【2019年整理】投影坐标详解
- 格式:doc
- 大小:54.50 KB
- 文档页数:10
地理坐标系与投影坐标系1、地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate system是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行艹作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。
这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening(扁率): 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。
在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。
--------------------------------------------------------------------------------有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。
完整参数:Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954Spheroid(参考椭球体): Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.3000000000000100002、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。
投影坐标系的详细介绍投影坐标系是地理空间信息系统中常用的一种坐标系统,它将地球表面的地理坐标映射到一个二维平面上,便于进行地图制作、测量和分析等操作。
投影坐标系的选择对地图质量和数据分析结果具有重要影响,因此对投影坐标系进行详细的介绍具有重要意义。
首先,投影坐标系的基本原理是将三维的地理坐标转换为二维的平面坐标。
由于地球是一个近似地球椭球体,而地图是在平面上展示地球表面,因此必须进行一定的数学转换。
投影坐标系通过一种数学模型将地球上的点按照一定规则映射到平面上,使得地球表面上的线段、面积和角度等地理特征在平面上能够得到合理、准确的表示。
投影坐标系有很多种类,常见的包括等面积投影、等距投影、等角投影等。
等面积投影保持地球表面上的面积比例关系,适用于需要准确测量面积的地图制作;等距投影保持地球表面上的距离比例关系,适用于需要准确测量距离的地图制作;等角投影保持地球表面上的角度关系,适用于需要准确测量角度的地图制作。
此外,还有一些特殊的投影坐标系,如墨卡托投影、兰勃托投影、极射投影等,它们在特定应用领域具有优势。
投影坐标系不仅仅是一个数学转换模型,还需要考虑到使用的地图范围、地图形状、地图形变以及地图使用目的等因素。
在选择投影坐标系时,需要权衡不同因素之间的取舍,以达到最优的地图效果。
例如,选择投影坐标系时需要考虑地图的纬度范围,选择全球性的坐标系还是局部性的坐标系;还需要考虑地图形状,选择圆形、椭圆形还是其他形状;同时还需要考虑地图形变,平行线是否保持平行、面积是否保持一致等问题;最后还要考虑地图使用目的,是制作导航地图、气象图、行政区划图还是其他类型的地图。
投影坐标系选择的准则主要包括地图形变、图形一致、适用范围、计算复杂度等因素。
地图形变是指由于地球表面三维形状与二维平面的转换而引起的失真现象。
不同的投影坐标系对应不同的形变性质,因此需要根据地图使用需要选择合适的坐标系。
图形一致是指地图中的地理特征在平面上的表示与实际地表特征的一致性。
投影向量的坐标公式
投影向量的坐标公式是在向量代数中常用的概念,用于求解一个向量在另一个向量方向上的投影。
在二维空间中,如果给定两个向量a和b,我们可以通过计算向量a在向量b上的投影向量的坐标来确定它在b方向上的投影。
具体来说,如果向量a在向量b上的投影向量的坐标为(x, y),那么根据投影向量的定义,我们可以得到以下公式:
x = (a · b) / ||b||^2 * b
y = (a · b) / ||b||^2 * b
其中,·代表向量的点积运算,||b||代表向量b的长度。
这两个公式可以帮助我们计算出向量a在向量b上的投影向量的坐标,进而帮助我们理解向量在不同方向上的分解。
通过投影向量的坐标公式,我们可以更好地理解向量在不同方向上的分解和投影的概念。
这对于解决许多向量分析和几何学中的问题非常有用。
例如,在计算机图形学中,投影向量的坐标公式可以帮助我们确定一个物体在屏幕上的投影位置,从而实现逼真的三维渲染效果。
除此之外,在物理学和工程学领域,投影向量的坐标公式也被广泛应用。
比如在力学中,我们可以利用投影向量的坐标公式来分解一个力在另一个力方向上的分量,从而更好地理解物体受力的情况。
总的来说,投影向量的坐标公式是向量代数中非常重要的概念,它可以帮助我们更好地理解向量在不同方向上的投影和分解。
通过掌握这一公式,我们可以更好地解决各种与向量相关的问题,提高我们在数学、物理和工程学领域的应用能力。
希望通过本文的介绍,读者能对投影向量的坐标公式有更深入的理解,并能在实际问题中灵活运用。
投影坐标知识点总结一、投影坐标的基本概念1. 地球的形状地球是一个近似于椭球形的几何体,由于地球表面的曲率和不规则性,很难在平面上准确地表示地球表面的形状和位置。
因此,为了在平面上准确地表示地球表面的点的位置,需要采用投影的方法将地球表面投影到平面上。
2. 投影的概念投影是一种数学方法,它将三维空间中的点或曲线投影到二维平面上。
在地理学和地图制图中,通常将地球表面上的点投影到平面上,得到投影坐标。
