1)如图,将该直三棱柱补形成直四棱柱,其中CD∥AB且CD=AB,则可得AB1∥DC1且AB1=DC1,则∠BC1D(或其补角)即为异面直线AB1与BC1所成的角.在△BC1D中,BC1=,DC1=,BD=-=,所以cos∠BC1D==.故异面直线AB1与BC所成角的余弦值为.1(2)取AC的中点M,连接EM,MF,如图所示.因为E,F分别是AP,BC的中点,所以MF∥AB,MF=AB=3,ME∥PC,ME=PC=5,所以∠EMF(或其补角)即为异面直线AB与PC所成的角.在△MEF中,cos∠EMF=-=-,所以∠EMF=120°,所以异面直线AB与PC所成的角为60°.变式题(1)B(2) [解析] (1)如图,取B1C1的中点P,连接BP,MP.∵直四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,M,N分别是A1B1,A1D1的中点,∴AN∥BP,∴∠MBP(或其补角)为异面直线BM与AN所成的角,BM=BP==,MP==,∴cos∠=-=,所以异面直线BM与AN所成的角的余弦值为,故选B.MBP=-·(2)取A1C1的中点E,连接B1E,AE,易知BD∥B1E,∴∠AB1E(或其补角)为异面直线AB1与BD所成的角.设AB=1,则A1A=,AB1=,B1E=,AE=,所以cos∠AB1E=-=,因此∠AB1E=,故异面直线AB与BD所成的角为.1例4[思路点拨] (1)结合正方体结构,分类讨论;(2)判定直线和平面垂直,可以依据判定定理逐一去判断,利用正方体中的一些基本结论,合理运用正方体中图形的对称性.(1)A(2)①④⑤[解析] (1)用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(包括等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故选A.(2)如图所示,取棱的中点,作出正六边形截面α,则l⊥α.图①中的截面是正三角形,且平面MNP∥α,可得l⊥平面MNP;图②③中的截面MNP与正六边形截面α都有一条交线,可以判断②③中的两个截面与直线l都不垂直;图④⑤中的点M,N,P为正六边形截面α中的三个点,故都有l⊥平面MNP.故应填入的序号是①④⑤.例5[思路点拨] (1)由三视图得到直观图,可把该几何体放置在正方体中,再求其体积;(2)依据本题中三棱锥的特点,将其补成正方体,把问题转化为求正方体外接球的表面积问题.(1)C(2)πa3[解析] (1)如图所示,在棱长为2的正方体中,D为其所在棱的中点,则三视图对应的几何体为图中的四棱锥P-ABCD,则该几何体的体积为××(1+2)×2×2=2,故选C.(2)如图,将此多面体补成正方体DBCA-D 1B 1C 1P ,则该三棱锥的外接球即为该正方体的外接球,由已知得正方体的体对角线PB= a ,则外接球的半径R=PB=a ,所以三棱锥P - ABC 的外接球的体积V= ×π×a 3=πa 3.例6 [思路点拨] (1)利用平移法把异面直线所成的角转化为相交直线所成的角;(2)把展开图还原为直观图,在正方体中找到相关的线、面,利用正方体的特点进行判断.(1)D (2)B [解析] (1)连接B 1C ,A 1D ,由M ,N 分别是BC ,BB 1的中点,得MN ∥B 1C ∥A 1D ,则相交直线A 1D 与AD 1所成的角即为异面直线MN 与AD 1所成的角.又四边形A 1ADD 1是正方形,所以A 1D ⊥AD 1,故异面直线MN 与AD 1所成的角为90°.(2)将平面展开图还原成正方体(如图所示),连接BE ,DE ,BG.①中,因为BE ∥GC ,AF ⊥BE ,所以AF ⊥GC ,①中的结论正确.②中,BD 在平面ABCD 内,GC 与平面ABCD 相交,则BD 与GC 是异面直线;因为EB ∥GC ,所以∠DBE (或其补角)为异面直线BD 与GC 所成的角,在等边三角形BDE 中,∠DBE=60°,则异面直线BD 与GC 所成的角为60°,即②中的结论正确. ③中,BD 与MN 是异面直线,即③中的结论错误.④中,GD ⊥平面ABCD ,∠DBG 即为BG 与平面ABCD 所成的角,在Rt △BDG 中,GD ≠BD ,故∠DBG ≠45°,即④中的结论错误.故选B . 应用演练1.D [解析] 延长MN 与BA 的延长线交于点P ,连接DP ,则直线DP 即为交线l ,且AP=AA 1=AD ,连接AC ,可知DP 与AC 不平行,而A 1C 1∥AC ,所以l 与A 1C 1是异面直线.故选D .2.C [解析] 正四面体A-BCD 可补形成棱长是6 的正方体,所以球O 是正方体的外接球,其半径R=×6 =3 .设正四面体的高为h ,则h= -(=4 ,故OM=ON= h= ,又MN=BD=4,所以O 到直线MN 的距离为 ( - = ,因此球O 截直线MN 所得的弦长为2 ( -(=4 .故选C .3.B [解析] 由三视图可知,该三棱锥的直观图如图中三棱锥D 1-ABB 1所示(图中正方体的棱长为2),该三棱锥的体积为××2×2×2=,故选B .4.[解析] 易知截面B 1D 1MN 是梯形,MN=,B 1D 1= .过MN 的中点P 作平面A 1B 1C 1D 1的垂线交平面A 1B 1C 1D 1于点P 1,连接A 1C 1,则点P 1在A 1C 1上,且A 1P 1=.设A 1C 1与B 1D 1交于点O 1,连接PO 1,则PO 1== ,所以截面B 1D 1MN 的面积S==.5.90° [解析] 如图所示,连接D 1M ,易知D 1M ⊥DN.又∵A 1D 1⊥DN ,A 1D 1⊂平面A 1MD 1,MD 1⊂平面A 1MD 1,A 1D 1∩MD 1=D 1,∴DN ⊥平面A 1MD 1,∴DN ⊥A 1M ,即异面直线A 1M 与DN 所成角的大小为90°.【备选理由】 例1以正方体为载体考查对平面的基本性质、四个公理的理解与掌握程度;例2考查异面直线所成的角,有利于拓展学生解题的思路;例3考查直线与平面的位置关系;例4考查正方体中的异面直线所成角的问题.例1 [配例1使用]已知ABCD-A 1B 1C 1D 1是正方体,在图①中,E ,F 分别是棱D 1C 1,B 1B 的中点,画出图①②中有阴影的平面与平面ABCD 的交线 .解:如图所示,在图①中,过点E 作EN 平行于B 1B 交CD 于点N ,连接NB 并延长交EF 的延长线于点M ,连接AM ,则AM 即为有阴影的平面与平面ABCD 的交线.在图②中,延长DC ,过点C 1作C 1M ∥A 1B 交DC 的延长线于点M ,连接BM ,则BM 即为有阴影的平面与平面ABCD 的交线.例2 [配例3使用] [2018·贵州凯里一中月考] 在长方体ABCD-A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,若其外接球的表面积为16π,则异面直线BD 1与CC 1所成的角的余弦值为 . [答案][解析] 设外接球的半径为R ,则4πR 2=16π,解得R=2.设长方体的高为x (x>0),则x 2+12+12=(2R )2=16,故x= .