三角函数公式(1)
- 格式:doc
- 大小:24.50 KB
- 文档页数:7
三角函数的化简公式三角函数是数学中常见的一类函数,主要包括正弦函数、余弦函数、正切函数等。
在数学的计算和分析中,经常需要对三角函数进行化简和简化,以便更方便地进行运算和推导。
本文将介绍三角函数的一些常见的化简公式。
1. 正弦函数的化简公式正弦函数是三角函数中最常见的函数之一,其常用的化简公式包括:(1)正弦函数的和差化简公式:sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)(2)正弦函数的倍角化简公式:sin(2x) = 2sin(x)cos(x)(3)正弦函数的平方化简公式:sin^2(x) = (1 - cos(2x))/2(4)正弦函数的和差的平方化简公式:sin^2(x ± y) = (1 - cos(2x ± 2y))/22. 余弦函数的化简公式余弦函数也是三角函数中常用的函数之一,其常用的化简公式包括:(1)余弦函数的和差化简公式:cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)(2)余弦函数的倍角化简公式:cos(2x) = cos^2(x) - sin^2(x)(3)余弦函数的平方化简公式:cos^2(x) = (1 + cos(2x))/2(4)余弦函数的和差的平方化简公式:cos^2(x ± y) = (1 + cos(2x ± 2y))/23. 正切函数的化简公式正切函数是三角函数中与正弦函数和余弦函数密切相关的函数,其常用的化简公式包括:(1)正切函数的和差化简公式:tan(x ± y) = (tan(x) ± tan(y))/(1 ∓ tan(x)tan(y))(2)正切函数的倍角化简公式:tan(2x) = (2tan(x))/(1 - tan^2(x))(3)正切函数的平方化简公式:tan^2(x) = (1 - cos(2x))/(1 + cos(2x))(4)正切函数的和差的平方化简公式:tan^2(x ± y) = ((1 - tan(x)tan(y))/(1 + tan(x)tan(y)))^2综上所述,三角函数的化简公式包括了正弦函数、余弦函数和正切函数的常见变换和简化形式。
数学常用三角函数公式全集三角函数是数学中的一类重要函数,求解各种三角形和角度问题时经常用到。
下面是一些常用的三角函数公式:1. 正弦函数 (sine function):正弦函数是由一个角的对边和斜边的比值定义的。
在直角三角形中,正弦函数可以表示为:sinθ = opposite / hypotenuse。
注意,θ 是角的度数。
2. 余弦函数 (cosine function):余弦函数是由一个角的邻边和斜边的比值定义的。
在直角三角形中,余弦函数可以表示为:cosθ = adjacent / hypotenuse。
3. 正切函数 (tangent function):正切函数是由一个角的对边和邻边的比值定义的。
在直角三角形中,正切函数可以表示为:tanθ = opposite / adjacent。
这些是最基本的三角函数,我们还可以通过它们来推导出其他与其相关的函数。
4. 余割函数 (cosecant function):余割函数是正弦函数的倒数:cscθ = 1 / sinθ。
5. 余切函数 (cotangent function):余切函数是正切函数的倒数:cotθ = 1 /tanθ。
6. 余举函数 (secant function):余举函数是余弦函数的倒数:secθ = 1 / cosθ。
这些函数可以帮助我们求解各种三角形和角度问题。
此外,它们还有一些性质和公式,可以进一步扩展我们的计算范围。
7.三角函数的周期性:正弦函数、余弦函数、正切函数都具有周期性,周期为360度或2π弧度。
即sin(θ+360n) = sinθ,cos(θ+360n) = cosθ,tan(θ+πn) = tanθ,其中 n 为整数。
8.三角函数的正负关系:正弦函数在0到180度范围内是正数,在180到360度范围内是负数;余弦函数在90到270度范围内是负数,在其他角度范围内是正数;正切函数在0到90度和180到270度范围内是正数,在90到180度和270到360度范围内是负数。
三角函数公式及推导
三角函数是数学中常见的函数之一,常用于解决与角度相关的问题。
三角函数公式是三角函数的基本知识点之一,掌握了三角函数公式,就能更好的理解和应用三角函数。
三角函数公式主要包括正弦、余弦、正切、余切、正割、余割等六种函数的公式。
这些公式可以通过三角函数的定义和性质来推导得到。
正弦函数公式:sin(a+b)=sinacosb+cosasinb
余弦函数公式:cos(a+b)=cosacosb-sinasinb
正切函数公式:tan(a+b)= (tana + tanb)/ (1 - tana*tanb) 余切函数公式:cot(a+b)= (cota*cotb - 1) / (cota + cotb) 正割函数公式:sec(a+b)= (secacosb+sinasectanb) / (secb) 余割函数公式:csc(a+b)= (cscacosc+b) / (sincosb)
以上公式都可以通过三角函数的定义和一些基本的代数运算及恒等式推导出来。
了解这些公式,可以在解决复杂三角函数问题时更灵活应用。
除了以上推导的公式,还有许多其它的三角函数公式,比如二倍角公式、半角公式、余角公式等等,这些公式也是非常重要的。
在学习三角函数时,需要重点掌握这些公式,才能更好地理解和运用三角函数。
三角函数公式的推导并不是一件容易的事情,需要对三角函数的性质和一些基本的代数运算非常熟练才能够推导得出。
因此,在学习
三角函数时,需要认真掌握每一个知识点,努力理解和应用三角函数公式,才能在以后的学习和工作中发挥更大的作用。
常用的三角函数公式大全三角函数是数学中的重要概念,它们在几何、物理和工程等领域中起到重要的作用。
本文将为你介绍一些常用的三角函数公式,这些公式包括正弦函数、余弦函数和正切函数的基本性质及其应用。