投影的目的是在保持地球表面上的角度和形状的基础上,将地球表面上的点的位置准确地表示在平面上。
3. 投影坐标的含义投影坐标是用来表示地球表面上的点在平面坐标系中的位置。
它通常由横坐标(X坐标)和纵坐标(Y坐标)组成。
投影坐标可以用来表示地理位置、测量距离和面积等信息,是地图制图和测量中常用的一种坐标系统。
二、常用的投影方法1.经纬度投影经纬度投影是最常用的一种投影方法,它是将地球表面上的点的经度和纬度直接作为投影坐标。
经纬度投影的优点是简单直观,易于理解和使用,但在表示面积和距离时存在一定的畸变。
2.等角投影等角投影是一种保角投影方法,它保持地球表面上任意两点之间的角度不变。
这种投影方法能够准确地表示地球表面上的角度和形状,但在表示面积和距离时存在一定的畸变。
3.等距投影等距投影是一种保距投影方法,它保持地球表面上任意两点之间的距离不变。
这种投影方法能够准确地表示地球表面上的距离,但在表示角度和形状时存在一定的畸变。
4.等积投影等积投影是一种保面积投影方法,它保持地球表面上的面积不变。
这种投影方法能够准确地表示地球表面上的面积,但在表示角度和形状时存在一定的畸变。
5.其他投影方法除了上述的几种常用的投影方法外,还有许多其他的投影方法,如墨卡托投影、兰伯特投影、阿尔伯斯投影等。
每种投影方法都有其特点和适用范围,需要根据具体的应用需求来选择合适的投影方法。
三、常见的投影坐标系统1.平面直角坐标系平面直角坐标系是最常用的一种坐标系统,它采用直角坐标系表示地球表面上的点的投影坐标。
谈谈地理坐标和投影坐标常⽤的坐标系为地理坐标系(Geograpic Coordinate System,简称GCS)和投影坐标系(Projected Coordinate System,简称PCS)。
⼀、地理坐标系统地理坐标系统(GCS)⽤⼀个三维的球⾯来确定地物在地球上的位置,地⾯点的地理坐标有经度、纬度、⾼程构成。
地理坐标系统与选择的地球椭球体和⼤地基准⾯有关。
椭球体定义了地球的形状,⽽⼤地基准⾯确定了椭球体的中⼼。
地理坐标系 (GCS) 使⽤三维球⾯来定义地球上的位置。
GCS中的重要参数包括⾓度测量单位、本初⼦午线和基准⾯(基于旋转椭球体)。
地理坐标系统中⽤经纬度来确定球⾯上的点位,经度和纬度是从地⼼到地球表⾯上某点的测量⾓。
球⾯系统中的⽔平线是等纬度线或纬线,垂直线是等经度线或经线。
这些线包络着地球,构成了⼀个称为经纬⽹的格⽹化⽹络。
GCS中经度和纬度值以⼗进制度为单位或以度、分和秒 (DMS) 为单位进⾏测量。
纬度值相对于⾚道进⾏测量,其范围是 -90°(南极点)到+90°(北极点)。
经度值相对于本初⼦午线进⾏测量。
其范围是 -180°(向西⾏进时)到 180°(向东⾏进时)。
ArcGIS中,中国常⽤的坐标系统为GCS_Beijing_1954(Krasovsky_1940),GCS_Xian_1980(IAG_75),GCS_WGS_1984(WGS_1984),GCS_CN_2000(CN_2000)。
⼆、投影坐标系统投影坐标系统是根据某种映射关系,将地理坐标系统中由经纬度确定的三维球⾯坐标投影到⼆维的平⾯上所使⽤的坐标系统。
在该坐标系统中,点的位置是由(x,y,z)坐标来确定的。
由于投影坐标是将球⾯展会在平⾯上,因此不可避免会产⽣变形。
这些变形包括3种:长度变形、⾓度变形以及⾯积变形。
通常情况下投影转换都是在保证某种特性不变的情况下牺牲其他属性。
ARCGIS中坐标转换及地理坐标、投影坐标的定义1.ARCGIS中坐标转换及地理坐标、投影坐标的定义1.1动态投影(ArcMap)所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data (当前数据框架的坐标系统)导出数据!1。
2坐标系统描述(ArcCatalog)大家都知道在ArcCatalog中可以一个数据的坐标系统说明!即在数据上鼠标右键—>Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统!但有许多人认为在这里改完了,数据本身就发生改变了!但不是这样的!这里缩写的信息都对应到该数据的。
aux文件!如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown!这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身!因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下!但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的!因此你就无法在做对数据的进一不处理!比如:投影变换操作!因为你不知道要从哪个投影开始变换!因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识!1.3投影变换(ArcToolBox)上面说了这么多,要真正的改变数据怎么办,也就是做投影变换!在ArcToolBox—>Data Management Tools->Projections and Transformations下做!在这个工具集下有这么几个工具最常用:1、Define Projection2、Feature—〉Project3、Raster->Project Raster4、Create Custom Geographic Transformation当数据没有任何空间参考时,显示为Unknown!时就要先利用Define Projection来给数据定义一个Coordinate System,然后在利用Feature-〉Project或Raster—〉Project Raster工具来对数据进行投影变换!