专题05导数压轴题的零点及恒成立、有解问题-快速提分之谈高考数学(理)常考题型(原卷版)
- 格式:pdf
- 大小:135.36 KB
- 文档页数:3
高考数学导数恒成立问题的解法
对于恒成立问题,一般采取的方法有两种:一是利用函数的单调性,二是利用函数的最值。
1. 利用函数的单调性
如果函数f(x)在区间D上单调,可以根据函数的单调性来解决问题。
例如,不等式f(x) > 0在区间D上恒成立,那么只需要找到满足f(x)min > 0的x值即可。
2. 利用函数的最值
如果函数f(x)在区间D上不是单调的,那么可以转化为求函数的最值问题。
例如,不等式f(x) > 0在区间D上恒成立,可以转化为求f(x)的最小值,只要最小值大于0,那么不等式就恒成立。
例题:已知函数f(x) = x2 + ax + 4在区间[-1,2]上都不小于2,求a的取值范围。
解法:首先根据题意得到函数f(x) = x2 + ax + 4在区间[-1,2]上的最小值为2,然后根据二次函数的性质得到对称轴为x=-b/2a=-a/2。
我们需要分三种情况讨论:
1. 当-a/2≤-1时,即a≥2时,函数在[-1,2]上是增函数,只需要满足f(-1)=1-a+4≥2即可,解得a≤3,所以2≤a≤3;
2. 当-a/2≥2时,即a≤-4时,函数在[-1,2]上是减函数,只需要满足
f(2)=4+2a+4≥2即可,解得a≥-4,但是此时a没有合适的取值,故舍去;
3. 当-1<-a/2<2时,即-4<a<2时,函数在对称轴左侧是减函数,右侧是增函数,只需要满足f(-a/2)=(-a/2)2-a2/4+4≥2即可,解得-4<a≤-2。
综上可得a的取值范围为:[-4,-2]∪[2,3]。
专题05 利用函数极值求参(取值范围)一、单选题1.已知函数()321132f x x x cx d =-++有极值,则c 的取值范围为( )A .14c <B .14c ≤C .14c ≥D .14c >【解析】由题意得()2f x x x c '=-+,若函数()f x 有极值,则140c ∆=->,解得14c <,故选:A . 2.若函数328()2()43f x x ax a x =++++有极大值和极小值,则a 的取值范围是( )A .()2,8-B .17,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .()(),28,-∞-+∞ D .()(),22,-∞-+∞【解析】216()3223f x x ax a '=+++,根据题意知方程21632203x ax a +++=有两个不等实根,于是得216412(2)03a a ∆=-+>,整理得26160a a -->,解得8a >或2a <-, 所以a 的取值范围是()(),28,-∞-+∞.故选:C3.若函数3211()232f x x ax bx c =+++在(0,1)上取得极大值,在(1,2)上取得极小值,则11b a --的取值范围是( ) A .11,32⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .10,3⎛⎫ ⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭【解析】2()2f x x ax b '=++,函数()f x 在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,2()20f x x ax b ∴'=++=在(0,1)和(1,2)内各有一个根,(0)0f '>,f '(1)0<,f '(2)0>,即021020b a b a b >⎧⎪++<⎨⎪++>⎩,在aOb 坐标系中画出其表示的区域是ABC ,11b a --表示区域内的点(,)P a b 与点(1,1)M 连线的斜率,联立0210b a b =⎧⎨++=⎩,解得01b a =⎧⎨=-⎩,即()1,0B -,同理()()2,0,3,0A C --,结合图象知直线MC 的斜率最小,为0MC k =,直线MB 的斜率最大,为12MB k =, 所以11b a --的取值范围1(0,)2,故选:D .4.已知函数()322f x x ax bx a =+++在1x =处有极值10,则a b +=( )A .7-B .0C .7-或0D .15-或6【解析】由函数()322f x x ax bx a =+++有()232f x x ax b '=++.函数()f x 在1x =处有极小值10.所以()()10110f f ⎧=⎪⎨='⎪⎩,即()()213+201110f a b f a b a ⎧=+=⎪⎨=+++='⎪⎩,解得: 411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩, 当411a b =⎧⎨=-⎩时,()()()238111311f x x x x x '=+-=-+, 令()0f x '>得1x >或113x <-,()0f x '<得1113x -<<, 所以函数()f x 在113,⎛⎫-∞- ⎪⎝⎭上单调递增,在11,13⎛⎫- ⎪⎝⎭上单调递减,在1+,上单调递增.显然满足函数()f x 在1x =处有极小值10.当33a b =-⎧⎨=⎩时,()()22363310f x x x x '=-+=-≥, 所以函数()f x 在R 上单调递增,不满足函数()f x 在1x =处有极小值10. 所以411=7a b +=--,故选:A5.若函数32()1(0)f x x mx m =-++≠在区间(0,2)上的极大值为最大值,则m 的取值范围是( ) A .(0,3)B .(3,0)-C .(,3)-∞-D .(3,)+∞【解析】由题得2()32f x x mx -'=+,令()0f x '=,得23x m=或0x =(舍去), 若0m <,则当02x <<时,()0f x '<,与题设矛盾;若0m >,则当203x m <<时,()0f x '>,当223m x <<时,()0f x '<,故23x m =为函数的极大值点, 因为()f x 在区间(0,2)内的极大值为最大值,所以2(0,2)3m ∈,即2023m<<, 所以03m <<.故选:A.6.已知函数()2e xf x ax =-(a ∈R )有三个不同的零点,则实数a 的取值范围是( )A .e ,4⎛⎫+∞ ⎪⎝⎭B .e ,2⎛⎫+∞ ⎪⎝⎭C .2e ,4⎛⎫+∞ ⎪⎝⎭D .2e ,2⎛⎫+∞ ⎪⎝⎭【解析】令2()0xf x e ax =-=,显然0x ≠,所以2e xa x=,令()2e xg x x =(0x ≠),则问题转化为“若y a =图象与()y g x =图象有三个交点,求a 的取值范围”.()()32e x x g x x-'=,令()0g x '=,解得2x =,∴当0x <或2x >时,()0g x '>,()g x 在(,0)-∞,(2,)+∞单调递增,当02x <<时,()0g x '<,()g x 在(0,2)单调递减,()g x 在2x =处取极小值()2e 24g =,作出()y g x =的简图,由图可知,要使直线y a =与曲线()2ex g x x=有三个交点,则2e 4a >,故实数a 的取值范围是2e ,4⎛⎫+∞ ⎪⎝⎭.故选:C.7.已知函数3211()(,,)32f x x bx cx d b c d R =+++∈有两个极值点12,(0,1)x x ∈,则22(1)c b +-的取值范围是( ) A .(0,1)B .10,2⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,16⎛⎫ ⎪⎝⎭【解析】已知函数3211()(,,)32f x x bx cx d b c d R =+++∈,则()2f x x bx c '=++, ()f x 的两个极值点分别是12,(0,1)x x ∈,()()22001100242012f c f c b b b b f c b ⎧=>⎪=++>⎪⎪⎛⎫∴⎨-=-+< ⎪''⎪⎝⎭⎪⎪<-<⎩',即:2010420c b c b c b >⎧⎪++>⎪⎨>⎪⎪-<<⎩,以上不等式对应的平面区域如图所示,三个顶点坐标为()2,1A -,()1,0B -,()0,0O ,则()221c b k +-=,表示以()0,1-为中心的双曲线,由选项可知0k >,双曲线的实轴在c 轴上,所以双曲线经过A ,B ,O 三点取得最值, 经过A 点时,0k =,经过B 点时,0k =,经过O 点时,1k =, 因为A ,B ,O 三点不在可行域内,所以()0,1k ∈,故选:A .8.若函数32()312(0)f x x ax x a =-+>存在两个极值点1x ,2x ,则()()12f x f x +的取值范围是( ) A .(,16]-∞B .(,16)-∞C .(16,)+∞D .[16,)+∞【解析】由32()312(0)f x x ax x a =-+>,则2()3612f x x ax '=-+, 因为函数()f x 存在两个极值点1x ,2x ,所以23643120a ∆=-⨯⨯>,即2a > ,12122,4x x a x x +=⋅=,()()()123232111222312312f x f x x ax x x ax x +-+-++=()()()()221211*********3212x x x x x x x a x x x x x ⎡⎤=--+-⋅++⎣⋅++⎦()()()()1212121212221233212a x x x x x x x x x x x x ⎡⎤⎡⎤=---+⎣⎦⎣⎦++⋅+⋅+()()22241234824a a a a a =---+ 3424a a =-+设()3g 424a a a =-+,则()g a '()221224122a a =-+=--当2a >时,()g a '0<,则()g a 在()2,+∞上单调递减.所以()()g g 216a <=,所以()()12f x f x +的取值范围是(,16)-∞,故选:B二、多选题9.已知函数2()2ln f x ax x x =-+存在极值点,则实数a 的值可以是( ) A .0B .e -C .12D .1e【解析】函数2()2ln f x ax x x =-+的定义域为()0,∞+,且()122'=-+f x ax x, 由题意可知,函数()y f x =在定义域()0,∞+上存在极值点, 得()1220'=-+=f x ax x在()0,∞+有两个解, 由()0f x '=可得2112=-a x x ,令10t x =>,则212=-a t t ,则实数a 的取值范围为函数212=-y t t 在()0,∞+上的值域且满足0∆>,对于二次函数()()2211121222=--=--+y t t t ,当0t >时,()21111222=--+≤y t , 对于二次方程212=-a t t ,即2102-+=t t a ,120∆=->a ,解得12a <.因此,实数a 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭.故选:ABD.10.已知函数321()23f x x x =+-在区间(2,3)a a -+上存在最小值,则整数a 可以取( )A .2-B .1-C .0D .1【解析】()()222f x x x x x '=+=+,()0f x '=时,2x =-或0x =,当2x <-或0x >时,()0f x '>,当20x -<<时,()0f x '<,所以函数的单调递增区间是(),2-∞-和()0,∞+,函数的单调递减区间是()2,0-, 所以函数的极大值点是2-,极小值点是0,且()02f =-,那么当321223x x +-=-,解得:0x =或3x =- ,所以函数在区间()2,3a a -+上存在最小值, 则32030a a -≤-<⎧⎨+>⎩,解得:12a -≤<.