连接BD ,在Rt △BDD 1中,∠DD 1B 即为异面直线BD 1与CC 1所成的角,其余弦值为.例3 [配例2使用]如图所示,正方体的底面与正四面体的底面在同一个平面α上,且AB ∥CD ,则正方体的六个面所在的平面与直线EF 相交的个数为 .[答案] 4[解析] 因为EF 与正方体的左、右两侧面均平行,所以与EF 相交的平面有4个.例4 [配例6使用] [2018·四川广安、眉山一诊] 下图表示一个正方体的平面展开图,则其中的四条线段AB ,CD ,EF ,GH 在原正方体中为异面直线且所成角为60°的有 对.[答案] 3[解析] 将平面展开图还原为正方体,如图所示,可知AB与CD,EF与GH,AB与GH都是异面直线,且所成角为60°,而AB与EF相交,CD与GH相交,CD与EF平行,故四条线段AB,CD,EF,GH在原正方体中互为异面直线且所成角为60°的有3对.第41讲直线、平面平行的判定与性质考试说明1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.【课前双基巩固】知识聚焦1.没有公共点一条直线与此平面内的一条直线交线平行2.相交直线相交直线相交直线同一条直线平行交线对点演练1.一[解析] 过点P与直线a作平面β,设β∩α=b,则a∥b,由作图的过程可知满足条件的直线b只有一条.2.[解析] ∵α∥β,∴CD∥AB,则=,∴AB=·==.3.平行[解析] 连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,E为DD1的中点,所以EO为△BDD的中位线,则BD1∥EO,又BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.14.①②④[解析] 如图,因为AB D1C1,所以四边形AD1C1B为平行四边形,故AD1∥BC1,从而①中结论正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②中结论正确;由图易知AD1与DC1异面,故③中结论错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC,所以AD1∥平面BDC1,故④中结论正确.15.平行四边形 [解析] ∵平面ABFE ∥平面DCGH ,又平面EFGH ∩平面ABFE=EF ,平面EFGH ∩平面DCGH=HG ,∴EF ∥HG.同理EH ∥FG ,∴四边形EFGH 的形状是平行四边形.6.既不充分也不必要 [解析] 由m ⊂α,l ∥α不能推出l ∥m ,由m ⊂α,l ∥m 也不能推出l ∥α,所以是既不充分也不必要条件.7.(1)a ∥α或a ⊂α (2)平行或相交 (3)a ∥β或a ⊂β[解析] (1)由直线与平面平行的定义和判定定理知,a 可能平行于α,也可能在α内. (2)当a ,b 相交时,α∥β;当a ,b 平行时,α与β平行或相交. (3)当a 在β外时,a ∥β;当a 在β内时也满足条件.8.6 [解析] 如图,E ,F ,G ,H 分别是A 1C 1,B 1C 1,BC ,AC 的中点,则与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH ,共6条.9.④ [解析] 由两个平面平行的判定定理可知,如果一个平面内的两条相交直线都与另一个平面平行,那么这两个平面平行,故①②不能判断两个平面平行;当平面α∩平面β=直线l 时,α内有无数条与交线l 平行的直线与β平行,故③不能判断两个平面平行;根据面面平行的定义可知④能判断两个平面平行.【课堂考点探究】例1 [思路点拨] (1)取B 1C 1的中点P ,连接MP ,NP ,根据面面平行的判定定理,可证明平面MNP ∥平面BB 1D 1D ;(2)可举反例进行判断.(1)C (2)D [解析] (1)取B 1C 1的中点P ,连接MP ,NP ,又M 是C 1D 1的中点,则由三角形中位线定理可得MP ∥B 1D 1,∴MP ∥平面BB 1D 1D ,由四边形BB 1PN 是平行四边形,得NP ∥BB 1,∴NP ∥平面BB 1D 1D ,又NP ∩MP=P ,∴平面MNP ∥平面BB 1D 1D ,∵MN ⊂平面MNP ,∴MN ∥平面BB 1D 1D ,故选C . (2)A 中,若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,则a ∥α,a ∥β,可排除A;B 中,若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,可排除B;C 中,若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则a ∥β,b ∥α,可排除C.故选D.变式题 (1)B (2)平面ABC 、平面ABD [解析] (1) 因为直线a ,b 不一定相交,所以a ∥β,b ∥β不一定能够得到α∥β;而当α∥β时,a ∥β,b ∥β一定成立.所以“a ∥β,b ∥β”是“α∥β”的必要不充分条件,故选B .。
题组层级快练(四十三)1.下列不等式中解集为R 的是( ) A .-x 2+2x +1≥0 B .x 2-25x +5>0 C .x 2+6x +10>0 D .2x 2-3x +4<0答案 C解析 在C 项中,Δ=36-40=-4<0,所以不等式解集为R . 2.若0<m <1,则不等式(x -m)(x -1m )<0的解集为( )A .{x|1m <x <m}B .{x|x>1m 或x <m}C .{x|x>m 或x <1m }D .{x|m <x <1m }答案 D解析 当0<m<1时,m<1m .3.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1] 答案 C解析 由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x<1.4.关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q ,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1,选B. 5.不等式(2x -1)(1-|x|)<0成立的充要条件是( ) A .x>1或x<12B .x>1或-1<x<12C .-1<x<12D .x<-1或x>12答案 B解析 原不等式等价于⎩⎪⎨⎪⎧2x -1>0,1-|x|<0或⎩⎪⎨⎪⎧2x -1<0,1-|x|>0.∴⎩⎪⎨⎪⎧x>12,x>1或x<-1或⎩⎪⎨⎪⎧x<12,-1<x<1.∴x>1或-1<x<12,故选B.6.不等式x 2-x -6x -1>0的解集为( )A.{}x|x<-2或x>3B.{}x|x<-2或1<x<3C.{}x|-2<x<1或x>3D.{}x|-2<x<1或1<x<3答案 C 解析x 2-x -6x -1>0⇒(x -3)(x +2)x -1>0⇒(x +2)·(x -1)(x -3)>0,由数轴标根法,得-2<x<1或x>3.7.