【高考数学】导数的综合应用《导数与函数的零点问题》
- 格式:pdf
- 大小:428.43 KB
- 文档页数:8
高考数学总复习考点知识与题型专题讲解§3.7 利用导数研究函数的零点考试要求 函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现. 题型一 利用函数性质研究函数的零点 例1已知函数f (x )=x sin x -1.(1)讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π2,π2上的单调性;(2)证明:函数y =f (x )在[0,π]上有两个零点. (1)解 因为函数f (x )的定义域为R ,f (-x )=-x sin(-x )-1=f (x ),所以函数f (x )为偶函数,又f ′(x )=sin x +x cos x ,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0,所以函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,又函数f (x )为偶函数,所以f (x )在⎣⎢⎡⎭⎪⎫-π2,0上单调递减,综上,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,在⎣⎢⎡⎭⎪⎫-π2,0上单调递减.(2)证明 由(1)得,f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增,又f (0)=-1<0,f ⎝ ⎛⎭⎪⎫π2=π2-1>0,所以f (x )在⎣⎢⎡⎦⎥⎤0,π2内有且只有一个零点, 当x ∈⎝ ⎛⎦⎥⎤π2,π时,令g (x )=f ′(x )=sin x +x cos x ,则g ′(x )=2cos x -x sin x ,当x ∈⎝ ⎛⎦⎥⎤π2,π时,g ′(x )<0恒成立,即g (x )在⎝ ⎛⎦⎥⎤π2,π上单调递减,又g ⎝ ⎛⎭⎪⎫π2=1>0,g (π)=-π<0,则存在m ∈⎝ ⎛⎦⎥⎤π2,π,使得g (m )=0,且当x ∈⎝ ⎛⎭⎪⎫π2,m 时,g (x )>g (m )=0,即f ′(x )>0,则f (x )在⎝ ⎛⎭⎪⎫π2,m 上单调递增,当x ∈(m ,π]时,有g (x )<g (m )=0,即f ′(x )<0,则f (x )在(m ,π]上单调递减, 又f ⎝ ⎛⎭⎪⎫π2=π2-1>0,f (π)=-1<0,所以f (x )在(m ,π]上有且只有一个零点,综上,函数y =f (x )在[0,π]上有2个零点.思维升华利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.跟踪训练1(2023·芜湖模拟)已知函数f (x )=ax +(a -1)ln x +1x -2,a ∈R . (1)讨论f (x )的单调性;(2)若f (x )只有一个零点,求a 的取值范围.解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=a +a -1x -1x 2=(ax -1)(x +1)x 2,①若a ≤0,则f ′(x )<0,f (x )在(0,+∞)上单调递减;②若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )<0,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递减;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增.(2)若a ≤0,f ⎝ ⎛⎭⎪⎫1e =a e +1-a +e -2=⎝ ⎛⎭⎪⎫1e -1a +e -1>0,f (1)=a -1<0.结合函数的单调性可知,f (x )有唯一零点.若a >0,因为函数在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,所以要使得函数有唯一零点,只需f (x )min =f ⎝ ⎛⎭⎪⎫1a =1-(a -1)ln a +a -2=(a -1)(1-ln a )=0,解得a =1或a=e.综上,a ≤0或a =1或a =e. 题型二 数形结合法研究函数的零点例2(2023·郑州质检)已知函数f (x )=e x -ax +2a ,a ∈R . (1)讨论函数f (x )的单调性; (2)求函数f (x )的零点个数.解 (1)f (x )=e x -ax +2a ,定义域为R ,且f ′(x )=e x -a ,当a ≤0时,f ′(x )>0,则f (x )在R 上单调递增;当a >0时,令f ′(x )=0,则x =ln a , 当x <ln a 时,f ′(x )<0,f (x )单调递减;当x >ln a 时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≤0时,f (x )在R 上单调递增;当a >0时,f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. (2)令f (x )=0,得e x =a (x -2),当a =0时,e x =a (x -2)无解,∴f (x )无零点, 当a ≠0时,1a =x -2e x ,令φ(x )=x -2e x ,x ∈R ,∴φ′(x )=3-xe x , 当x ∈(-∞,3)时,φ′(x )>0;当x ∈(3,+∞)时,φ′(x )<0,∴φ(x )在(-∞,3)上单调递增,在(3,+∞)上单调递减,且φ(x )max =φ(3)=1e 3, 又x →+∞时,φ(x )→0, x →-∞时,φ(x )→-∞, ∴φ(x )的图象如图所示.