故选:BCD 11.若函数322()21f x x x a x =++-有两个极值点则a 的值可以为( ) A .0 B .1C .2D .3【解析】322()21f x x x a x =++-,22()34f x x x a '∴=++,因为函数322()21f x x x a x =++-有两个极值点,则22()34f x x x a '=++与x 轴有两个交点,即224430a ∆=-⨯⨯>解得232333a -<<,故满足条件的有AB ,故选:AB 12.已知函数f (x )=ax 2﹣x +ln x 有两个不同的极值点x 1,x 2,若不等式()()()12122f x f x x x t +<++恒成立,则t 的取值可能是( ) A .112ln2-- B .112ln2-+ C .113ln 2--D .113ln 2-+【解析】2121()21ax x f x ax x x-+'=-+=,0x >,由题意得1x ,2x 为2210ax x -+=的两不等正根,所以10102180a aa ⎧>⎪⎪⎪>⎨⎪∆=->⎪⎪⎩,解得108a <<,22121211122212()()2()2()f x f x x x ax x lnx ax x lnx x x +-+=-++-+-+22121212()3()()a x x x x ln x x =+-++, 212121212[()2]3()()a x x x x x x ln x x =+--++5ln214a a=---, 令h (a )5ln214a a =---,108a <<, 则()254'04a h a a -=>,h (a)在1(0,)8上单调递增,h (a )1()2ln2118h <=-, 因为1212()()2()f x f x x x t +<++恒成立,所以1212()()2()t f x f x x x >+-+恒成立, 所以2ln211t -.故选:BD . 三、填空题13.若函数2()(3)ln f x x a x x =+++在区间(1,2)上存在唯一的极值点,则实数a 的取值范围为________.【解析】212(3)1()2(3)x a x f x x a x x+++'=+++=,函数()f x 在区间(1,2)上存在唯一的极值点,则2()2(3)10g x x a x =+++=在区间(1,2)上有一个解, ∴(1)(2)(6)(215)0g g a a =++<,解得1562a -<<-. 14.已知函数2()2ln xe f x k x kx x =+-,若2x =是函数()f x 的唯一极值点,则实数k 的取值范围是____.【解析】由题意,()f x 定义域为()0,∞+,322()0x x xe e kf x k x x'-=+-=有唯一的实数根2x =,即方程()()220x x e kx --=有唯一的实数根2x =,所以20xe kx -=无变号零点,即2xe k x=无变号零点.设2()xe g x x =,则()32()x e x g x x-'=, ()0,2x ∈时,()0g x '<,()g x 为减函数;()2,x ∈+∞时,()0g x '>,()g x 为增函数;所以2e ()(2)4g x g ≥=;所以k 的取值范围为:2,4e ⎛⎤-∞ ⎥⎝⎦.15.已知函数1()2x x f x ax e+=-有两个极值点,则实数a 的取值范围是________. 【解析】函数1()2x x f x ax e +=-,则()2xxf x a e '=+,因为函数()f x 有两个极值点,则()0f x '=有两个不同的实数根,即2xx a e -=有两个不同的实数根,令()x xg x e =,所以函数()y g x =与2y a =-的图像有两个不同的交点,因为1()xx g x e '-=, 则当1x <时,()0g x '>,则()g x 单调递增,当1x >时,()0g x '<,则()g x 单调递减, 所以当1x =时,()g x 取得最大值1(1)g e=,作出函数()g x 的图像如图所示, 由图像可知,102a e <-<,解得102a e -<<,所以实数a 的取值范围是1,02e ⎛⎫- ⎪⎝⎭. 故答案为:1,02e ⎛⎫- ⎪⎝⎭.16.若函数432111()(1)1432f x x m x mx =-+++在0x =和1x =时取极小值,则实数m 的取值范围是______ 【解析】432111()(1)1432f x x m x mx =-+++,()()32()(1)1f x x m x mx x x x m '=-++=-- 当0m =时,0x =时不是取得极小值,不合题意;当0m <时,()()(),0,0,x m f x f x '∈>单调递增,()()()0,1,0,x f x f x '∈<单调递减,0x =时不是取得极小值,不合题意;当1m =时,1x =时不是取得极小值,不合题意;当1m 时,()()()0,1,0,x f x f x '∈>单调递增,()()()1,,0,x m f x f x '∈<单调递减,1x =时不是取得极小值,不合题意;当()0,1m ∈时,()()(),0,0,x f x f x '∈-∞<单调递减,()()()0,,0,x m f x f x '∈>单调递增,()()(),1,0,x m f x f x '∈<单调递减, ()()()1,,0,x f x f x '∈+∞>单调递增,函数432111()(1)1432f x x m x mx =-+++在0x =和1x =时取极小值,符合题意. 所以实数m 的取值范围是0,1. 四、解答题17.已知1x =-,2x =是函数32()13x f x ax bx =-+++的两个极值点.(1)求()f x 的解析式;(2)记()()g x f x m =-,[24]x ∈-,,若函数()g x 有三个零点,求m 的取值范围. 【解析】(1)因为32()13x f x ax bx =-+++,所以2()2f x x ax b '=-++根据极值点定义,方程()0f x '=的两个根即为1x =-,2x =,2()2f x x ax b '=-++,代入1x =-,2x =,可得120440a b a b --+=⎧⎨-++=⎩,解之可得,122a b ⎧=⎪⎨⎪=⎩, 故有3211()2132f x x x x =-+++;(2)根据题意,3211()2132g x x x x m =-+++-,[2x ∈-,4],根据题意,可得方程32112132m x x x =-+++在区间[2-,4]内有三个实数根, 即函数3211()2132f x x x x =-+++与直线y m =在区间[2-,4]内有三个交点, 又因为2()2f x x x '=-++,则令()0f x '>,解得12x -<<;令()0f x '<,解得2x >或1x <-, 所以函数()f x 在[)2,1--,(]2,4上单调递减,在(1,2)-上单调递增; 又因为1(1)6f -=-, ()1323f =,5(2)3f -=, ()1343f =-, 函数图象如下所示:若使函数3211()2132f x x x x =-+++与直线y m =有三个交点,则需使1563m-<,即15,63m ⎛⎤∈- ⎥⎝⎦. 18.已知a 为实数,4x =时函数()2ln 12f x a x x x =+-的1个极值点.(1)求实数a 的值;(2)若直线y b =与函数()y f x =的图象有三个交点,求b 的取值范围.【解析】(1)∵函数()2ln 12f x a x x x =+-,∴()212af x x x=+-', ∵4x =是函数()2ln 12f x a x x x =+-的一个极值点,∴()40f '=,得81204a+-=,得16a =; (2)当16a =时,()216ln 12f x x x x =+-,()()()22416212x x f x x x x--'=+-=, 当()0f x '>时,可得4x >或者02x <<;当()0f x '<时,可得24x <<;∴函数()f x 的单调增区间为:()4,+∞,()0,2;函数()f x 的单调减区间为:()2,4;直线y b =与函数()y f x =的图象有且仅有3个交点,()432ln 232f =-,()216ln 220f =-, 由(2)知()f x 在2x =时取极大值,在4x =时取极小值,画出()f x 的图象:直线y b =与函数()y f x =的图象有且仅有3个交点, ∴直线y b =必须在直线32ln 232y和直线16ln 220y =-之间,∴()()42f b f <<,即32ln 23216ln 220b -<<-.19.已知函数()32f x x bx cx =++,()b c R ∈,(1)当1,1b c ==-时,求函数()f x 的单调区间;(2)设1x ,2x 是函数()f x 的两个极值点,当122x x -=时,求()1f 的最小值. 【解析】()1因为32()=+-f x x x x ,2()321,f x x x ∴=+-' 由'()0f x >,得1x <-或13x >,由'()0f x <,得113x -<<,所以函数的单调递增区间为(,1)-∞-和1(,)3+∞,单调递减区间为1(1,)3-()2由()'232f x x bx c =++,知1223b x x +=-,123cx x =,又122x x -=,所以22212121244()()4493b c x x x x x x -=+-=-=,即233b c =-,所以()22131111112()33244b f bc b b =++=+-=+-≥-,所以当32b =-时,94c =-,()22412430b c b c ∆=-=->,()1114f =-,故当32b =-,94c =-时,()1f 的最小值为114-.20.已知函数3218()(21)3()33f x x ax a x a a R =-+-+-∈.(1)若函数()f x 在2x =时取得极值,求实数a 的值;(2)若()0f x ≥对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.【解析】(1)2()=221f x x ax a '-+-,依题意有(2)=0f ',即44210a a -+-=, 解得:32a =,检验:当32a =时,2()=32f x x x '-+,所以()=(1)(2)f x x x '--, 此时函数()f x 在(1,2)单调递减,在(2,)+∞单调递增,满足在2x =时取得极值,综上32a =. (2)依题意()0f x ≥对任意[1,)x ∈+∞恒成立等价转化为min ()0f x ≥在[1,)x ∈+∞恒成立, 因为2()=221f x x ax a '-+-,令'()0f x =得:1221,1x a x =-=,①当211a -≤即1a ≤时,函数'()0f x ≥在[1,)+∞恒成立,则()f x 在[1,)+∞单调递增, 于是min ()(1)220f x f a ==-≥,解得:1a ≤,此时:1a ≤;②当211a ->即1a >时,函数()f x 在[1,21]a -单调递减,在[21,)a -+∞单调递增, 于是min ()(21)(1)220f x f a f a =-<=-<,不合题意,此时:a ∈∅综上所述:实数a 的取值范围是1a ≤.21.