已知不等式ax 2+bx +2>0的解集为{x|-1<x<2},则不等式2x 2+bx +a<0的解集为( ) A .{x|-1<x<12}B .{x|x<-1或x>12}C .{x|-2<x<1}D .{x|x<-2或x>1}答案 A解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理,得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a<0,即2x 2+x -1<0. 可知x =-1,x =12是对应方程的根,∴选A.8.(2019·辽宁抚顺一模)已知一元二次不等式f(x)<0的解集为{x|x<-1或x>13},则f(e x )>0的解集为( )A .{x|x<-1或x>-ln3}B .{x|-1<x<-ln3}C .{x|x>-ln3}D .{x|x<-ln3}答案 D解析 设-1和13是方程x 2+ax +b =0的两个实数根,∴a =-(-1+13)=23,b =-1×13=-13,∵一元二次不等式f(x)<0的解集为{x|x<-1或x>13},∴f(x)=-(x 2+23x -13)=-x 2-23x +13,∴f(x)>0的解集为x ∈(-1,13).不等式f(e x )>0可化为-1<e x <13.解得x<ln 13,∴x<-ln3,即f(e x )>0的解集为{x|x<-ln3}.9.(2019·保定模拟)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A .(-235,+∞)B .[-235,1]C .(1,+∞)D .(-∞,-235]答案 A解析 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解,只需满足f(5)>0,即a>-235.10.(2019·郑州质检)不等式f(x)=ax 2-x -c>0的解集为{x|-2<x<1},则函数y =f(-x)的图像为()答案 C解析 由题意得⎩⎨⎧a<0,-2+1=1a,-2×1=-ca,解得a =-1,c =-2. 则函数y =f(-x)=-x 2+x +2.11.已知a 1>a 2>a 3>0,则使得(1-a i x)2<1(i =1,2,3)都成立的x 的取值范围是( ) A .(0,1a 1)B .(0,2a 1)C .(0,1a 3)D .(0,2a 3)答案 B12.(2019·福州一模)在关于x 的不等式x 2-(a +1)x +a<0的解集中恰有两个整数,则a 的取值范围是( ) A .(3,4) B .(-2,-1)∪(3,4) C .(3,4] D .[-2,-1)∪(3,4] 答案 D解析 由题意得,原不等式化为(x -1)(x -a)<0,当a>1时,解得1<x<a ,此时解集中的整数为2,3,则3<a ≤4;当a<1时,解得a<x<1,此时解集中的整数为0,-1,则-2≤a<-1,故a ∈[-2,-1)∪(3,4].13.不等式2x 2-3|x|-35>0的解集为________. 答案 {x|x<-5或x>5}解析 2x 2-3|x|-35>0⇔2|x|2-3|x|-35>0⇔(|x|-5)(2|x|+7)>0⇔|x|>5或|x|<-72(舍)⇔x>5或x<-5.14.已知-12<1x <2,则实数x 的取值范围是________.答案 x<-2或x>12解析 当x>0时,x>12;当x<0时,x<-2.所以x 的取值范围是x<-2或x>12.15.若不等式a·4x -2x +1>0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 a>14解析 不等式可变形为a>2x -14x =(12)x -(14)x ,令(12)x =t ,则t>0.∴y =(12)x -(14)x =t -t 2=-(t -12)2+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a>14.16.(2019·安徽毛坦厂中学月考)已知关于x 的不等式kx 2-2x +6k<0(k ≠0). (1)若不等式的解集为{x|x<-3或x>-2},求k 的值; (2)若不等式的解集为{x|x ∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.答案 (1)k =-25 (2)k =-66 (3)k<-66 (4)k ≥66解析 (1)因为不等式的解集为{x|x<-3或x>-2}, 所以k<0,且-3与-2是方程kx 2-2x +6k =0的两根, 所以(-3)+(-2)=2k ,解得k =-25.(2)因为不等式的解集为{x|x ∈R ,x ≠1k},所以⎩⎪⎨⎪⎧k<0,Δ=4-24k 2=0,解得k =-66.(3)由题意,得⎩⎪⎨⎪⎧k<0,Δ=4-24k 2<0,解得k<-66.(4)由题意,得⎩⎪⎨⎪⎧k>0,Δ=4-24k 2≤0,解得k ≥66.17.已知不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,求实数a的取值范围. 答案 (-∞,9]解析 不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集为(2,3),令g(x)=2x 2-9x +a ,其对称轴为x =94,∴只需g(3)=-9+a ≤0,∴a ≤9.。
小题必刷卷(十)1.A[解析] 卯眼的空间立体图如图,同时需要注意,在三视图中看不见的线用虚线表示,故选A.2.B[解析] 由三视图可知圆柱表面上点M,N的位置如图①,将圆柱的侧面展开得到图②.在圆柱侧面上,从M到N的路径中,最短路径即为侧面展开图中的线段MN,MN==2,故选B.3.B[解析] 由三视图可知,此几何体应是一个圆柱切去一部分后所得,如图所示.通过切割及补形知,此几何体的体积等同于底面半径为3,高为7的圆柱,所以所求体积V=π×32×7=63π.4.A[解析] 该几何体为一个球去掉八分之一,设球的半径为r,则×πr3=,解得r=2,故该几何体的表面积为×4π×22+3××π×22=17π.5.B[解析] 从俯视图为矩形可以看出,此几何体不可能是三棱锥或四棱锥,其直观图如图,是一个三棱柱.6.D[解析] 三视图的直观图为图中的三棱锥A-BCD(借助长方体).由三视图可知三棱锥的底面为直角三角形,底面积S=×5×3=,高h=4,故体积V=Sh=××4=10,故选D.7.B[解析] 由正视图和俯视图可得该几何体的直观图,如图所示,故选B.8.A[解析] 因为正方体的体积为8,所以正方体的体对角线长为2,所以正方体的外接球的半径为,所以球的表面积为4π·()2=12π.9.B[解析] 因为圆柱的轴截面是正方形,且面积为8,所以圆柱的高为2,底面直径为2,所以圆柱的表面积S=2π××2+2×π×()2=12π.故选B.10.C[解析] 如图,连接BC1,易知∠AC1B即为AC1与平面BB1C1C所成的角,由题易知∠AC1B=30°,易得AC1=2AB=4.