当1a >1e 3,即0<a <e 3时,f (x )无零点; 当1a =1e 3,即a =e 3时,f (x )有一个零点; 当0<1a <1e 3,即a >e 3时,f (x )有两个零点; 当1a <0,即a <0时,f (x )有一个零点.综上所述,当a ∈[0,e 3)时,f (x )无零点;当a ∈(-∞,0)∪{e 3}时,f (x )有一个零点;当a ∈(e 3,+∞)时,f (x )有两个零点.思维升华含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.跟踪训练2(2023·长沙模拟)已知函数f (x )=a ln x -2x . (1)若a =2,求曲线y =f (x )在x =1处的切线方程; (2)若函数f (x )在(0,16]上有两个零点,求a 的取值范围.解 (1)当a =2时,f (x )=2ln x -2x ,该函数的定义域为(0,+∞),f ′(x )=2x -1x ,又f (1)=-2,f ′(1)=1,因此,曲线y =f (x )在x =1处的切线方程为y +2=x -1,即x -y -3=0. (2)①当a ≤0时,f ′(x )=a x -1x<0,则f (x )在(0,+∞)上单调递减,不符合题意; ②当a >0时,由f (x )=a ln x -2x =0可得2a =ln xx ,令g (x )=ln x x,其中x >0,则直线y =2a 与曲线y =g (x )的图象在(0,16]内有两个交点, g ′(x )=x x -ln x2x x =2-ln x2x x,令g ′(x )=0,可得x =e 2<16,列表如下,所以函数g (x )在区间(0,16]上的极大值为g (e 2)=2e ,且g (16)=ln 2,作出g (x )的图象如图所示.由图可知,当ln 2≤2a <2e ,即e<a ≤2ln 2时,直线y =2a 与曲线y =g (x )的图象在(0,16]内有两个交点, 即f (x )在(0,16]上有两个零点, 因此,实数a 的取值范围是⎝ ⎛⎦⎥⎤e ,2ln 2.题型三 构造函数法研究函数的零点例3(12分)(2022·新高考全国Ⅰ)已知函数f (x )=e x -ax 和g (x )=ax -ln x 有相同的最小值. (1)求a ;[切入点:求f (x ),g (x )的最小值](2)证明:存在直线y =b ,其与两条曲线y =f (x )和y =g (x )共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.[关键点:利用函数的性质与图象判断e x -x =b ,x -ln x =b 的解的个数及解的关系]思维升华涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.跟踪训练3(2021·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln 2)2x(x>0),令f′(x)>0,则0<x<2ln 2,此时函数f(x)单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,2ln 2,单调递减区间为⎝ ⎛⎭⎪⎫2ln 2,+∞.(2)曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln aa 有两个不同的解. 设g (x )=ln xx (x >0),则g ′(x )=1-ln x x 2(x >0), 令g ′(x )=1-ln xx 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增, 当x >e 时,g ′(x )<0,函数g (x )单调递减, 故g (x )max =g (e)=1e , 且当x >e 时,g (x )∈⎝ ⎛⎭⎪⎫0,1e ,又g (1)=0,所以0<ln a a <1e ,所以a >1且a ≠e , 即a 的取值范围为(1,e)∪(e ,+∞).课时精练1.(2023·济南质检)已知函数f (x )=ln x +axx ,a ∈R . (1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解 若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln xx 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e)=1e .(2)证明 f ′(x )=⎝ ⎛⎭⎪⎫1x +a x -ln x -ax x 2=1-ln x x 2, 由(1)知,f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0, 故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f ⎝ ⎛⎭⎪⎫1e =a -e<0,f (e)=a +1e >0, 且f (x )在(0,e)上单调递增,∴f (x )在(0,e)上有且只有一个零点,综上,f (x )有且只有一个零点.2.