已知()()2122x f x ax ax x e =-++-,其中0a >,e 为自然对数的底数. (1)若2a =,求()f x 的单调区间;(2)若()f x 在1x =处取得极小值,求实数a 的取值范围.【解析】(1)当2a =时,()()22x f x x ax x e =-++-,()()()()22212x x x f x x e x e x e '=-+++-=--.令()0f x '=,可得1ln 2x =或21x =.由()0f x '>可得ln 2x <或1x >,由()0f x '<可得ln 21x <<.所以()f x 的单调递增区间为(),ln 2-∞,()1,+∞,单调递减区间为()ln 2,1.(2)()()()()21x x x f x ax a e x e x a e '=-+++-=--.令()0f x '=,可得1ln x a =或21x =.①若ln 1a <,即0a e <<时,当ln 1a x <<时,()0f x '<;当1x >时,()0f x '>,此时()f x 在1x =处取得极小值.②若ln 1a >时,即a e >时,当1x <时,()0f x '>;当1ln x a <<时,()0f x '<,此时()f x 在1x =处取得极大值.③当ln 1a =时,即a e =时,()0f x '≥恒成立,此时()f x 无极值.综上所述,实数a 的取值范围为()0,e .22.已知函数()()3232612f x ax a x x =-+++. (1)试讨论函数()f x 的单调区间;(2)当1a =时,求函数()f x 的极值;(3)若函数()f x 在1x =处取得极大值,求实数a 的取值范围.【解析】(1)()()()()23326321f x ax a x ax x '=-++=--,当0a =时,()()61f x x '=--,在(,1)-∞上,()0f x '>,()f x 单调递增,在(1,)+∞上,()0f x '<,()f x 单调递减,当0a ≠时,若0a >, ①21a <时,即2a >时,在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上()0f x '>,()f x 单调递增, 在2,1a ⎛⎫ ⎪⎝⎭上()0f x '<,()f x 单调递减, ②21a 时,即2a =时,在(,)-∞+∞上()0f x '≥,()f x 单调递增, ③21>a 时,即02a <<时,在2(,1),,a ⎛⎫-∞+∞ ⎪⎝⎭上()0f x '>,()f x 单调递增, 在21,a ⎛⎫ ⎪⎝⎭上()0f x '<,()f x 单调递减, 若0a <,21a <时,即0a <时,在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上()0f x '<,()f x 单调递减, 在2,1a ⎛⎫ ⎪⎝⎭上()0f x '>,()f x 单调递增. 综上所述,当0a =时,()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,当2a >时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递增,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递减, 当2a =时,()f x 在(,)-∞+∞上()f x 单调递增,当02a <<时,()f x 在2(,1),,a ⎛⎫-∞+∞ ⎪⎝⎭上()f x 单调递增,在21,a ⎛⎫ ⎪⎝⎭上单调递减, 当0a <时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递减,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递增. (2)当1a =时,329()612f x x x x =-++, ()()()223963323(21)f x x x x x x x '=-+=-+=--,在(,1),(2,)-∞+∞上,()0f x '>,()f x 单调递增,在()1,2上,()0f x '<,()f x 单调递减,所以()()712f x f ==极大值,()()23f x f ==极小值. (3)由题意可知,函数()f x 在1x =处取得极大值,当0a =时,()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 所以1x =处取得极大值,符合题意,当2a >时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递增,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递减, 所以1x =处取得极小值,不符合题意;当2a =时,()f x 在(,)-∞+∞上()f x 单调递增,没有极值,不合题意,当02a <<时,()f x 在2(,1),,a ⎛⎫-∞+∞ ⎪⎝⎭上()f x 单调递增,在21,a ⎛⎫ ⎪⎝⎭上单调递减, 所以1x =处取得极大值,符合题意,当0a <时,()f x 在2,,(1,)a ⎛⎫-∞+∞ ⎪⎝⎭上单调递减,在2,1a ⎛⎫ ⎪⎝⎭上()f x 单调递增. 所以1x =处取得极大值,符合题意,综上所述a 的取值范围为(,2)-∞.。
导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。
一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。
例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。
解析:22()ln ()22g x x f x e a x ex x x =-⇒=-+,令2ln ()2x h x x ex x=-+,'21ln ()22x h x x e x-=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ —注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。
所以21a e e=+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。
专治学霸不服——导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357A. (−∞,−1]∪[1,+∞)B. [−1,0]C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞)C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( )A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e ) B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( )高中数学资料共享群QQ 群号:734924357A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( ) A. 3f (ln2)>2f (ln3) B. 3f (ln2)=2f (ln3) C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞) C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( ) A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( )A. (0,π4) B. (0,π4] C. (0,π3) D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足 fʹ(x 1)=f (b )−f (a )b−a ,fʹ(x 2)=f (b )−f (a )b−a,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( )A. (0,12e ) B. (−∞,12e ) C. (12e ,+∞) D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1) 若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )高中数学资料共享群QQ 群号:734924357 A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( )A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. [−1,1]B. [−1,13]C. [−13,13]D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1) 时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x 2e x 1>x 1e x 2D. x 2e x 1<x 1e x 264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )高中数学资料共享群QQ群号:734924357A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( ) A. (−∞,0)B. (0,12e )C. (−∞,0)∪(12e ,+∞)D. (12e ,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数 f (x )=e x (x 3−3x +3)−ae x −x (x ≥−2),若不等式 f (x )≤0有解.则实数 a 的最小值为 ( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.高中数学资料共享群QQ群号:734924357所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].4. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],高中数学资料共享群QQ群号:734924357所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).22. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .28. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。