设BB1=h,则有42=22+22+h2, 解得h=2,所以该长方体的体积V=2×2×2=8.11.B[解析] 由条件知该直角三角形的斜边长为2,斜边上的高为,故围成的几何体的体积为2××π×()2×=.12.B[解析] 由题易知当点D到平面ABC的距离最大时,三棱锥D-ABC的体积最大.∵S△=AB2=9,∴AB=6.设△ABC的中心为M,由等边三角形的性质得,AM=BM=CM=2.设球心为ABCO,则OA=OB=OC=4,∴OM=-=2,∴点D到平面ABC的距离的最大值为OM+4=6.故三棱锥D-ABC体积的最大值为×9×6=18.13.[解析] 设正方体的棱长为a,则6×a2=18,即a=.∵正方体内接于球,∴球的半径R=,∴球的体积V=π×=.14.8π[解析] 如图所示,设圆锥的底面圆的圆心为O,母线长为l,则l2=8,解得l=4,即SA=4.连接OS,OA,因为SA与圆锥底面所成的角为30°,所以SO=2.在直角三角形SOA中,AO=-=-=2,所以圆锥的体积V=×π×(2)2×2=8π.15.C[解析] 如图,由AB∥CD,可知∠BAE即为异面直线AE与CD所成的角.设正方体的棱长为2,连接BE,则在Rt△ABE中,AB=2,BE===,tan∠BAE==,故选C.16.C[解析] 由平面α,β交于直线l,得到l⊂β,而n⊥β,所以n⊥l.17.D[解析] 连接DN.取DN的中点O,连接MO,BO,因为三棱锥A-BCD的所有棱长都相等,M,N分别是棱AD,BC的中点,所以MO∥AN,所以∠BMO即是异面直线BM与AN所成的角.设三棱锥A-BCD的棱长为2,则AN=BM=DN=-=,MO=AN=,NO=DN=,BO==,所=-=,所以异面直线BM与AN所成的角的余弦值为,故选D.以cos∠BMO=-·18.B[解析] 由题意知该几何体如图所示.它是半个圆锥,其底面半径为1,高为2,故体积为××π×12×2=,故选B.19.C[解析] ①不是由棱锥截得的,所以①不是棱台;②上、下两个面不平行,所以②不是圆台;④前、后两个面互相平行,其他面是平行四边形,且每相邻两个四边形的公共边都互相平行,所以④是棱柱;显然③是棱锥.故选C.20.A[解析] 根据俯视图可知BD=2,CD=4,BC=2,所以△BCD为直角三角形,且∠CDB=60°,由于AB∥CD,所以∠ABD=∠CDB=60°,所以AD=BD sin 60°=.故选A.21.B[解析] 如图所示,几何体ABCD-A1B1C1D1是棱长为2的正方体.由三视图可得该几何体为三棱锥P-ACE,故其体积V=S△ACE·PE=××1×2×2=.故选B.22.B[解析] 根据三视图作出原几何体(四棱锥P-ABCD)的直观图如图所示.计算可得PB=PD=BC=,PC=,故该几何体的最长的棱长为.23.C[解析] 若m⊂α,则m⊂β或m∥β或m与β相交,故A的说法错误;若m⊂α,n⊂β,则m∥n或m,n异面或m,n相交,故B的说法错误;设α∩β=l,作直线l⊥l,且l1⊂α,则l1⊥β,因为m⊥β,所以l1∥1m,又因为m⊄α,所以m∥α,故C的说法正确;若α∩β=m,n⊥m,则n∥α或n⊂α或n与α相交,故D 的说法错误.故选C.24.[解析] 设截面中两母线的夹角为α0<α≤,则截面面积S=×1×1×sin α=sin α,因为0<α≤,所以S max=×=.25.∶2[解析] 设球的半径为r,则球的体积为πr3.设圆锥的高为h,∵圆锥与球的体积相等,∴πr3=π×(2r)2h,∴h=r.圆锥的母线长为=r,球的表面积为4πr2,圆锥的侧面积为2πr×r=2πr2,∴圆锥的侧面积与球的表面积之比为∶2.26.6或54[解析] 由题意可知,棱锥底面正方形的对角线长为3×=6,棱锥的底面积S=(3)2=18.据此分类讨论:当球心位于棱锥内部时,棱锥的高h=5+-=9,棱锥的体积1V 1= Sh 1=54;当球心位于棱锥外部时,棱锥的高h 2=5- - =1,棱锥的体积V 2=Sh 2=6.综上可得,四棱锥P - ABCD 的体积为6或54.27. +π [解析] 由三视图可得,该几何体是一个组合体,其上半部分是一个四棱锥,四棱锥的底面是一个对角线长为2的菱形,高为2,其体积V 1=××2×2×2=,下半部分是个半球,球的半径R=1,其体积V 2=××π×13=π.据此可得,该几何体的体积V=V 1+V 2= +π.28.6π [解析] ∵AB=1,BC= ,AC= ,∴AB 2+BC 2=AC 2,即△ABC 为直角三角形.当CD ⊥平面ABC 时,三棱锥A-BCD 的体积最大,又∵CD= ,△ABC 外接圆的半径为,故三棱锥A-BCD 的外接球的半径R 满足R 2=+=,∴三棱锥A-BCD 的外接球的表面积为4πR 2=6π.解答必刷卷(四)1.解:(1)证明:因为AP=CP=AC=4,O 为AC 的中点,所以OP ⊥AC ,且OP=2 . 连接OB.因为AB=BC=AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=AC=2.由OP 2+OB 2=PB 2知,OP ⊥OB.由OP ⊥OB ,OP ⊥AC ,OB ∩AC=O 知PO ⊥平面ABC.(2)作CH ⊥OM ,垂足为H ,又由(1)可得OP ⊥CH ,OP ∩OM=O ,所以CH ⊥平面POM , 故CH 的长为点C 到平面POM 的距离. 由题设可知OC=AC=2,CM=BC=,∠ACB=45°, 所以OM=,CH= · ·=, 所以点C 到平面POM 的距离为.2.解:(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC ⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC,BD交于O.因为四边形ABCD为矩形,所以O为AC中点.连接OP,因为P为AM 中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.3.解:(1)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(2)取棱AC的中点N,连接MN,ND.因为M为棱AB的中点,故MN∥BC,所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM==.因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN==.在等腰三角形DMN中,MN=1,可得cos∠DMN==.所以,异面直线BC与MD所成角的余弦值为.(3)连接CM.因为△ABC为等边三角形,M为棱AB的中点,故CM⊥AB,CM=.又因为平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,所以,∠CDM 为直线CD 与平面ABD 所成的角. 在Rt △CAD 中,CD= =4. 在Rt △CMD 中,sin ∠CDM==. 所以,直线CD 与平面ABD 所成角的正弦值为.4.