函数f (x )=ax +x ln x 在x =1处取得极值.(1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围.解(1)f(x)的定义域为(0,+∞),f′(x)=a+ln x+1,由f′(1)=a+1=0,解得a=-1.则f(x)=-x+x ln x,∴f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.∴f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,则函数y=f(x)与y=m+1的图象在(0,+∞)内有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,f(e)=0,作出f(x)图象如图.由图可知,当-1<m+1<0,即-2<m<-1时,y=f(x)与y=m+1的图象有两个不同的交点.因此实数m的取值范围是(-2,-1).3.(2022·河南名校联盟模拟)已知f(x)=(x-1)e x-13ax3+13a(a∈R).(1)若函数f(x)在[0,+∞)上单调递增,求a的取值范围;(2)当a≤e时,讨论函数f(x)零点的个数.解(1)f(x)=(x-1)e x-13ax3+13a,则f′(x)=x(e x-ax).∵函数f(x)在[0,+∞)上单调递增,∴f′(x)=x(e x-ax)≥0在[0,+∞)上恒成立,则e x-ax≥0,x≥0.当x=0时,则1≥0,即a∈R;当x>0时,则a≤e x x,构建g(x)=e xx(x>0),则g′(x)=(x-1)e xx2(x>0),令g′(x)>0,则x>1,令g′(x)<0,则0<x<1,∴g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(x)≥g(1)=e,∴a≤e,综上所述,a≤e.(2)f(x)=(x-1)e x-13ax3+13a=(x-1)⎣⎢⎡⎦⎥⎤e x-13a(x2+x+1),令f(x)=0,则x=1或e x-13a(x2+x+1)=0,对于e x-13a(x2+x+1)=0,即e xx2+x+1=13a,构建h(x)=e xx2+x+1,则h′(x)=x(x-1)e x (x2+x+1)2,令h′(x)>0,则x>1或x<0,令h′(x)<0,则0<x<1,∴h(x)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,h(0)=1,h(1)=e3且h(x)>0,当x∈R时恒成立,则当a=e时,e xx2+x+1=13a有两个根x1=1,x2<0;当0<a<e时,e xx2+x+1=13a只有一个根x3<0;当a≤0时,e xx2+x+1=13a无根.综上所述,当a≤0时,f(x)只有一个零点;当0<a≤e时,f(x)有两个零点.4.(2022·全国乙卷)已知函数f(x)=ax-1x-(a+1)ln x.(1)当a=0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a的取值范围.解(1)当a=0时,f(x)=-1x-ln x(x>0),所以f′(x)=1x2-1x=1-xx2.当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=-1.(2)由f (x )=ax -1x -(a +1)ln x (x >0),得f ′(x )=a +1x 2-a +1x =(ax -1)(x -1)x 2(x >0). 当a =0时,由(1)可知,f (x )不存在零点;当a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x -1a (x -1)x 2, 当x ∈(0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (1)=a -1<0,所以f (x )不存在零点;当a >0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x -1a (x -1)x 2, 当a =1时,f ′(x )≥0,f (x )在(0,+∞)上单调递增,因为f (1)=a -1=0, 所以函数f (x )恰有一个零点;当a >1时,0<1a <1,故f (x )在⎝ ⎛⎭⎪⎫0,1a ,(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减. 因为f (1)=a -1>0,所以f ⎝ ⎛⎭⎪⎫1a >f (1)>0, 当x →0+时,f (x )→-∞,由零点存在定理可知f (x )在⎝ ⎛⎭⎪⎫0,1a 上必有一个零点,所以a >1满足条件,当0<a <1时,1a >1,故f (x )在(0,1),⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减. 因为f (1)=a -1<0,所以f ⎝ ⎛⎭⎪⎫1a <f (1)<0,当x →+∞时,f (x )→+∞,由零点存在定理可知f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上必有一个零点,即0<a <1满足条件.综上,若f (x )恰有一个零点,则a 的取值范围为(0,+∞).。