1. 正弦函数(Sine Function):正弦函数是指在直角三角形中,对于给定角度的正弦值定义的函数。
其公式为:sinθ = 对边 / 斜边其中,θ为角度,对边是指与角θ相对的那条边,斜边是指斜线,即斜边为直角三角形斜边的长度。
正弦函数的重要性质有:- 周期性:sin(θ + 2π) = sinθ- 奇偶性:sin(-θ) = -sinθ- 行为:-1 ≤ sinθ ≤ 12. 余弦函数(Cosine Function):余弦函数是指在直角三角形中,对于给定角度的余弦值定义的函数。
其公式为:cosθ = 邻边 / 斜边其中,θ为角度,邻边是指与角θ相邻的那条边。
余弦函数的重要性质有:- 周期性:cos(θ + 2π) = cosθ- 奇偶性:cos(-θ) = cosθ- 行为:-1 ≤ cosθ ≤ 13. 正切函数(Tangent Function):正切函数是指在直角三角形中,对于给定角度的正切值定义的函数。
其公式为:tanθ = 对边 / 邻边其中,θ为角度,邻边是指与角θ相邻的那条边。
正切函数的重要性质有:- 周期性:tan(θ + π) = tanθ- 奇偶性:tan(-θ) = -tanθ- 行为:正切函数在某些特殊角度处无定义,即在π/2、3π/2、5π/2等处无解。
4. 反三角函数(Inverse Trigonometric Functions):反三角函数是指通过三角函数的值计算对应角度的函数,常用的反三角函数有反正弦函数(arcsin)、反余弦函数(arccos)和反正切函数(arctan)。
他们的公式为:- 反正弦函数:θ = arcsin(x) ⇒ sin(θ) = x- 反余弦函数:θ = arccos(x) ⇒ cos(θ) = x- 反正切函数:θ = arctan(x) ⇒ tan(θ) = x这些反三角函数的应用十分广泛,可以帮助我们求解三角函数的角度。
三角函数的所有公式诱导公式(1)sinx=sin(x+2kπ)cosx=cos(x+2kπ)tanx=tan(x+2kπ)k∈Z原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)(2)sin(-x)=-sinxcos(-x)=cosxtan(-x)=-tanx(3)sin(π+x)=-sinxcos(π+x)=-cosxtan(π+x)=tanx(4)sin(π-x)=sinxcos(π-x)=-cosxtan(π-x)=-tanx原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosxcos(π/2+x)=-sinxtan(π/2+x)=-cotx(6)sin(π/2-x)=cosxcos(π/2-x)=sinxtan(π/2-x)=cotx(7)展开公式sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosxcos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinxtan(3π/2+x)=-cotxsin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosxcos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinxtan(3π/2-x)=cotx两角公式(1)两角和差公式sin(x+y)=sinxcosy+sinycosxsin(x-y)=sinxcosy-sinycosxcos(x+y)=cosxcosy-sinxsinycos(x-y)=cosxcosy+sinxsinytan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtanytan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany证明:单位圆作图(2)二倍角公式sin2x=2sinxcosx推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosxcos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²xtan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x三倍角公式sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³xcos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosxtan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)(3)半角公式sin²(x/2)=(1-cosx)/2cos²(x/2)=(1+cosx)/2tan²(x/2)=1-cosx/1+cosx推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)(4)辅助角公式asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]原理:配凑为sin²m+cos²m的形式,值域为[-√(a²+b²),√(a²+b²)] (5)两角推诱导例sin(π+x)=sinπcosx+sinxcosπ=-sinxcos(π+x)=cosπcosx-sinπsinx=-cosxsin(π-x)=sinπcosx-sinxcosπ=sinx cos(π-x)=cosπcosx+sinπsinx=-cosx。
三角函数公式三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。
其定义城为整个实数城。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷敖列的极限和微分方程的解,将其定义扩展到复数系。