解:(1)证明:设SC 的中点为E ,连接BE ,ME ,则MEDC ,∵ABDC ,∴ME AB ,故四边形ABEM 为平行四边形, ∴AM ∥BE ,又∵BE ⊂平面SBC ,AM ⊄平面SBC ,∴AM ∥平面SBC.(2)连接BD ,∵SD ⊥平面ABCD ,∴∠SBD 是SB 与平面ABCD 所成的角,∴sin ∠SBD= =,∴SB 2=3SD 2.在Rt △ABD 中,BD= AB= ,在Rt △SDB 中,SB 2=SD 2+DB 2=SD 2+2,∴3SD 2=SD 2+2,∴SD=1(负值舍去).又S 梯形ABCD =(AB+DC )·AD=×(1+2)×1=,∴V 四棱锥S - ABCD = S 梯形ABCD ·SD= × ×1=.5.解:(1)证明:因为平面ABCD ⊥平面CDEF ,平面ABCD ∩平面CDEF=CD ,AD ⊥CD ,所以AD ⊥平面CDEF ,又CF ⊂平面CDEF ,则AD ⊥CF.又因为AE ⊥CF ,AD ∩AE=A ,所以CF ⊥平面AED ,又DE ⊂平面AED ,所以CF ⊥DE. (2)连接FA ,FD ,过F 作FM ⊥CD 于M.因为平面ABCD ⊥平面CDEF 且交线为CD ,FM ⊥CD ,所以FM ⊥平面ABCD.因为CF=DE,DC=2EF=4,且CF⊥DE,所以FM=CM=1,所以五面体的体积V=V四棱锥F-ABCD+V三棱锥=×42×1+××2×1×4=+=.A-DEF6.解:(1)证明:在三棱柱ABC-A1B1C1中,侧面ABB1A1⊥底面ABC,AC⊥AB,又因为侧面ABB1A1∩底面ABC=AB,AC⊂底面ABC,所以AC⊥平面ABB1A1,又因为AE⊂平面ABB1A1,所以AC⊥AE.(2)连接AB1,因为A1B1=AB,所以A1B1=AA1=2.又因为∠AA1B1=60°,所以△AA1B1是边长为2的正三角形.因为E是棱A1B1的中点,所以AE⊥A1B1,且AE=.又因为AE⊥AC,A1C1∥AC,所以AE⊥A1C1.因为A1C1∩A1B1=A1,A1C1,A1B1⊂底面A1B1C1,所以AE⊥底面A1B1C1,所以三棱柱ABC-A1B1C1的体积V=△·AE=A1B1·A1C1·AE=×2×2×=2. (3)在直线AA1上存在点P,使得CP∥平面AEF.证明如下:连接BE并延长,与AA1的延长线相交,设交点为P,连接CP.因为BB1∥AA1,所以△A1PE∽△B1BE,故==.由于E为棱A1B1的中点,所以EA1=EB1,故有EP=EB,又F为棱BC的中点,故EF为△BCP的中位线,所以EF∥CP.又EF⊂平面AEF,CP⊄平面AEF,所以CP∥平面AEF.故在直线AA1上存在点P,使得CP∥平面AEF.此时A1P=B1B=2,AP=AA1+A1P=4.。
2020高考数学一轮复习 第7章 章末强化训练 文 新课标版一、选择题(本大题共12小题,每小题6分,共72分)1. 复数3i 1i --等于 ( )A.1+2iB.1-2iC.2+iD.2-i解析:3i (3i)(1+i)42i 1i (1i)(1+i)2--+==--=2+i. 答案:C 2. 若复数3i 12ia ++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A.-2 B.4 C.-6 D.6 解析:因为3i 6(32)i 12i 5a a a +++-=+为纯虚数,所以a+6=0且3-2a ≠0,所以a=-6. 答案:C3. 已知集合M={1,(m 2-3m-1)+(m 2-5m-6)i},N={1,3},M ∩N={1,3},则实数m 的值为 ( )A.4B.-1C.4或-1D.1或66.已知复数z 满足|z|=1,则|z-1|的取值范围是 ( )A.[0,4]B.[0,2]C.[1,2]D.[1,4]解析:设z=x+yi(x 、y ∈R ),则x 2+y 2=1.()22122x y x -+=- (-1≤x ≤1)∈[0,2].选B.答案:B7. 设a =(1,-2),b =(-3,4),c =(3,λ),若(a +b )·c =0,则实数λ的值为 ( )A.2B.3C.4D.5 解析:因为a +b =(-2,2),所以(a +b )·c =(-2,2)·(3,λ)=-6+2λ=0.所以λ=3.故应选B.答案:B8. 已知a ,b 是非零向量,则a 2=b 2是a =b 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.已知命题:“若k 1a +k 2b =0,则k 1=k 2=0”是真命题,则下面对a 、b 的判断正确的是 ( )A.a 与b 一定共线B.a 与b 一定不共线C.a 与b 一定垂直D.a 与b 中至少有一个为0解析: 由平面向量基本定理可知,当a ,b 不共线时,若k 1a +k 2b =0,则k 1=k 2=0,故选B. 答案:B11. 如图,在△ABC 中,D 是BC 的中点,E 是DC 的中点,F 是EC 的中点,若AB u u u r =a ,AC u u u r =b ,则AF u u u r = ( ) A.14a +34b B. 14a -34b C. 18a +78b D. 18a -78b 解析:因为CB u u u r =AB u u u r -AC u u u r =a -b ,D 是BC 的中点,所以CD uuu r =12CB u u u r =12(a -b ), 同理,CE u u u r =12CD uuu r =14(a -b ),CF uuu r =12CE u u u r =18(a -b ), 所以AF u u u r =AC u u u r +CF uuu r =b +18(a -b )=18a +78b .答案:C12. 在以下关于向量的命题中,不正确的是 ( )A.若向量a =(x,y ),向量b =(-y,x )(x 、y ≠0),则a ⊥bB.四边形ABCD 是菱形的充要条件是AB u u u r =DC u u u r ,且|AB |=|AD |C.点G 是△ABC 的重心,则GA GB CG ++u u u r u u u r u u u r =0D.△ABC 中,AB 和CA u u u r 的夹角等于180°-A14.设e 1,e 2是不共线的向量,已知向量AB u u u r =2 e 1+k e 2, CB u u u r = e 1+3 e 2, CD uuu r =2 e 1- e 2,若A 、B 、D 三点共线,则实数k= .解析:因为BD u u u r =CD uuu r -CB u u u r = e 1-4 e 2,由A 、B 、D 三点共线,即AB u u u r ,BD u u u r 共线,所以2∶1=k ∶(-4),解得k=-8.答案:-815. 设z 1是复数,z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为 .解析:设z 1=x+yi,x,y ∈R ,则z 2=z 1-i z 1=(x+yi)-i(x-yi)=x+yi-xi-y=(x-y)+(y-x)i. 因为z 2的实部为-1,所以x-y=-1,所以y-x=1.故z 2的虚部为1.答案:116. 