导数与函数的零点一、知识梳理1.利用导数确定函数零点或方程根个数的常用方法(1)构建函数g(x)(要求g′(x)易求,g′(x)=0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.二、例题精讲 + 随堂练习考点一判断零点的个数【例1】(2019·青岛期中)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x-4ln x的零点个数.解(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},∴设f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0. ∴f(x)min=f(1)=-4a=-4,a =1.故函数f(x)的解析式为f(x)=x2-2x-3.(2)由(1)知g(x)=x2-2x-3x-4ln x=x-3x-4ln x-2,∴g(x)的定义域为(0,+∞),g′(x)=1+3x2-4x=(x-1)(x-3)x2,令g′(x)=0,得x1=1,x2=3.当x变化时,g′(x),g(x)的取值变化情况如下表:当0<x≤3时,g(x)≤g(1)=-4<0,当x>3时,g(e5)=e5-3e5-20-2>25-1-22=9>0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)仅有1个零点.【训练1】已知函数f(x)=e x-1,g(x)=x+x,其中e是自然对数的底数,e=2.718 28….(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.(1)证明由题意可得h(x)=f(x)-g(x)=e x-1-x-x,所以h(1)=e-3<0,h(2)=e2-3-2>0,所以h(1)h(2)<0,所以函数h(x)在区间(1,2)上有零点.(2)解由(1)可知h(x)=f(x)-g(x)=e x-1-x-x.由g(x)=x+x知x∈[0,+∞),而h(0)=0,则x=0为h(x)的一个零点.又h(x)在(1,2)内有零点,因此h(x)在[0,+∞)上至少有两个零点.h′(x)=e x-12x-12-1,记φ(x)=e x-12x-12-1,则φ′(x)=e x+14x-32.当x∈(0,+∞)时,φ′(x)>0,因此φ(x)在(0,+∞)上单调递增,易知φ(x)在(0,+∞)内至多有一个零点,即h(x)在[0,+∞)内至多有两个零点,则h(x)在[0,+∞)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.考点二已知函数零点个数求参数的取值范围【例2】函数f(x)=ax+x ln x在x=1处取得极值.(1)求f(x)的单调区间;(2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围.解(1)函数f(x)=ax+x ln x的定义域为(0,+∞).f′(x)=a+ln x+1,因为f′(1)=a+1=0,解得a=-1,当a=-1时,f(x)=-x+x ln x,即f′(x)=ln x,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象有两个不同的交点.由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,由题意得,m+1>-1,即m>-2,①当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0.当x>0且x→0时,f(x)→0;当x→+∞时,显然f(x)→+∞.由图象可知,m+1<0,即m<-1,②由①②可得-2<m<-1.所以m的取值范围是(-2,-1).【训练2】 已知函数f (x )=e x +ax -a (a ∈R 且a ≠0).(1)若f (0)=2,求实数a 的值,并求此时f (x )在[-2,1]上的最小值; (2)若函数f (x )不存在零点,求实数a 的取值范围. 解 (1)由题意知,函数f (x )的定义域为R , 又f (0)=1-a =2,得a =-1,所以f (x )=e x -x +1,求导得f ′(x )=e x -1.易知f (x )在[-2,0]上单调递减,在[0,1]上单调递增, 所以当x =0时,f (x )在[-2,1]上取得最小值2. (2)由(1)知f ′(x )=e x +a ,由于e x >0, ①当a >0时,f ′(x )>0,f (x )在R 上是增函数, 当x >1时,f (x )=e x +a (x -1)>0; 当x <0时,取x =-1a , 则f ⎝ ⎛⎭⎪⎫-1a <1+a ⎝ ⎛⎭⎪⎫-1a -1=-a <0. 所以函数f (x )存在零点,不满足题意. ②当a <0时,令f ′(x )=0,得x =ln(-a ). 在(-∞,ln(-a ))上,f ′(x )<0,f (x )单调递减, 在(ln (-a ),+∞)上,f ′(x )>0,f (x )单调递增, 所以当x =ln(-a )时,f (x )取最小值.函数f (x )不存在零点,等价于f (ln(-a ))=e ln(-a )+a ln(-a )-a =-2a +a ln(-a )>0,解得-e 2<a <0.综上所述,所求实数a 的取值范围是(-e 2,0).考点三 函数零点的综合问题 【例3】 设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -ax (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-ax 单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a .