由于我国经常使用的投影坐标系统为北京54,西安80!由这两个坐标系统变换到其他坐标系统下时,通常需要提供一个Geographic Transformation,因为Datum已经改变了!这里就用到我们说常说的转换3参数、转换7参数了!而我们国家的转换参数是保密的!因此可以自己计算或在购买数据时向国家测绘部门索要!知道转换参数后,可以利用Create Custom Geographic Transformation工具定义一个地理变换方法,变换方法可以根据3参数或7参数选择基于GEOCENTRIC_TRANSLATION和COORDINATE_方法!这样就完成了数据的投影变换!数据本身坐标发生了变化!当然这种投影变换工作也可以在ArcMap 中通过改变Data 的Coordinate System来实现,只是要在做完之后在按照Data 的坐标系统导出数据即可!方法一:在Arcmap中转换:1、加载要转换的数据,右下角为经纬度;2、点击视图——数据框属性——坐标系统;3、导入或选择正确的坐标系,确定.这时右下角也显示坐标.但数据没改变;4、右击图层-—数据-—导出数据;5、选择第二个(数据框架),输出路径,确定;6、此方法类似于投影变换。
1、什么是地理坐标系?空间坐标:空间坐标是大地测量中以参考椭球面为基准面建立起来的坐标。
地面点的位置用大地经度、大地纬度和大地高度表示。
空间坐标的确立包括选择一个椭球、对椭球进行定位和确定大地起算数据。
一个形状、大小和定位、定向都已确定的地球椭球叫参考椭球。
参考椭球一旦确定,则标志着空间坐标已经建立。
WGS-84坐标系:WGS-84 坐标系是一种国际上采用的地心坐标系。
坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。
这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。
2. 什么是地图投影?地图投影:就是把地球椭球面上的点、线(即经纬线)投影在平面图纸上。
它是研究把地球椭球体面上的经纬网按照一定的数学法则转绘到平面上的方法及其变形问题。
地图投影的方法有几何法和解析法。
几何法是以平面、圆柱面、圆锥面为承影面,将曲面(地球椭球面)转绘到平面(地图)上的一种古老方法,这种直观的透视投影方法有很大的局限性。
解析法是确定球面上的地理坐标与平面上3. 投影坐标系将球面坐标转化为平面坐标的过程称为投影。
投影坐标系的实质是平面坐标系统,地图单位通常为米。
投影坐标系在二维平面中进行定义。
与地理坐标系不同,在二维空间范围内,投影坐标系的长度、角度和面积恒定。
投影坐标系始终基于地理坐标系,即:“投影坐标系=地理坐标系+投影算法函数“。
对应点的直角坐标之间的函数关系。
分的):Plannar Coordinate System(平面坐标系统,或者Custom用户自定义坐标系统)、Geographic Coordinate System(地理坐标系统)、Projection Coordinate System(投影坐标系统)。
这三者并不是完全独立的,而且各自都有各自的应用特点。
如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,在Arcgis中,默认打开数据不知道坐标系统信息的情况下都当作Custom CS处理,也就是平面坐标系统。
而地理坐标系统和投影坐标系统又是相互联系的,地理坐标系统是投影坐标系统的基础之一,二者的区别联系在下文详述,下面先搞清楚几个基本的概念(参考自Jetz大侠的博客:/category/24847.html):理解:椭球面是用来逼近地球的,应该是一个立的椭圆旋转而成的。
2、大地基准面(Datum)椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。
在目前的GIS商用软件中,大地基准面都通过当地基准面向WGS84的转换7参数来定义,即三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。
北京54、西安80相对WGS84的转换参数至今没有公开,实际工作中可利用工作区内已知的北京54或西安80坐标控制点进行与WGS84坐标值的转换,在只有一个已知控制点的情况下(往往如此),用已知点的北京54与WGS84坐标之差作为平移参数,当工作区范围不大时,如青岛市,精度也足够了。
以(32°,121°)的高斯-克吕格投影结果为例,北京54及WGS84基准面,两者投影结果在南北方向差距约63米(见下表),对于几十或几百万的地图来说,这一误差无足轻重,但在工程地图中还是应该加以考虑的。
理解:椭球面和地球肯定不是完全贴合的,因而,即使用同一个椭球面,不同的地区由于关心的位置不同,需要最大限度的贴合自己的那一部分,因而大地基准面就会不同。
3、高斯投影(Gauss Projection)(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。
德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。
该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。
投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。
设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。
将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。
取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。