导数压轴题7大题型归类总结,逆袭140+一、导数单调性、极值、最值的直接应用涉及本单元的题目一般以选择题、填空题的形式考查导数的几何意义,定积分,定积分的几何意义,利用图象判断函数的极值点,利用导数研究函数的单调性、极值、最值等.1.利用导数研究函数的单调性(1)首先确定所研究函数的定义域,然后对函数进行求导,最后在定义域内根据f′(x)>0 ,则函数单调递增,f′(x)<0,则函数单调递减的原则确定函数的单调性.(2)利用导数确定函数的单调区间后,可以确定函数的图象的变化趋势.2.利用导数研究函数的极值、最值(1)对函数在定义域内进行求导,令f′(x)=0,解得满足条件的x i(i=1,2…),判断x=x i处左、右导函数的正负情况,若“左正右负”,则该点处存在极值且为极大值;若“左负右正”,则该点处存在极值且为极小值;若左、右符号相同,则该点处不存在极值.(2)利用导数判断函数y=f(x)的最值通常是在给定闭区间[a,b]内进行考查,利用导数先求出给定区间内存在的所有极值点x i(i=1,2…),并计算端点处的函数值,最后进行比较,取最大的为最大值;最小的为最小值,即max{f(a),f(b),f(x i)},min{f(a),f(b),f(x i)}.(3)注意函数单调性与极值、最值之间的联系.导数值为零的点的左、右两端的单调性对其极值情况的影响,单调性对函数最值的影响,都要注意结合函数的图象进行分析研究.(4)注意极值与最值之间的联系与区别,极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定.2.定积分及其应用(1)简单定积分的计算,能够把被积函数变为幂函数、正弦函数、余弦函数、指数函数与常数的和或差,利用定积分的性质把所求的定积分化为若干个定积分的和或差,然后分别用求导公式求出F(x),使得F′(x)=f(x),利用牛顿-莱布尼兹公式求出各个定积分的值,最后求得结果.(2)微积分基本定理的应用:能够根据给出的图象情况,建立简单的积分计算式子,求值计算.理解微积分基本定理的几何意义:曲线与轴围成的曲边多边形的面积,可以通过对该曲线表示的函数解析式在给定区间内求其积分而得到.其一般步骤是:画出图形,确定图形的范围,通过解方程组求出交点的横坐标,定出积分的上、下限;确定被积函数,特别是注意分清被积函数的上、下位置;写出平面图形面积的定积分的表达式;运用微积分基本定理计算定积分,求出平面图形的面积.(2017高考新课标Ⅱ,理11)若x=-2是函数f(x)=(x2+ax-l)e x-1的极值点,则f(x)的极小值为()A.-1B.-2e-3C.5e-3D.1【答案】A【解析】由题可得f′(x)=(2x+a)e x-1+(x2+ax-l)e x-1=[x2+(a+2)x+a-1]e x-1,因为f′(-2)=0,所以a=-1,f(x)=(x2-x-1)e x-1,故f′(x)=(x2+x-2)e x-1,令f′(x)>0,解得x<-2或x>1,所以f(x)在(-∞,-2),(1,+∞)上单调递增,在(-2,1)上单调递减,所以f(x)的极小值为f(1)=(1-1-1)e1-1=-1,故选A.【名师点睛】(1)可导函数y=f(x)在点x0处取得极值的充要条件是f ′(x0)=0,且在x0左侧与右侧f ′(x)的符号不同;(2)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在某区间上单调增或减的函数没有极值.(2015高考新课标Ⅰ,理12)设函数f(x)=e x(2x-1)-ax+a ,其中a<1,若存在唯一的整数x0,使得f(x0)<0,则a的取值范围是()B.C.D..(2016高考新课标II,理16)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线y=ln(x+1)的切线,则b=______.(2016高考新课标III,理15)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,−3)处的切线方程是______.二、交点与根的分布三、不等式证明(一)做差证明不等式(二)变形构造函数证明不等式(三)替换构造不等式证明不等式四、不等式恒成立求字母范围(一)恒成立之最值的直接应用(二)恒成立之分离参数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用六、导数应用题七、导数与三角函数的结合补充练习题:6.(2018,全国1)7.(2018,,全国2)8.(2018,全国3)。
2022年高考导数压轴题单变量与双变量不等式恒成立、能成立问题【原件版】一、单变量不等式恒成立、能成立问题题型一 证明不等式成立1、已知函数()xf x e ax =+.(a R ∈)(1)若0a <,求函数()f x 的单调区间;(2)若3a =,证明:当0x >时,()231f x x x >++恒成立.2、已知()ln 1f x x x =+,2()1g x x mx =-+-.(1)对一切实数()0,x ∈+∞,2()()f x g x ≥,求实数m 的取值范围; (2)求证:任意()0,x ∈+∞,12ln x x e ex>-.3、已知函数()xe f x x=.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-.4、已知函数1()ln ()f x a x a R x=+∈. (1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.题型2 根据恒(能)成立求参数范围 类型1 根据恒成立求参数范围 1、已知函数2()(21)ln f x ax a x x =-++. (1)当1a =时,求()f x 的单调区间与极值; (2)若()0f x <恒成立,求a 的取值范围.2、已知函数()()()e e 0xf x a x a =-≠.(1)讨论()f x 的单调性:(2)若()1f x x >+对[)2,x ∈+∞恒成立,求a 的取值范围.3、已知()2sin xf x e x x =-+,()3122sin 3g x x x x m =-++.(1)求()f x 的单调区间;(2)若0x ≥时,()()f x g x ≥恒成立,求m 的取值范围.4、已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间;(2)若不等式()2ln ax f x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.5、已知函数1()ln f x a x x =-,()a g x x x=+,其中a ∈R . (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()()g x f x >对于任意的[1,e]x ∈恒成立,求实数a 的取值范围.类型2 根据能成立求参数范围 1、已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.2、已知函数22()ln f x ax x bx c =--在1x =处取得极值3c -,其中,,a b c 为常数. (1)试确定,a b 的值;(2)讨论函数()f x 的单调区间;(3)若对任意0x >,不等式2()2f x c ≥有解,求c 的取值范围.3、已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.4、已知函数()()()2122ln 2f x x a x a x a =-++∈R . (1)若曲线()y f x =在点()()1,1f 处的切线方程为2y x b =+,求2+a b 的值; (2)若0a >,讨论函数()f x 的单调性;(3)设函数()()2g x a x =-+,若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,求实数a 的取值范围.5、已知函数()ln bf x x a x x=-+,a ,b ∈R . (1)若a >0,b >0,且1是函数()f x 的极值点,求12a b+的最小值; (2)若b =a +1,且存在0x ∈[1e,1],使0()0f x <成立,求实数a 的取值范围.6、已知函数1()ln f x a x x=+(a R ∈且0a ≠). (1)若1a =,求函数()f x 的极值;(2)若存在(]00,x e ∈,使得()00f x <成立,求实数a 的取值范围.二、双变量不等式恒成立、能成立问题1、已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.2、已知函数1()ln ,()2xf x x xg x m ⎛⎫=+=- ⎪⎝⎭, (1)先证明单调性,再求函数()f x 在[]1,2上的最小值;(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,求实数m 的取值范围.3、已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.4、已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,求实数a 的取值范围.5、已知函数21()(1)ln 2f x x a x a x =-++. (1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.6、设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.7、已知函数f (x )=x -1-a ln x (a <0). (1)讨论函数f (x )的单调性; (2)当0<x 1<x 2≤1时,都有f (x 1)−f(x 2)x 1−x 2<4x1x 2,求实数a 的取值范围.8、已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.9、已知函数()13ln 144f x x x x=-+- (1)求函数()f x 的单调区间; (2)设()224gx x bx =-+-,若对任意()[]120,2,1,2x x ∈∈,不等式()()12f x g x ≥恒成立,求实数b的取值范围.10、已知函数321()1()32x a f x x ax a R +=-++∈. (1)若3x =是函数()f x 的一个极值点,求a 的值; (2)当2a <时,1x ∀,2[0x ∈,2],122|()()|3f x f x -恒成立,求a 的取值范围.11、已知函数2()3()f x lnx ax x a R =+-∈.(1)若函数()f x 在点(1,f (1))处的切线方程为2()y bx b R =-∈,求a ,b 的值及()f x 的极值; (2)若1a =,对1x ∀,2[1x ∈,2],当12x x <时,不等式1221()()m mf x f x x x ->-恒成立,求实数m 的取值范围.2022年高考导数压轴题单变量与双变量不等式恒成立、能成立问题【详细解析版】一、单变量不等式恒成立、能成立问题题型一 证明不等式成立1、已知函数()xf x e ax =+.(a R ∈)(1)若0a <,求函数()f x 的单调区间;(2)若3a =,证明:当0x >时,()231f x x x >++恒成立.【答案】(1)在()(),ln a -∞-上单调递减,在()()ln ,a -+∞上单调递增;(2)证明见解析.【分析】(1)求导可得()'f x 解析式,令()0f x '=,解得ln()x a =-,分别讨论()(),ln x a ∈-∞-和()()ln ,a -+∞时,()'f x 的正负,可得()f x 的单调区间.(2)令()22()(+3+1)=e 1x g x f x x x x =---,可得()2x g x e x '=-,再令()e 2x h x x =-,利用导数求得()h x 的单调区间和最值,即可得()0g x '>恒成立,可得()g x 的单调性和最值,得证.