【训练3】 (2019·天津和平区调研)已知函数f (x )=ln x -x -m (m <-2,m 为常数). (1)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值;(2)设x 1,x 2是函数f (x )的两个零点,且x 1<x 2,证明:x 1·x 2<1.(1)解 f (x )=ln x -x -m (m <-2)的定义域为(0,+∞),且f ′(x )=1-xx =0, ∴x =1.当x ∈(0,1)时,f ′(x )>0,所以y =f (x )在(0,1)递增; 当x ∈(1,+∞)时,f ′(x )<0,所以y =f (x )在(1,+∞)上递减.且f ⎝ ⎛⎭⎪⎫1e =-1-1e -m ,f (e)=1-e -m , 因为f ⎝ ⎛⎭⎪⎫1e -f (e)=-2-1e +e>0, 函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 的最小值为1-e -m .(2)证明 由(1)知x 1,x 2满足ln x -x -m =0,且0<x 1<1,x 2>1, ln x 1-x 1-m =ln x 2-x 2-m =0, 由题意可知ln x 2-x 2=m <-2<ln 2-2. 又由(1)可知f (x )=ln x -x 在(1,+∞)递减,故x 2>2, 所以0<x 1,1x 2<1.则f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2=ln x 1-x 1-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =ln x 2-x 2-⎝ ⎛⎭⎪⎫ln 1x 2-1x 2 =-x 2+1x 2+2ln x 2.令g (x )=-x +1x +2ln x (x >2),则g ′(x )=-1-1x 2+2x =-x 2+2x -1x 2=-(x -1)2x 2≤0,当x >2时,g (x )是减函数,所以g (x )<g (2)=-32+ln 4.因32-ln 4=ln e 324>ln 2.56324=ln (1.62)324=ln 1.634=ln4.0964>ln 1=0,∴g (x )<0,所以当x >2时,f (x 1)-f ⎝ ⎛⎭⎪⎫1x 2<0, 即f (x 1)<f ⎝ ⎛⎭⎪⎫1x 2.因为0<x 1,1x 2<1,f (x )在(0,+∞)上单调递增. 所以x 1<1x 2,故x 1x 2<1.三、课后练习1.直线x =t 分别与函数f (x )=e x +1的图象及g (x )=2x -1的图象相交于点A 和点B ,则|AB |的最小值为________. 解析 由题意得,|AB |=|e t +1-(2t -1)| =|e t -2t +2|,令h (t )=e t -2t +2,则h ′(t )=e t -2,所以h (t )在(-∞,ln 2)上单调递减, 在(ln 2,+∞)上单调递增, 所以h (t )min =h (ln 2)=4-2ln 2>0, 即|AB |的最小值是4-2ln 2. 答案 4-2ln 22.若函数f (x )=ax -ae x +1(a <0)没有零点,则实数a 的取值范围为________.解析 f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x (a <0).当x <2时,f ′(x )<0;当x >2时,f ′(x )>0, ∴当x =2时,f (x )有极小值f (2)=ae 2+1.若使函数f (x )没有零点,当且仅当f (2)=ae 2+1>0, 解之得a >-e 2,因此-e 2<a <0. 答案 (-e 2,0)3.(2019·保定调研)已知函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103.(1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 解 (1)因为函数f (x )=a 6x 3-a 4x 2-ax -2的图象过点A ⎝ ⎛⎭⎪⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2, 所以f ′(x )=x 2-x -2. 由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56, f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点, 则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝ ⎛⎭⎪⎫-76,1312.4.已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f ′(x )的图象如图所示.当1<a <2时,函数y =f (x )-a 的零点的个数为( )A.1B.2C.3D.4解析 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4. 答案 D5.设函数f (x )=ln x +m x (m >0),讨论函数g (x )=f ′(x )-x3零点的个数. 