高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。
由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。
(2)高斯-克吕格投影分带按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。
分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。
通常按经差6度或3度分为六度带或三度带。
六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、注:坐标点(32,121)位于高斯投影的21带,高斯投影Y值21310996.8中前两位“21”为带号;坐标点(32,121)位于UTM投影的51带,上表中UTM投影的Y值没加带号。
因坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000。
理解:高斯投影的方法就是保持赤道和中央经线不变形,把球面摊平。
方法:用一个椭圆柱套住椭球,把它投影到椭圆柱上,然后打开椭圆柱即可。
4、其他WGS 84 是常用的经纬度的椭球面,也是一个公开的基准面。
正转换:经纬度-->高斯投影坐标。
大地基准面用于高斯投影,或者高斯分带投影,无论是54,80,还是wgs84,都有可能。
在不同的基准面下,同一个点的经纬度不同,投影坐标也不同。
地理坐标网(经纬网)为了制作和使用地图的方便,高斯-克吕格投影的地图上绘有两种坐标网:地理坐标网和直角坐标网。
在我国1:1万-1:10万地形图上,经纬线只以图廓的形式表现,经纬度数值注记在内图廓的四角,在内外图廓间,绘有黑白相间或仅用短线表示经差、纬差1’的分度带,需要时将对应点相连接,就构成很密的经纬网。
在1:20万-1:100万地形图上,直接绘出经纬网,有时还绘有供加密经纬网的加密分割线。
纬度注记在东西内外图廓间,经度注记在南北内外图廓间。
直角坐标网(方里网)直角坐标网是以每一投影带的中央经线作为纵轴(X轴),赤道作为横轴(Y轴)。
纵坐标以赤道我0起算,赤道以北为正,以南为负。
我国位于北半球,纵坐标都是正值。
横坐标本应以中央经线为0起算,以东为正,以南为负,但因坐标值有正有负,不便于使用,所以又规定凡横坐标值均加500公里,即等于将纵坐标轴向西移500公里。
横坐标从此纵轴起算,则都成正值。
然后,以公里为单位,按相等的间距作平行于纵、横轴的若干直线,便构成了图面上的平面直角坐标网,又叫方里网。
• 5Geographic Coordinate System和Projection Coordinate System的区别和联系:地理坐标系统(Geographic Coordinate System)1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate system 是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。
这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening(扁率): 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。
在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。
--------------------------------------------------------------------------------有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。
完整参数:Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian(起始经度): Greenwich (0.000000000000000000)Datum(大地基准面): D_Beijing_1954Spheroid(参考椭球体): Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000投影坐标系统(Projection Coordinate System)2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。
Projection: Gauss_KrugerParameters:False_Easting: 500000.000000False_Northing: 0.000000Central_Meridian: 117.000000Scale_Factor: 1.000000Latitude_Of_Origin: 0.000000Linear Unit: Meter (1.000000)Geographic Coordinate System:Name: GCS_Beijing_1954Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_Beijing_1954Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。
投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。
那么为什么投影坐标系统中要存在坐标系统的参数呢?这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。