【解析】(1)()xf x e a '=+,当0a <时,令()0f x '=,解得ln()x a =-. 当x 变化时,()f x ',()f x 的变化情况如下表:所以0a <时,f x ,ln a -∞-ln ,a -+∞.(2)证明:令()22()(+3+1)=e 1x g x f x x x x =---,则()2xg x e x '=-.令()e 2xh x x =-,则()2x h x e '=-,当0ln2x <<时,()0h x '<,()h x 单调递减, 当ln2x >时,()0h x '>,()h x 单调递增;所以()()ln2ln2e 2ln222ln20h x h ≥=-=->,即()0g x '>恒成立.所以()g x 在()0,∞+上单调递增,所以()()01010g x g >=--=,所以2e 10x x -->,即当0x >时,()231f x x x >++恒成立.3、已知函数()xe f x x=.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-.【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析.【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x>-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【解析】(1)2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<;当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值. (2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -', 当40e x <<时,()0h x '>;当4e x >时,()0h x '<, ()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减, ()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.4、已知函数1()ln ()f x a x a R x=+∈. (1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【解析】(1)函数1()ln =+f x a x x的定义域是(0,)+∞, 2211()a ax f x x x x-'=-=. 当0a 时,2110,0ax ax x --<<,则()0f x '<,则函数()f x 在(0,)+∞上单调递减,即函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+. 当0a >时,令()0f x '<,得10x a <<;令()0f x '>,得1x a>;故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.当11a,即1a 时,函数()f x 在区间[1,2]上单调递增, 故函数()f x 在区间[1,2]上的最小值为(1)1f =;当12a,即102a <时,函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+;当112a <<,即112a <<时,函数()f x 在11,a ⎡⎫⎪⎢⎣⎭上单调递减,在1,2a ⎛⎤ ⎥⎝⎦上单调递增,此时函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭. 综上,当12a时,函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+; 当112a <<时,函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭;当1a 时,函数()f x 在区间[1,2]上的最小值为(1)1f =.(2)当1a =时,1()ln f x x x=+, 要证cos ()x e x f x x +<,即证1cos ln x e xx x x++<,因为0x >,所以两边同时乘x ,得ln 1cos x x x e x +<+, 即证ln cos 1x x x e x <+-.当01x <时,ln 0x x ,而cos 11cos11cos10x e x +->+-=>,所以ln cos 1xx x e x <+-成立,即cos ()x e xf x x+<成立.当1x >时,令()cos ln 1(1)xh x e x x x x =+-->,则()sin ln 1xh x e x x '=---.设()sin ln 1(1)xg x e x x x =--->,,则因为1()cos xg x e x x'=--. 因为1x >,所以1()cos 110xg x e x e x'=-->-->, 所以当1x >时,()g x 单调递增,所以()sin110g x e >-->,即()0h x '>,所以()h x 在(1,)+∞上单调递增,所以()cos110h x e >+->,即cos ()x e xf x x +<成立.综上,对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.题型2 根据恒(能)成立求参数范围 类型1 根据恒成立求参数范围 1、已知函数2()(21)ln f x ax a x x =-++. (1)当1a =时,求()f x 的单调区间与极值; (2)若()0f x <恒成立,求a 的取值范围.【答案】(1)单调递增区间为10,2⎛⎫ ⎪⎝⎭,(1,)+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,极小值(1)2f =-(2)(1,0]-【分析】(1)由题可求导函数,利用导数求出函数的单调区间,进而再求出极值即可;(2)分情况讨论,利用导数研究函数的单调性和极值即可求解.【解析】(1)当1a =时,函数2()3ln =-+f x x x x ,定义域为(0,)+∞,()21231(21)(1)23x x x x f x x x x x-+--'=-+==. 当()0f x '>时,102x <<或1x >;当()0f x '<时,112x <<,所以函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,(1,)+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,所以当12x =时,函数()f x 取得极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,当1x =时,函数()f x 取得极小值(1)2f =-. (2)()1(21)(1)2(21)ax x f x ax a x x--'=-++=. ①当0a >时,2()(21)ln f x ax a x x =-++,(0,)x ∈+∞, 令2(21)0ax a x -+>,解得12x a>+,则当01(2,)x a∈++∞时,200(21)0ax a x -+>,且0ln ln 20x >>,所以函数2()(21)ln 0f x ax a x x =-++>恒成立,不符合题意,舍去;②当0a ≤时,令()0f x '>,解得01x <<;令()0f x '<,解得1x >, 则函数()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, 所以函数()f x 在1x =处取得极大值,也是最大值,要使得()0f x <恒成立,则只需(1)(21)0f a a =-+<,解得1a >-,故10a -<≤. 综上,a 的取值范围是(1,0]-.2、已知函数()()()e e 0xf x a x a =-≠.(1)讨论()f x 的单调性:(2)若()1f x x >+对[)2,x ∈+∞恒成立,求a 的取值范围. 【答案】(1)答案不唯一,具体见解析(2)23,e 2e ⎛⎫+∞ ⎪-⎝⎭【分析】(1)求导得()()e e xf x a '=-,在分0a >,0a <两种情况讨论求解即可;(2)根据题意将问题转化为1e e x x a x+>-对[)2,x ∈+∞恒成立,进而构造函数,求解函数最值即可. 【解析】(1)函数的定义域为R ,()()e e xf x a '=-.当0a >时,令()0f x '>,得1x >,令()0f x '<,得1x <; 当0a <时,令()0f x '>,得1x <,令()0f x '<,得1x >.综上,当0a >时,()f x 在(),1-∞上单调递减,在()1,+∞上单调递增; 当0a <时,()f x 在(),1-∞上单调递增,在()1,+∞上单调递减.(2)由(1)知,函数()e e xg x x =-在[)2,+∞上单调递增,则()()()2e e 20g x g ≥=->,所以()1f x x >+对[)2,x ∈+∞恒成立等价于1e e x x a x+>-对[)2,x ∈+∞恒成立. 设函数()()12e e x x h x x x +=≥-,则()()2e e e e xx x h x x -=-', 设()()e e 2x p x x x =-≥,则()()1e 0xp x x =-+<',则()p x 在[)2,+∞上单调递减, 所以()()22e 2e 0p x p ≤=-<,则()0h x '<,所以()h x 在[)2,+∞上单调递减, 所以()()2max 32e 2eh x h ==-; 故23e 2e a >-,即a 的取值范围是23,e 2e ⎛⎫+∞ ⎪-⎝⎭.3、已知()2sin xf x e x x =-+,()3122sin 3g x x x x m =-++.(1)求()f x 的单调区间;(2)若0x ≥时,()()f x g x ≥恒成立,求m 的取值范围. 【答案】(1)在(,0)-∞单调递减,在(0,)+∞单调递增.(2)m ≤1【分析】(1)先对函数进行求导,再进行分类讨论判断导数值的正负,即可得到答案;(2)将问题转化为31sin 3x m e x x --在0x 恒成立,令31()sin (0)3x u x e x x x =--,再利用(1)的结论进行求解,即可得到答案;【解析】(1)()2sin x f x e x x =-+,∴()2cos x f x e x '=-+,①当0x 时,2(2,1],1cos 1x e x -∈---,∴2cos 0x e x -+在0x 恒成立,∴()0f x ',∴()f x 在(,0)-∞单调递减,②当0x >时,令()2cos x g x e x =-+,则()sin 0x g x e x '=->在0x >恒成立,∴()g x 在(0,)+∞单调递增,且(0)0g =,∴()0>g x 在(0,)+∞恒成立,即()0f x '>在(0,)+∞恒成立,∴()f x 在(0,)+∞单调递增,综上所述:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(2)当0x 时,312sin 22sin 3xe x xx x x m -+-++ 31sin 3x m e x x ∴--在0x 恒成立,令31()sin (0)3x u x e x x x =--,2()cos x x u x e x '=--,令2()cos (0)x v x e x x x =--,由(1)得()()2sin '01xv x e x x v ='-+=,()v x ∴在(0,)+∞单调递增,且(0)0v =,()0u x '∴在0x ≥恒成立,()u x ∴在[0,)+∞单调递增,(0)1u =,∴min ()(0)1m u x u ≤==.4、已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间; (2)若不等式()2ln axf x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.