解 函数g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设h (x )=-13x 3+x (x >0),所以h ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,h ′(x )>0,此时h (x )在(0,1)内单调递增;当x ∈(1,+∞)时,h ′(x )<0,此时h (x )在(1,+∞)内单调递减.所以当x =1时,h (x )取得极大值h (1)=-13+1=23. 令h (x )=0,即-13x 3+x =0,解得x =0(舍去)或x = 3. 作出函数h (x )的大致图象(如图),结合图象知:①当m >23时,函数y =m 和函数y =h (x )的图象无交点.②当m =23时,函数y =m 和函数y =h (x )的图象有且仅有一个交点. ③当0<m <23时,函数y =m 和函数y =h (x )的图象有两个交点.综上所述,当m >23时,函数g (x )无零点;当m =23时,函数g (x )有且仅有一个零点;当0<m <23时,函数g (x )有两个零点.6.(2018·江苏卷改编)若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和. 解 f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ), 当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, 则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝ ⎛⎭⎪⎫0,a 3上单调递减,在⎝ ⎛⎭⎪⎫a 3,+∞上单调递增,又f (x )在(0,+∞)内有且只有一个零点,所以f ⎝ ⎛⎭⎪⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减. 则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.7.已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 解 (1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx (x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0. 所以f (x )的单调递增区间为(0,1).(2)因为f ′(x )=a +1x (x >0),令f ′(x )=0,解得x =-1a ; 由f ′(x )>0,解得0<x <-1a ;由f ′(x )<0,解得-1a <x <e.从而f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,递减区间为⎝ ⎛⎭⎪⎫-1a ,e ,所以,f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-3.解得a =-e 2.(3)由(1)知当a =-1时,f (x )max =f (1)=-1, 所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2. 当0<x <e 时,g ′(x )>0; 当x >e 时,g ′(x )<0.从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减. 所以g (x )max =g (e)=1e +12<1, 所以,|f (x )|>g (x ),即|f (x )|>ln x x +12,所以,方程|f (x )|=ln x x +12没有实数根.。
高考重难突破一导数中的综合问题第3课时函数的零点问题零点问题的不同处理方法:利用零点存在定理的条件——函数图象在区间[s p上是连续不断的曲线,且⋅<0.(1)直接法:判断一个零点时,若函数为单调函数,取值证明⋅<0;(2)分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在定理,在每个单调区间内取值证明⋅<0.技法一巧用数形结合法例1(2023·广东惠州调研)若函数=e2−2+1−−恒有2个零点,求的取值范围.【解】由=0,得2−2+1−=e.令=e,则函数=e2−2+1−−恒有2个零点等价于函数=2−2+1−与=的图象有2个交点,′=1−e,令′>0,得<1,令′<0,得>1,所以在−∞,1上单调递增,在1,+∞上单调递减,所以max=1=1e.作出函数=2−2+1−=−12−与=的图象,如图所示,数形结合可得−<1e,解得>−1e,故的取值范围为−1e,+∞ .含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.【对点训练】已知函数=++ln ,∈.(1)若函数在=1处取得极值,求实数的值;解:因为函数在=1处取得极值,′=1−2+1=2+K2,所以′1=0,即12+1−12=0,解得=2,经检验,当=2时,函数在=1处取得极小值,所以实数的值为2.(2)讨论函数 =y −的零点个数.解: 因为 =y −,所以=1−2+1− , >0.令 =0 得 =−3+2+ ,令ℎ =−3+2+ , >0 ,则 ℎ′ =−32+2+1=− 3+1 −1 .当 ∈ 0,1 时, ℎ′ >0 , ℎ 在 0,1上单调递增;已知函数=++ln , ∈ .