计算[(1+2i )·i 100+51i 1i -+()]2-202( = .18.(13分)已知OA u u u r =a , OB uuu r =b , OC u u u r =c , OD u u u r =d , OE uuu r =e ,设t ∈R ,如果c =3a ,d =2b ,e =t(a +b ),那么t 为何值时,C ,D ,E 三点在一条直线上?解:由题设知,CD uuu r =d -c =2b -3a , CE u u u r =e -c =(t-3)a +t b ,C 、D 、E 三点在一条直线上的充要条件是存在实数k ,使得CE u u u r =k CD uuu r ,即(t-3)a +t b =-3k a +2k b ,整理得(t-3+3k)a =(2k-t)b .①若a ,b 共线,则t 可为任意实数;②若a ,b 不共线,则有330,20,t k t k -+=⎧⎨-=⎩解之得t=65. 综上,a ,b 共线时,则t 可为任意实数;a ,b 不共线时,t=65. 19.(14分)已知z 是复数,z+2i,2iz -均为实数(i 为虚数单位),且复数(z+ai )2在复平面上对应的点在第一象限,求实数a 的取值范围.解:设z=x+yi(x,y ∈R ),所以z+2i=x+(y+2)i,由题意得y=-2.2i 2i 2i z x -=--=15(x-2i)(2+i)=15(2x+2)+15(x-4)i, 由题意得x=4,所以z=4-2i.因为(z+ai )2=(12+4a-a 2)+8(a-2)i,根据条件,得21240,8(2)0,a a a ⎧+->⎨->⎩解得2<a<6,所以实数a 的取值范围是(2,6).20.(2020届·中山质检)(14分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若AB u u u r ·ACu u u r =BA u u u r ·BC uuu r .(1)判断△ABC 的形状;(2)若AB u u u r ·AC u u u r =k(k ∈R )且c=2,求k 的值.。
第七章第4节一、选择题1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0B.1C.2D.3[解析]对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①不正确;对于②,若a ∥b,a∥α,则应有b∥α或b⊂α,因此②不正确;对于③,若a∥α,b∥α,则应有a∥b 或a与b相交或a与b异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.[答案] A2.(2015·济南模拟)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α[解析]若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a ∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.[答案] D3.(2015·石家庄模拟)已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b ⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.可以推出α∥β的是()A.①③B.②④C.①④D.②③[解析]对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.[答案] C4.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④[解析]由线面平行的判定定理知图①②可得出AB∥平面MNP.[答案] A5.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,则下列命题中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°[解析]由题意可知PQ∥AC,QM∥BD,PQ⊥QM,所以AC⊥BD,故A正确;由PQ ∥AC可得AC∥截面PQMN,故B正确;由PN∥BD可知,异面直线PM与BD所成的角等于PM与PN所成的角,又四边形PQMN为正方形,所以∠MPN=45°,故D正确;而AC=BD没有论证来源.[答案] C6.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是()A .MC ⊥ANB .GB ∥平面AMNC .平面CMN ⊥平面AMND .平面DCM ∥平面ABN[解析] 显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),作AN 的中点H ,连接HB ,MH ,GB ,则MC ∥HB ,又HB ⊥AN ,所以MC ⊥AN ,所以A 正确;由题意易得GB ∥MH ,又GB ⊂平面AMN ,MH ⊂平面AMN ,所以GB ∥平面AMN ,所以B 正确;因为AB ∥CD ,DM ∥BN ,且AB ∩BN =B ,CD ∩DM =D ,所以平面DCM ∥平面ABN ,所以D 正确.[答案] C 二、填空题7.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________.[解析] 根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24.[答案] 24或2458.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.[解析] 由题意,得HN ∥面B 1BDD 1,FH ∥面B 1BDD 1.∵HN ∩FH =H ,∴面NHF ∥面B 1BDD 1.∴当M 在线段HF 上运动时,有MN ∥面B 1BDD 1. [答案] M ∈线段HF9.空间四面体A -BCD 的两条对棱AC ,BD 的长分别为5和4,则平行于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是________.[解析] 设DH DA =GH AC =k (0<k <1),所以AH DA =EHBD =1-k ,所以GH =5k ,EH =4(1-k ),所以周长=8+2k . 又因为0<k <1,所以周长的范围为(8,10). [答案] (8,10) 三、解答题10.(2015·保定调研)已知直三棱柱ABC -A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点.