【答案】(1)单调递减区间为ln 2,2⎛⎫-∞-⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭;(2)1,e ⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)由题设()1axf x ae '=-,根据导数的几何意义有()01f '=,可求a ,即()221xf x e'=-,进而可求()f x 的单调区间;(2)由题意,函数不等式恒成立可转化为(]0,x e ∈上ln 1ln 1ax ax xe e x --≥恒成立, 构造函数()ln 1x g x x -=,应用导数研究其单调性可得ln xa x ≥在(]0,x e ∈上恒成立, 即在(]0,x e ∈上max ln ()xa x≥即可求a 的取值范围. 【解析】(1)()1axf x ae '=-,则()011f a '=-=,即2a =.所以()221xf x e '=-,令0fx ,得ln 22x =-. 当ln 22x <-时,0f x ;当ln 22x >-时,0f x .故()f x 的单调递减区间为ln 2,2⎛⎫-∞-⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭. (2)由()2ln axf x e x ax ≥-,即()2ln 1axax x ex -≥-,有1ln 1ax a x e x x --≥,故仅需ln 1ln 1ax axxe e x --≥即可. 设函数()ln 1x g x x -=,则ln 1ln 1ax axxe e x --≥等价于()()axg e g x ≥. 因为()22ln x g x x-'=, 所以当(]0,x e ∈时,0g x,则()g x 在(]0,e 上单调递增, 所以当(]0,x e ∈时,()()axg e g x ≥等价于当(]0,x e ∈时,()()ax g e g x ≥,ax e x ≥,即ln xa x≥恒成立. 设函数()ln x h x x =,(]0,x e ∈,则()21ln 0xh x x -'=≥, 即()h x 在(]0,x e ∈递增,所以()()max 1h x h e e==,则1a e ≥即可,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.5、已知函数1()ln f x a x x =-,()a g x x x=+,其中a ∈R . (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()()g x f x >对于任意的[1,e]x ∈恒成立,求实数a 的取值范围.【答案】(1)230x y --=;(2)2e 12e 1a +-<<-.【分析】(1)求导,利用导数的几何意义求出切线斜率,进而可得切线方程;(2)将不等式1ln a x a x x x+>-对于任意的[1,e]x ∈恒成立转化为任意的[1,e]x ∈, 1ln 0a x a x x+-+>恒成立,设1()ln a h x x a x x +=-+,[1,e]x ∈,求导,分11a +≤,1e a +≥,11e a <+<讨论,通过求min ()0h x >求实数a 的取值范围.【解析】(1)由题意知:1()ln f x x x=-,(1)1f =-,即切点为(1,1)-, ()211f x x x '=+,()12f '=, 故切线方程为:12(1)y x +=-,即230x y --=. (2)由题意知:不等式1ln a x a x x x+>-对于任意的[1,e]x ∈恒成立, 任意的[1,e]x ∈,1ln 0a x a x x+-+>恒成立, 设1()ln a h x x a x x+=-+,[1,e]x ∈, 2(1)(1)()x x a h x x +--'=,[1,e]x ∈①当11a +≤,即0a ≤时,()0h x '≥,()h x 为增函数, min ()(1)20h x h a ∴==+>,即2a >-,20a -<≤满足.②当1e a +≥,即e 1a ≥-时,()0h x '≤,()h x 为减函数,min1()(e)e e 0a h x h a +∴==-+>,即22e 1e 1a +<-,2e 1e 1e 1a +∴-≤<-满足③当11e a <+<时,即0e 1a <<-时,当[1,1]x a ∈+时,()0h x '≤,当(1,e]x a ∈+时,()0h x '≥,∴只需min ()(1)2ln(1)0h x h a a a a =+=+-+>,即min 2()ln(1)10h x a a a ⎡⎤=-++>⎢⎥⎣⎦,设2()ln(1)1F a a a=-++,其中0e 1a <<-, 2()ln(1)1F a a a =-++为递减函数,2()(e 1)0e 1F a F ∴>-=>-, 故0e 1a <<-,min ()(1)2ln(1)0h x h a a a a =+=+-+>,综上:2e 12e 1a +-<<-.类型2 根据能成立求参数范围 1、已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围. 【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞ ⎪-⎝⎭【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果【解析】(1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-= 令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增; 当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+, 所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)存在[]01x e ∈,,使得()()00f x g x <成立, 等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x < 由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值, 由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为()()12ln 1h a a a a +=+-+ 因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭2、已知函数22()ln f x ax x bx c =--在1x =处取得极值3c -,其中,,a b c 为常数. (1)试确定,a b 的值;(2)讨论函数()f x 的单调区间;(3)若对任意0x >,不等式2()2f x c ≥有解,求c 的取值范围.【答案】(1)6a =-;3b =-;(2)单调递增区间为()0,1,()f x 的单调递减区间为()1,+∞;(3)3,12⎡⎤-⎢⎥⎣⎦【分析】(1)由()13f c =-,求得b ,由()10f '=,得a ;(2)将(1)中得到的,a b 的值代入函数表达式,进而得到()12ln f x x x '=-.判定导数的正负区间,进而得到单调区间;(3)由(2)知,得到函数()f x 最大值,根据不等式有解得到c 的不等式求解即得.【解析】(1)由题意知()13f c =-,因此3b c c --=-,从而3b =-.由题意求导得()10f '=,因此20a b -=,解得6a =-; (2)由(1)知()12ln f x x x '=-.令()0f x '=,解得1x =.因此()f x ()1,+∞; (3)由(2)知,()f x 在1x =处取得极大值()13f c =-,此极大值也是最最值.要使()22f x c ≥(0x >)有解,只需232c c -≥.即2230c c +-≤,从而()()2310c c +-≤.解得312c -≤≤. 所以c 的取值范围为3,12⎡⎤-⎢⎥⎣⎦.3、已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.【答案】(1)极小值()00f =,无极大值;(2)e 2a ≥-.【分析】(1)利用导数求得()f x 的单调区间,由此求得()f x 的极值.(2)将()2f x x ≤转化为2e 10x x ax ---≤,采用分离常数法,通过构造函数,结合导数求得a 的取值范围.【解析】(1)当1a =时,()e 1x f x x =--,所以()e 1xf x '=-,当0x <时()0f x '<;当0x >时()0f x '>,所以()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 所以当0x =时函数()f x 有极小值()00f =,无极大值.(2)因为()2f x x ≤在[)0,+∞上有解,所以2e 10x x ax ---≤在[)0,+∞上有解, 当0x =时,不等式成立,此时R a ∈, 当0x >时e 1x a x x x ⎛⎫≥-+ ⎪⎝⎭在()0,∞+上有解,令()e 1x g x x x x ⎛⎫=-+ ⎪⎝⎭,则()()()()22221e 1e 11xx x x x x g x x x x ⎡⎤--+-⎛⎫-⎣⎦'=-= ⎪⎝⎭, 由(1)知0x >时()()00f x f >=,即()e 10xx -+>,当01x <<时()0g x '<;当1x >时()0g x '>, 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以当1x =时,()min e 2g x =-, 所以e 2a ≥-,综上可知,实数a 的取值范围是e 2a ≥-.4、已知函数()()()2122ln 2f x x a x a x a =-++∈R . (1)若曲线()y f x =在点()()1,1f 处的切线方程为2y x b =+,求2+a b 的值; (2)若0a >,讨论函数()f x 的单调性;(3)设函数()()2g x a x =-+,若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,求实数a 的取值范围. 【答案】(1)210a b +=-;(2)答案见解析;(3)2,ln 2⎛⎫-+∞ ⎪⎝⎭. 