当∈1,+∞时,ℎ′<0,ℎ在1,+∞上单调递减.画出函数ℎ的草图,如图所示,易得ℎ≤ℎ1=1,并且图象无限靠近于原点,且当→+∞时,ℎ→−∞.故当>1时,函数无零点;当=1或≤0时,函数只有一个零点;当0< <1时,函数有两个零点.技法二巧用函数性质例2已知函数=2ln −2+在[1e,e]上有两个零点,求实数的取值范围.【解】由题意得′=2−2=−2r1K1,因为∈[1e,e],所以由′=0,得=1.当1e≤<1时,′>0,函数单调递增,当1<≤e时,′<0,函数单调递减,故当=1时,函数取得极大值,1=−1,又1e=−2−1e2,e=+2−e2,且1e>e,所以在[1e,e]上有两个零点需满足条件&1=−1>0,&1e=−2−1e2≤0,解得1<≤2+1e2.故实数的取值范围是1,2+1e2].利用函数性质研究函数的零点,主要是根据函数单调性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.【对点训练】已知函数=133−2++1.(1)若=3,求的单调区间;解:当=3时,=133−32−3−3,′=2−6−3.令′=0,解得=3−23或=3+23.当∈ −∞,3−2 3 ∪ 3+23,+∞ 时,′>0;当∈ 3−23,3+2 3 时,′<0.故的单调递增区间为−∞,3−2 3 ,3+23,+∞ ,单调递减区间为3−23,3+2 3 .(2)证明:只有一个零点.证明:由于2++1>0,所以=0等价于32+r1−3=0.设=32+r1−3,则′ =2 2+2r3 2+r12≥0,仅当=0时′ =0,所以在−∞,+∞上单调递增.故至多有一个零点,从而至多有一个零点.又3−1 =−62+2−13=−6 −162−16<0,3+1 =13>0,故有一个零点.综上,只有一个零点.已知函数=133− 2++1.技法三巧用构造函数例3设函数=122−En ,=2−+1,>0.(1)求函数的单调区间;【解】函数的定义域为0,+∞,>0,所以′=2−= r g K g,令′=0可得=,当0<<时,′<0,函数单调递减,当>时,′>0,函数单调递增.综上,函数的单调递增区间是s+∞ ,单调递减区间是0,g.设函数=122−En ,=2−+1,>0.(2)当>1时,讨论函数与图象的交点个数.【解】 令ℎ=−=−122−En++1,>0,则函数与图象交点的个数与ℎ的零点的个数相等,ℎ′=−K1K,令ℎ′>0,解得1<<,令ℎ′<0,解得0<<1或>,所以ℎ在0,1上单调递减,在1,上单调递增,在s+∞上单调递减,注意到ℎ1=+12>0,ℎ2+2=−En2+2<0,所以ℎ有唯一零点.综上,函数ℎ有唯一零点,即与图象的交点个数为1.(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而解得函数的零点问题.(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.【对点训练】(2021·高考全国卷甲改编)已知>0且≠1,函数=>0.若曲线=与直线=1有且仅有两个交点,求的取值范围.解:要使曲线=与直线=1有且仅有两个交点,即方程=1>0有两个不同的解,故方程ln=ln有两个不同的解.设=ln>0,则′=1−ln2>0.令′=1−ln2=0,解得=e.2024版高考总复习令′>0,则0<<e,此时函数单调递增.令′<0,则>e,此时函数单调递减.故max=e=1e,且当>e时,∈ 0,1e,又1=0,所以0<ln<1e,所以∈1,e∪e,+∞.综上,的取值范围为1,e∪e,+∞.。
导数与函数的零点问题解析在数学中,导数和函数的零点是非常重要的概念和问题。
导数可以描述函数的变化率,而函数的零点则表示函数在某一点上取值为零的情况。
在本文中,我们将对导数与函数的零点进行详细的解析和讨论。
一、导数的定义与作用导数是描述函数变化率的指标,可以用来衡量函数在某一点上的斜率或变化速度。
它定义为函数在某一点上的极限,即导数等于函数在该点处的切线斜率。
对于一个函数f(x),它在点x处的导数可以通过以下公式计算得出:f'(x) = lim(h→0) [f(x+h) - f(x)] / h导数的概念对于理解函数的性质和行为非常重要,它可以帮助我们分析函数的增减性、凸凹性以及局部极值等特征。
通过导数,我们可以得出函数在各个点的斜率,从而推断函数的曲线形状和趋势。
二、函数的零点与解析函数的零点是指函数在某个点上的取值为零的情况。
换句话说,函数的零点是使得函数等于零的自变量的值。
寻找函数的零点在数学和实际问题中都具有重要的意义。
为了找到函数的零点,我们可以利用导数的概念和性质进行分析。
根据导数的定义,我们知道当函数在某一点的导数为零时,函数在该点可能存在极值或拐点。
因此,我们可以采用导数为零的点作为起点,通过求解函数的导数方程来找到函数的零点。
具体而言,我们可以按照以下步骤来解析函数的零点问题:1. 找到函数的导数方程。
2. 求解导数方程,得到导数为零的所有解。
3. 使用解析工具或数值逼近法,确定解的精确值或近似值。
4. 检验解是否满足函数为零的条件。
通过以上步骤,我们可以较为准确地求解函数的零点,从而揭示函数的性质和特征。
函数的零点问题在数学、经济、物理等领域具有广泛的应用,如寻找方程的根、求解最优化问题等。
三、解析与数值求解的比较在解析函数的零点问题时,我们依赖于函数的导数和解析工具的应用。
通过解析方法可以获得函数零点的精确解,这对于研究函数的性质和行为非常重要。