(1)求证:MN ∥平面A ′ACC ′; (2)求三棱锥C -MNB 的体积. (1)[证明] 如图,连接AB ′,AC ′,∵四边形ABB ′A ′为矩形,M 为A ′B 的中点,∴AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点, ∴MN ∥AC ′,又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′,∴MN ∥平面A ′ACC ′. (2)[解] 由图可知V C -MNB =V M -BCN , ∵∠BAC =90°,∴BC =AB 2+AC 2=22,又三棱柱ABC -A ′B ′C ′为直三棱柱,且AA ′=4, ∴S △BCN =12×22×4=4 2.∵A ′B ′=A ′C ′=2,∠B ′A ′C ′=90°,点N 为B ′C ′的中点, ∴A ′N ⊥B ′C ′,A ′N = 2.又BB ′⊥平面A ′B ′C ′,∴A ′N ⊥BB ′, ∴A ′N ⊥平面BCN .又M 为A ′B 的中点,∴M 到平面BCN 的距离为22, ∴V C -MNB =V M -BCN =13×42×22=43. 11.(2014·陕西高考)四面体ABCD 及其三视图如图所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.(1)[解] 由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =CD =2,AD =1,∴AD ⊥平面BDC ,∴四面体体积V =13×12×2×2×1=23.(2)[证明] ∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形.12.(2014·江西高考)如图,三棱柱ABCA 1B 1C 1中,AA 1⊥BC ,A 1B ⊥BB 1.(1)求证:A 1C ⊥CC 1;(2)若AB =2,AC =3,BC =7,问AA 1为何值时,三棱柱ABCA 1B 1C 1体积最大,并求此最大值.(1)[证明] 由AA 1⊥BC 知BB 1⊥BC ,又BB 1⊥A 1B ,故BB 1⊥平面BCA 1,即BB 1⊥A 1C ,又BB 1∥CC 1,所以A 1C ⊥CC 1. (2)[解] 法一 设AA 1=x ,在Rt △A 1BB 1中,A 1B =A 1B 21-BB 21=4-x 2. 同理,A 1C =A 1C 21-CC 21=3-x 2.在△A 1BC 中,cos ∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ·A 1C =x 2(4-x 2)(3-x 2),sin ∠BA 1C =12-7x 2(4-x 2)(3-x 2),所以S △A 1BC =12A 1B ·A 1C ·sin ∠BA 1C =12-7x 22.从而三棱柱ABCA 1B 1C 1的体积 V =S △A 1BC ·AA 1=x 12-7x 22.因x 12-7x 2= 12x 2-7x 4=-7(x 2-67)2+367,故当x =67=427, 即AA 1=427时,体积V 取到最大值377.法二 过A 1作BC 的垂线,垂足为D ,连接AD . 由AA 1⊥BC ,A 1D ⊥BC , 故BC ⊥平面AA 1D ,BC ⊥AD , 又∠BAC =90°,所以S △ABC =AD ·BC =AB ·AC 得AD =2217.设AA 1=x ,在Rt △AA 1D 中,A 1D =AD 2-AA 21=127-x 2, S △A 1BC =12A 1D ·BC =12-7x 22.从而三棱柱ABCA 1B 1C 1的体积 V =S △A 1BC ·AA 1=x 12-7x 22.因x 12-7x 2=12x 2-7x 4= -7(x 2-67)2+367故当x =67=427,即AA 1=427时,体积V 取到最大值377.。
第4讲直线、平面平行的判定与性质[考纲解读] 1.掌握线线、线面、面面平行的判定定理和性质定理,并能应用它们证明有关空间图形的平行关系的简单命题.(重点)2.高考的重点考查内容之一,主要以几何体为载体考查线线、线面、面面平行的判定和性质.[考向预测]从近三年高考情况来看,本讲是高考的重点考查内容.预测2020年将会以以下两种方式进行考查:①以几何体为载体,考查线面平行的判定;②根据平行关系的性质进行转化.试题常以解答题的第一问直接考查,难度不大,属中档题型.1.直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理3.必记结论(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)经过平面外一点有且只有一个平面与已知平面平行.(4)两条直线被三个平行平面所截,截得的对应线段成比例.(5)如果两个平面分别和第三个平面平行,那么这两个平面互相平行.(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()答案(1)×(2)×(3)×(4)√2.小题热身(1)如果直线a平行于平面α,直线b∥a,则b与α的位置关系是()A.b与α相交B.b∥α或b⊂αC.b⊂αD.b∥α答案 B解析两条平行线中的一条与已知平面相交,则另一条也与已知平面相交,所以由直线b∥a,可知若b与α相交,则a与α也相交,而由题目已知,直线a 平行于平面α,所以b与α不可能相交,所以b∥α或b⊂α.故选B.(2)下列命题中成立的个数是()①直线l平行于平面α内的无数条直线,则l∥α;②若直线l在平面α外,则l∥α;③若直线l∥b,直线b⊂α,则l∥α;④若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线.A.1 B.2C.3 D.4答案 A解析当直线l在平面内时,结论不成立,∴①错误.若直线l在平面α外,则l∥α或l与α相交,∴②错误.根据线面平行的定义可知,直线l在平面外时,结论才成立,∴③错误.根据平行公理可知,若直线l∥b,直线b⊂α,那么直线l就平行于平面α内的无数条直线,∴④正确.故成立的只有④,所以A正确.(3)如图,α∥β,△P AB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.答案5 2解析因为α∥β,所以CD∥AB,所以PCP A=CDAB.因为PC=2,CA=3,CD=1,所以AB=5 2.(4)在正方体ABCD-A1B1C1D1中,下列结论正确的是________(填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.答案①②④解析如图,因为AB綊C1D1,所以四边形AD1C1B为平行四边形.故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因为AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,所以AD1∥平面BDC1,故④正确.题型一直线与平面平行的判定与性质角度1 线面平行判定定理的应用1.在四棱锥P -ABCD 中,P A ⊥平面ABCD ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 的中点,又P A =AB =4,∠CDA =120°,点N 在PB 上,且PN = 2.