【分析】(1)利用导数的几何意义可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可求得2+a b 的值; (2)求得()()()2xf x x x a --=',分2a =、02a <<、2a >三种情况讨论,分析导数的符号变换,由此可得出函数()f x 的增区间和减区间;(3)分析可知不等式222ln x a x>-在[],4e 上有解,利用导数求出函数()22ln x h x x=-在区间[],4e 上的最小值,由此可求得实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()()22af x x a x'=-++. 由题意得()()11222f a b =-+=+,()()11222f a a '=-++=, 即32212a b a ⎧--=+⎪⎨⎪-=⎩,解得3132a b =⎧⎪⎨=-⎪⎩,因此,210a b +=-;(2)()()()()2222x a x ax x a f x xx-++--'==.当2a =时,()0f x '≥且()f x '不恒为0,所以,()f x 在()0,∞+上单调递增; 当02a <<时,由()0f x '>,得0x a <<或2x >,由()0f x '<,得2a x <<, 此时,()f x 在()0,a 和()2,+∞上单调递增,在(),2a 上单调递减; 当2a >时,由()0f x '>,得02x <<或x a >,由()0f x '<,得2x a <<, 此时,()f x 在()0,2和(),a +∞上单调递增,在()2,a 上单调递减. 综上所述,当2a =时,()f x 在()0,∞+上单调递增;当02a <<时,()f x 在()0,a 和()2,+∞上单调递增,在(),2a 上单调递减; 当2a >时,()f x 在()0,2和(),a +∞上单调递增,在()2,a 上单调递减;(3)若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,则当[],4x e ∈时,212ln 02x a x +>有解.当[],4x e ∈时,ln 1x ≥,即222ln x a x >-有解,令()22ln x h x x=-,[],4x e ∈,则()min 2a h x >.()()()()2212ln 2ln 02ln 2ln x x x x x h x x x --'=-=<,所以,()h x 在[],4e 上单调递减,所以,()()min 44ln 2h x h ==-, 所以,42ln 2a >-,即2ln 2a >-,因此,实数a 的取值范围是2,ln 2⎛⎫-+∞ ⎪⎝⎭.5、已知函数()ln bf x x a x x=-+,a ,b ∈R . (1)若a >0,b >0,且1是函数()f x 的极值点,求12a b+的最小值; (2)若b =a +1,且存在0x ∈[1e,1],使0()0f x <成立,求实数a 的取值范围.【答案】(1)最小值3+;(2)()211e a e e +<-+.【分析】(1)由1是函数()f x 的极值点得1a b +=,对12a b+用基本不等式中“1的代换”求最值; (2)把“存在0x ∈[1e ,1],使0()0f x <成立”转化为函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0, 利用导数讨论单调性,找到最小值,解出a 的范围即可.【解析】(1)()21,a bf x x x =--'因为1是函数()f x 的极值点, 所以()110,f a b '=--=即 1.a b +=此时()()()()222222111x b x b x x b a b x ax b f x x x x x x----+--=--=='= 当()01,0;x f x '<<<当()1,0,x f x >'>所以函数()f x 在1x =处取极小值.所以()121223b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭因为0,0a b >>,所以2b a a b +≥=(当且仅当21a b =-=时等号成立) 此时12a b+有最小值3+. (2)当1b a =+时,()1ln a f x x a x x+=-+, 存在01,1x e ⎡⎤∈⎢⎥⎣⎦使()00f x <成立,即函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0. ()()()221111(0)x x a a a f x x x x x ⎡⎤+-'++⎣⎦=-==>①当11,a +≥即0a ≥时,() f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()11120f a a =++=+<,所以2a <-,不符,舍去;②当11,a e+≤即11ae 时,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增, 所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()111110,f a e a e a e e e e⎛⎫=+++=+++< ⎪⎝⎭所以()211e a e e +<-+,又11,a e≤-所以()211e a e e +<-+;(3)当111a e <+<时,即110a e-<<时,()f x 在1,1a e ⎡⎤+⎢⎥⎣⎦上单调递增,在[]1,1a +上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()()111ln 11ln 12f a a a a a a ⎡⎤+=++-+=-++⎣⎦ 因为111,a e<+<所以()1ln 10,a -<+<所以()11ln 12a <-+<所以()1ln 12a a a a ⎡⎤>-+>⎣⎦,所以()()11ln 12220,f a a a a ⎡⎤+=-++>+>⎣⎦不符,舍去,综上可得,a 的取值范围是()211e a e e +<-+.6、已知函数1()ln f x a x x=+(a R ∈且0a ≠). (1)若1a =,求函数()f x 的极值;(2)若存在(]00,x e ∈,使得()00f x <成立,求实数a 的取值范围. 【答案】(1)()1f x =极小值,()f x 无极大值;(2)()1,,e e ⎛⎫-∞-+∞ ⎪⎝⎭.【分析】(1)求出导函数21()x f x x -'=,利用导数与函数单调性之间的关系判断函数的单调性, 由单调性求出函数的极值.(2)由题意只需函数()f x 在(]0,e 上的最小值小于0,求出2211()a ax f x x x x-'=-+=, 讨论a 的取值范围,利用导数判断函数的单调性,进而求出函数的最小值,即可.【解析】(1)依题意,当1a =时,1()ln f x x x=+,定义域为()0,∞+, 22111()x f x x x x-'=-+=,令()0f x '=,得1x =. 当()0,1x ∈时,()0f x '<,()f x 为减函数; 当()1,x ∈+∞时,()0f x '>,()f x 为增函数, 所以()()11f x f ==极小值,()f x 无极大值.(2)若存在(]00,x e ∈,使得()00f x <成立,即函数()f x 在(]0,e 上的最小值小于0.2211()a ax f x x x x -'=-+=,且0a ≠.令()0f x '=,得1x a=, 当10a<,即0a <时,()0f x '<恒成立,函数()f x 在(]0,e 单调递减,()min 1()f x f e a e==+, 由10a e +<,得1a e <-,即1,a e ⎛⎫∈-∞- ⎪⎝⎭;当1e a ≥,即10a e<≤时,()0f x '≤恒成立, 函数()f x 在(]0,e 上单调递减,()min 1()0f x f e a e==+>,不合题意; 当10e a<<,即1a e >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 为减函数;2、已知函数1()ln ,()2xf x x xg x m ⎛⎫=+=- ⎪⎝⎭,(1)先证明单调性,再求函数()f x 在[]1,2上的最小值;(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,求实数m 的取值范围. 【答案】(1)证明见解析(导数或定义),1;(2)34m ≥-.【分析】(1)求出()f x 的定义域和()'f x ,由()0f x '>可得()f x 的单调性及在[]1,2上的最小值;(2)转化为1min 2min ()()f x g x ≥,由(1)知min ()1f x =,利用单调性可得()g x 在[]0,2上单调性求得最值,解不等式可得答案.【解析】(1)函数()f x 的定义域为0x >,所以11()10xf x x x+'=+=>, 所以()f x 在()0,∞+上单调递增,所以()f x 在[]1,2上的最小值为min ()(1)1f x f ==.(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,则1min 2min ()()f x g x ≥,由(1)知min()1f x =,因为1()2⎛⎫= ⎪⎝⎭xg x 是减函数, 所以1()2xg x m ⎛⎫=- ⎪⎝⎭在[]0,2上单调递减,所以2min 1()(2)4g x g m ==-,所以114m ≥-,即34m ≥-. 所以实数m 的取值范围为3,4⎡⎫-+∞⎪⎢⎣⎭.3、已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥.【分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值; 借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【解析】(1)证明:()()23x xe ef x -='-令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增 令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减 (2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+ 令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-< ∴()()max 513g t g == ∴()2533a a e e -+≥,52a ae e -+≥, 令(),0ae m m =>,∴152m m +≥,∴2m ≥∴2a e ≥,∴ln 2a ≥4、已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,求实数a 的取值范围. 【答案】(Ⅰ)证明见解析;(Ⅱ)1a -.【分析】(1)将0a =代入,只需证明()2202xf x x -+>成立即可,然后构造函数, 利用导数讨论单调区间及最小值,利用最值证明即可; (2)若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,只需使()()min 1min 2f x g x 在1(0,1]x ∈,2[0,1]x ∈上恒成立, 然后分别讨论函数()f x 与()g x 的最小值,利用最值分析求解.