然而,对于一些复杂的函数和方程,解析求解可能变得非常困难甚至不可能。
汇报人:日期:•导数概念•导数与函数零点•导数在几何中的应用目•导数在物理中的应用•导数的实际应用录导数概念函数f在x=x0点的导数是指当h趋近于0时,f(x0+h)与f(x0)之差与h的商的极限。
函数在某一点的导数描述了函数曲线在该点处的切线斜率。
导数的定义导数的几何意义函数在某一点的导数1 2 3若函数f和g可导,则其和、差、积、商的导数等于各自导数的和、差、积、商。
线性性质若函数f和g可导,则f乘以g的导数为f的导数乘以g加上g的导数乘以f。
乘积法则幂函数的导数是幂函数的系数与自然对数的和。
幂函数的导数导数的运算性质导数与函数零点函数图像与x轴交点的横坐标称为函数的零点。
零点函数的零点实际上就是对应方程的根。
函数的零点与方程的根函数在零点两侧的函数值异号。
零点存在的条件函数零点的定义利用导数找函数零点导数与单调性函数的导数可以判断函数的单调性,如果导数大于0,函数单调递增;如果导数小于0,函数单调递减。
找零点的步骤第一步,求函数的导数;第二步,根据导数判断函数的单调性;第三步,求出函数与x轴的交点,即函数的零点。
定理内容如果函数在区间[a,b]上连续,且在(a,b)上有导数,那么函数在(a,b)上至少有一个零点。
定理证明利用中值定理,当f'(x)在区间[a,b]上连续且在(a,b)上有导数时,存在ξ∈(a,b),使得f'(ξ)=0,从而证明了定理。
函数零点存在性定理导数在几何中的应用导数可以用来表示函数图像在某一点的切线斜率。
当函数在某一点处可导时,函数图像在该点的切线斜率等于该点的导数值。
切线斜率给定曲线上的一个点以及该点的切线斜率,可以得出该点的切线方程。
切线方程在几何上描述了曲线在这一点处的切线。
切线方程切线斜率与曲线在某点的切线方程导数小于0的区间,函数值单调递减;导数大于0的区间,函数值单调递增。
极值点是导数为0的点。
最值在一定区间内,函数值有最大值和最小值。
最值点可能是区间的端点或是极值点。
导数与函数的零点问题考点与题型归纳且f(1)=0,所以当x≥1时,f(x)≥XXX成立。
2)解:由题可知,x--f(x)=x3-2ex2+tx,即f(x)=x--x3+2ex2-tx。
设g(x)=f'(x)=1-2x+2ex-t,求g(x)的零点。
当x1时,g(x)>0.所以f(x)在[0,1)上是单调减函数,在(1,+∞)上是单调增函数。
又因为f(0)=0,当x→+∞时,f(x)→+∞,所以方程x--f(x)=x3-2ex2+tx的根有且只有一个。
给定函数$f(x)=e^x-ax^2$,其中$a>0$。
1) 当$a=1$时,证明对于$x\geq 0$,有$f(x)\geq 1$。
证明:当$a=1$时,$f(x)\geq 1$等价于$(x^2+1)e^{-x}-1\leq 0$。
设$g(x)=(x^2+1)e^{-x}-1$,则$g'(x)=-e^{-x}(x^2-2x+1)=-e^{-x}(x-1)^2$。
当$x\neq 1$时,$g'(x)<0$,因此$g(x)$在$(0,1)$上单调递增,在$(1,+\infty)$上单调递减。
而$g(0)=0$,因此对于$x\geq 0$,有$g(x)\leq 0$,即$f(x)\geq 1$。
2) 若$f(x)$在$(0,+\infty)$只有一个零点,求$a$。
设$h(x)=1-ax^2e^{-x}$。
由于$f(x)$在$(0,+\infty)$只有一个零点,因此$h(x)$在$(0,+\infty)$只有一个零点。
i) 当$a\leq \frac{1}{e}$时,$h(x)>0$,因此$h(x)$没有零点。
ii) 当$a>\frac{1}{e}$时,$h'(x)=a(x-2)e^{-x}$。
当$x\in(0,2)$时,$h'(x)0$。
因此$h(x)$在$(0,2)$上单调递减,在$(2,+\infty)$上单调递增。
讲义 学员姓名: 年 级: 课 时 数:3 辅导科目:数学 学科教师: 讲义 授课主题
导数的应用:零点问题 教学目标
学会解决零点问题 教学重难点 含参数的零点问题的解决方案
教学内容
知识回顾
已知函数),()(2
3R b a b ax x x f ∈++= (1)试讨论)(x f 的单调性;
的a 的取值范围也可以不是题目中给出的范围,注意这个恰字就说明了必须要进行最后的验证。
例.已知函数32()f x x ax b =++
(1)讨论()f x 的单调性;
(2)若b c a =-,当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22
-∞-⋃⋃+∞,求c 的
值。
1.已知函数f(x)=ax 3+bx 2−3x 在x =±1处取得极值.
(1)求函数f(x)的解析式;
(2)若过点A(1,m)(m ≠−2)可作曲线y =f(x)的三条切线,求实数m 的取值范围.
2.若函数f(x)=ax 3−bx +4,当x =2时,函数f(x)有极值−43.
(1)求函数的解析式;(2)求函数的极值;
(3)若关于x 的方程f(x)=k 有三个零点,求实数k 的取值范围.
3.已知函数2()1x f x e ax bx =---
(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[0,1]上的最小值;
(2)若(1)0f =,函数()f x 在区间(0,1)内有零点,求a 的取值范围。
1.设函数f(x)=−x 3+ax 2+bx +c 的导数满足,.。