求证:MN ∥平面PDC .证明 在正三角形ABC 中,BM =2 3. 在△ACD 中,∵M 为AC 的中点,DM ⊥AC , ∴AD =CD ,又∵∠ADC =120°, ∴DM =233,则BMMD =3.在等腰直角三角形P AB 中,P A =AB =4, ∴PB =42,则BN NP =3,∴BN NP =BMMD ,∴MN ∥PD . 又MN ⊄平面PDC ,PD ⊂平面PDC , ∴MN ∥平面PDC .角度2 线面平行性质定理的应用2.如图所示,CD ,AB 均与平面EFGH 平行,E ,F ,G ,H 分别在BD ,BC ,AC ,AD 上,且CD ⊥AB .求证:四边形EFGH 是矩形.证明∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH为平行四边形,∴CD∥EF,HE∥AB,∴∠HEF为异面直线CD和AB所成的角.又∵CD⊥AB,∴HE⊥EF.∴平行四边形EFGH为矩形.1.判定线面平行的四种方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).2.用线面平行的判定定理证明线面平行(1)关键:在平面内找到一条与已知直线平行的直线.(2)方法:合理利用中位线定理、线面平行的性质,或者构造平行四边形等证明两直线平行.(3)易错:容易漏掉说明直线在平面外.3.用线面平行的性质定理证明线线平行(1)定势:看到线面平行想到用性质定理.(2)关键:合理选择过已知直线的平面与已知平面相交.1.(2016·全国卷Ⅲ改编)如图,四棱锥P -ABCD 中,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.证明:MN ∥平面P AB .证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .2.如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和P A 作平面P AHG 交平面BMD 于GH .求证:P A ∥GH .证明如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴AP∥OM.又MO⊂平面BMD,P A⊄平面BMD,∴P A∥平面BMD.∵平面P AHG∩平面BMD=GH,且P A⊂平面P AHG,∴P A∥GH.题型二平面与平面平行的判定与性质如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綊AB,∴A1G綊EB.∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.条件探究在举例说明中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解 连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O .所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB =1.同理可证AD 1∥DC 1,则A 1D 1D 1C 1=DCAD ,所以DC AD =1,即ADDC =1.1.判定面面平行的方法(1)利用面面平行的判定定理,转化为证明线面平行. (2)证明两平面垂直于同一条直线. (3)证明两平面与第三个平面平行. 2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行. (2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行. 提醒:利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.1.在如图所示的几何体中,D 是AC 的中点,EF ∥DB ,G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .证明取FC的中点I,连接GI,HI,则有GI∥EF,HI∥BC.又EF∥DB,所以GI∥BD,又GI∩HI=I,BD∩BC=B,所以平面GHI∥平面ABC.因为GH⊂平面GHI,所以GH∥平面ABC.2.(2018·河南郑州模拟)如图,四边形ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.题型三立体几何中的探索性问题在如图所示的多面体中,DE⊥平面ABCD,AF∥DE,AD∥BC,AB=CD,∠ABC=60°,BC=2AD=4DE=4.(1)在AC上求作点P,使PE∥平面ABF,请写出作法并说明理由;(2)求三棱锥A-CDE的高.解(1)取BC的中点G,连接DG,交AC于点P,连接EG,EP.此时P为所求作的点(如图所示).下面给出证明:∵BC=2AD,G为BC的中点,∴BG=AD.又∵BC∥AD,∴四边形BGDA是平行四边形,故DG∥AB,即DP∥AB.又AB⊂平面ABF,DP⊄平面ABF,∴DP∥平面ABF.∵AF∥DE,AF⊂平面ABF,DE⊄平面ABF,∴DE∥平面ABF.又∵DP⊂平面PDE,DE⊂平面PDE,PD∩DE=D,∴平面PDE∥平面ABF,∵PE⊂平面PDE,∴PE∥平面ABF.(2)在等腰梯形ABCD 中, ∵∠ABC =60°,BC =2AD =4,∴可求得梯形的高为3,从而△ACD 的面积为12×2×3= 3. ∵DE ⊥平面ABCD ,∴DE 是三棱锥E -ACD 的高. 设三棱锥A -CDE 的高为h . 由V A -CDE =V E -ACD ,可得 13×S △CDE ×h =13S △ACD ×DE , 即12×2×1×h =3×1,解得h = 3. 故三棱锥A -CDE 的高为 3.线面平行的探究性问题解决探究性问题一般先假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了使结论成立的充分条件,则存在;如果找不到使结论成立的充分条件(出现矛盾),则不存在,而对于探求点的问题,一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.(2018·合肥三模)如图,侧棱与底面垂直的四棱柱ABCD -A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =13A 1B 1.点E 是直线CD 的一点,AM ∥平面BC 1E .(1)试确定点E 的位置,并说明理由;(2)求三棱锥M-BC1E的体积.解(1)如图,在棱C1D1上取点N,使D1N=A1M=1.又∵D1N∥A1M,∴MN∥A1D1∥AD.∴四边形AMND为平行四边形,∴AM∥DN.过C1作C1E∥DN交CD于E,连接BE,∴DN∥平面BC1E,AM∥平面BC1E,∴平面BC1E即为所求,此时CE=1.(2)由(1)知,AM∥平面BC1E,∴V M-BC1E =V A-BC1E=V C1-ABE=13×⎝⎛⎭⎪⎫12×3×3×4=6.。