【解析】(Ⅰ)当0a =时,要证222()22ln 2022x x f x x x x x -+=--+≥,只需证ln 02xx -<, 令()ln (0)2x h x x x =->,则112()22xh x x x-'=-=当(0,2)x ∈时,()0,()h x h x '>单调递增;当(2,)x ∈+∞时,()0,()h x h x '<单调递减;所以max ()(2)ln 210h x h ==-<,()(2)0h x h ≤<故ln 02x x -<,所以2()22x f x x >-. (Ⅱ)问题等价于1(0,1]x ∀∈,2[0,1]x ∃∈,()()12minmin f x g x由232()3g x x x =-得2()22g x x x '=-, 由2()220g x x x '=-得01x ,所以在[0,1]上,()g x 是增函数,故min ()(0)0g x g ==.()f x 定义域为(0,)+∞,而()()()()()22121221122x a x a x ax f x a x a x x x⎡⎤++-++-⎣⎦=++-=='. 当2a -时,()0f x '<恒成立,()f x 在(0,1]上是减函数,所以min ()(1)2(1)01f x f a a ==+⇒-,不成立; 当2a >-时,由()0f x '<,得102x a <<+;由()0f x '>,得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭单调递减,在1,2a ⎛⎫+∞⎪+⎝⎭单调递减. 若112a >+,即21a -<<-时,()f x 在(0,1]是减函数, 所以min ()(1)2(1)01f x f a a ==+⇒-,不成立; 若1012a <+,即1a -时,()f x 在12x a =+处取得最小值min 11()1ln(2)22f x f a a a ⎛⎫==++- ⎪++⎝⎭, 令1()1ln(2)(1)2h a a a a =++--+, 则22113()02(2)(2)a h a a a a +'=+=>+++在[1,)-+∞上恒成立, 所以()h a 在[1,)-+∞是增函数且min ()(1)0h a h =-=, 此时min 1()02f x f a ⎛⎫=⎪+⎝⎭成立,满足条件. 综上所述,1a -.5、已知函数21()(1)ln 2f x x a x a x =-++. (1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.【答案】(1)答案见解析;(2)[6)-+∞.【分析】(1)求函数导数,分类讨论求()0f x '>的解即可求解;(2)由(1)知()f x 在[1.3]上单调递减,不妨设12x x <,从而把不等式中的绝对值去掉得:1122()()f x x f x x λλ+<+,构造函数()()(13)h x f x x x λ=+≤≤,把问题转化为恒成立问题,求得实数λ的取值范围.【解析】(1)(1)()()1(0)a x x a f x x a x x x----+'==> 当1a = 时,2(1)()0x f x x-=≥',所以()f x 在 (0,)+∞ 上单调递增;当1a > 时,由(1)()()0x x a f x x -'-=>解得(0,1)x ∈或(,)a +∞,所以()f x 在(0,1),(,)a +∞上单调递增; 当01a <<时,由(1)()()0x x a f x x-'-=>解得(0,)x a ∈或(1,)+∞,所以()f x 在(0,)a ,(1,)+∞ 上单调递增; 当0a ≤时,由(1)()()0x x a f x x-'-=>解得(1,)x ∈+∞,所以()f x 在(1,)+∞上单调递增.综上所述:当1a > 时,单调递增区间为(0,1)和(,)a +∞;当1a = 时,单调递增区间为(0,)+∞;当01a << 时,单调递增区间为(0,)a 和(1,)+∞; 当0a ≤ 时,单调递增区间为(1,)+∞(2)因为[3,5]a ∈,由(1)得,()f x 在[1,3]上单调递减,不妨设 12x x < , 由1212|()()|||f x f x x x λ-<-得1221()()f x f x x x λλ-<-, 即1122()()f x x f x x λλ+<+令()()(13)h x f x x x λ=+≤≤ ,()1ah x x a xλ'=+--+, 只需()0h x '≥恒成立,即1(1)1a x xλ≥--+([3,5]a ∈,[1,3]x ∈)恒成立,[]1,3x ∈ , 110x∴-≥max 1()1(5(1)111)a x x x x ∴=---++-即15(1)1x x λ≥--+([1,3]x ∈)恒成立, 即56()x x λ≥-+([1,3]x ∈)恒成立,因为56()6x x-+≤-x =,所以实数λ的取值范围是[6)-+∞.6、设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.【解析】(1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立.g ′(x )=3x 2-2x =x (3x -2), 令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1,∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1,∴当x ∈⎣⎡⎦⎤12,2时,f (x )=ax +x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立. 令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2, ∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0, h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0,当x ∈[1,2]时,h ′(x )≤0, ∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减, ∴h (x )max =h (1)=1,故a ≥1. ∴实数a 的取值范围是[1,+∞).7、已知函数f (x )=x -1-a ln x (a <0). (1)讨论函数f (x )的单调性; (2)当0<x 1<x 2≤1时,都有f (x 1)−f(x 2)x 1−x 2<4x1x 2,求实数a 的取值范围.【解析】(1)由题意知f ′(x )=1-a x =x -ax(x >0),因为x >0,a <0,所以f ′(x )>0, 所以f (x )在(0,+∞)上单调递增. (2)∵0<x 1<x 2≤1,∴x 1-x 2<0,∴原不等式等价于f (x 1)−f (x 2)>4(x 1−x 2)x 1x 2,即f (x 1)-f (x 2)>4x 2-4x 1,即f (x 1)+4x 1>f (x 2)+4x 2.设g (x )=f (x )+4x,x ∈(0,1],|f (x 1)-f (x 2)|<4⎪⎪⎪⎪1x 1-1x 2等价于g (x )在(0,1]上单调递减,所以g ′(x )≤0在(0,1]上恒成立⇔1-a x -4x 2=x 2-ax -4x 2≤0在(0,1]上恒成立⇔a ≥x -4x在(0,1]上恒成立,易知y =x -4x在(0,1]上单调递增,其最大值为-3.因为a <0,所以-3≤a <0,所以实数a 的取值范围为[-3,0).8、已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围. 【解析】(1)f ′(x )=(x−1)(x−a)x 2.。
导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
导数压轴题之隐零点问题专辑含答案纯word版本文介绍了导数压轴题中的隐零点问题,共有13道题目。
1.对于已知函数$f(x)=(aex-a-x)ex$,若$f(x)\geq 0$对于$x\in R$恒成立,求实数$a$的值,并证明$f(x)$存在唯一极大值点$x$,且$f(x)<f(x_0)$,其中$x_0$为$f(x)$的零点。
解答:1) 对于$f(x)=ex(aex-a-x)\geq 0$,因为$ex>0$,所以$aex-a-x\geq 0$恒成立,即$a(ex-1)\geq x$恒成立。
当$x=0$时,显然成立。
当$x>0$时,$ex-1>0$,故只需$a\geq 1$。
令$h(x)=aex-a-x$,则$h'(x)=aex-1$,在$(0,+\infty)$恒成立,故$h(x)$在$(0,+\infty)$递减。
又因为$h(0)=0$,故$a\geq1$。
当$x<0$时,$ex-1<0$,故只需$a\leq 1$。
令$g(x)=aex-a-x$,则$g'(x)=aex-1$,在$(-\infty,0)$恒成立,故$g(x)$在$(-\infty,0)$递增。
又因为$g(0)=0$,故$a\leq 1$。
综上,$a=1$。
2) 由(1)得$f(x)=ex(ex-x-1)$,故$f'(x)=ex(2ex-x-2)$。
令$h(x)=2ex-x-2$,则$h'(x)=2ex-1$,所以$h(x)$在$(-\infty,\ln)$单调递减,在$(\ln,+\infty)$单调递增,$h(0)=0$,$h(\ln)=2e^{\ln}-\ln-2=\ln2-10$,故$h(x)$在$(-2,\ln)$有唯一零点$x_0$。
设$x_0$为$f(x)$的零点,则$2ex_0-x_0-2=0$,从而$h(x)$有两个零点$x_0$和$-x_0-2$,所以$f(x)$在$(-\infty,x_0)$单调递增,在$(x_0,+\infty)$单调递减,在$(-2,x_0)$上单调递增,在$(-\infty,-2)$上单调递减,从而$f(x)$存在唯一的极大值点$x_0$。
数学——如何利用导数研究“恒成立”问题函数与不等式的恒成立问题是高中数学中的一个重点、难点问题,本文通过举例来说明解决此类问题的两种常用处理方法:①直接研究函数的形态;②分离参数法 .【问题】已知函数解法一:直接研究函数的形态由 f(x)≤ ax 恒成立,得到则 g(x)≥ 0 在 x ≥ 1/3 上恒成立,于是,问题也就转化成了研究二次函数 g(x)的形态问题 .①若 a = 0 , 则函数 g(x)= x - 1 , 在【1/3,+∞】上是增函数,故 g(x)min = g(1/3)= -2/3 < 0="" ,="">所以 a = 0 , 不符合题意;②若 a <> , 则函数 g(x)的图像是开口向下的抛物线,于是,g(x)在【1/3,+∞】上不可能恒为非负数,所以 a < 0="" ,="" 也不符合题意="">③若 a > 0 , 则函数 g(x)的图像是开口向上的抛物线,判别式△ = 1 - 4▪a▪(a-1)= -4a^2 + 4a + 1 .1、若△ ≤ 0 ,即 a ≥ (1+√2)/2 时 ,函数 g(x)在 R 上恒为非负数,所以 a ≥ (1+√2)/2 满足题意;2、若△ > 0 , 即 a <(1+√2)时="" ,="">g(x) ≥ 0 在x∈ [1/3 ,+∞)上恒成立.综上,实数a 的取值范围是 [3/5 ,+∞].解法二:分离参数法由f(x) ≤ ax 恒成立,得到所以实数a 的取值范围是 [3/5 ,+∞].解决恒成立问题的基本方法:1、直接研究函数的形态类似于解法一,其缺点在于有些问讨论比较复杂;2、分离参数法类似于解法二,其优点在于有时可以避开繁琐的讨论.当然,在解决问题时,要根据所给问题的特点,选择恰当的方法来解题,并在解题过程中,能够依据解题的进程合理地调整解题策略.。