公式分类锐角三角函数公式sin α=∠α的对边/ 斜边cos α=∠α的邻边/ 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式sin2A=2sinA•cosAcos2A=cosA;方-sinA方;A=1-2sin²A=2cos²A-1tan2A=(2tanA)÷(1-tan^2A)三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tanh(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }√表示根号,包括{……}中的内容诱导公式sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α)= sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(c osα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtan BtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[编辑本段]内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
三角函数公式与方法汇总三角函数是数学中的重要概念,广泛应用于几何学、物理学、工程学等领域。
掌握并熟练运用三角函数的公式与方法,对于解决各种问题具有重要意义。
下面是三角函数公式与方法的汇总。
一、基本公式及性质:1. 正弦函数(sin):正弦函数是一个周期函数,周期为2π,具有以下重要性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇函数:sin(-x) = -sin(x)- 辅助角公式:sin(A ± B) = sinA cosB ± cosA sinB- 和差化积公式:sin(A + B) + sin(A - B) = 2sinA cosB2. 余弦函数(cos):余弦函数也是一个周期函数,周期为2π,具有以下重要性质:-定义域:(-∞,+∞)-值域:[-1,1]- 偶函数:cos(-x) = cos(x)- 辅助角公式:cos(A ± B) = cosA cosB ∓ sinA sinB- 和差化积公式:cos(A + B) + cos(A - B) = 2cosA cosB正切函数也是一个周期函数,周期为π,具有以下重要性质:-定义域:(-∞,+∞)-值域:(-∞,+∞)- 奇函数:tan(-x) = -tan(x)- 辅助角公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)4. 余切函数(cot):余切函数是正切函数的倒数,具有以下重要性质:-定义域:(-∞,+∞)-值域:(-∞,+∞)- 奇函数:cot(-x) = -cot(x)- 辅助角公式:cot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)5. 正割函数(sec):正割函数是余弦函数的倒数,具有以下重要性质:-定义域:(-∞,-1]∪[1,+∞)-值域:(-∞,-1]∪[1,+∞)- 偶函数:sec(-x) = sec(x)- 辅助角公式:sec(A ± B) = (secA secB ± tanA tanB) / (secB ± secA)余割函数是正弦函数的倒数,具有以下重要性质:-定义域:(-∞,-1]∪[1,+∞)-值域:(-∞,-1]∪[1,+∞)- 奇函数:csc(-x) = -csc(x)- 辅助角公式:cs c(A ± B) = (cscA cscB ± cotA cotB) / (cscB ± cscA)二、三角函数的基本关系式:1. 余弦和正弦关系:cos^2(x) + sin^2(x) = 12. 正切与余切关系:tan(x) = 1 / cot(x)3. 正割与余割关系:sec(x) = 1 / cos(x)4. 余切与直角三角形关系:cot(x) = adjacent / opposite5.三角函数的平方关系:- cos^2(x) = (1 + cos(2x)) / 2- sin^2(x) = (1 - cos(2x)) / 2- tan^2(x) = (1 - cos(2x)) / (1 + cos(2x))三、三角函数的周期性及对称性:1. 正弦函数的周期性:sin(x + 2πn) = sin(x)2. 余弦函数的周期性:cos(x + 2πn) = cos(x)3. 正切函数的周期性:tan(x + πn) = tan(x)4.正割、余切、正切函数的奇偶性:- sec(-x) = sec(x)- csc(-x) = -csc(x)- tan(-x) = -tan(x)四、三角恒等式:1.基本恒等式:- sin^2(x) + cos^2(x) = 1- 1 + tan^2(x) = sec^2(x)- 1 + cot^2(x) = csc^2(x)2.余弦的恒等式:- cos(A + B) = cosA cosB - sinA sinB- cos(A - B) = cosA cosB + sinA sinB3.正弦的恒等式:- sin(A + B) = sinA cosB + cosA sinB- sin(A - B) = sinA cosB - cosA sinB4.正割与余割的恒等式:- sec(A + B) = secA secB + tanA tanB- sec(A - B) = secA secB - tanA tanB- csc(A + B) = cscA cscB - cotA cotB- csc(A - B) = cscA cscB + cotA cotB五、解三角函数方程的方法:1.化简法:根据已知条件和三角函数的性质,将复杂的三角方程化简为简单的形式,然后求解。
三角函数定理公式大全在数学中,三角函数是一组基本的函数,用于描述角度和边长之间的关系。
三角函数定理是描述三角形中角度和边长之间的关系的公式集合。
三角函数定理被广泛应用于三角形的计算和解决各种实际问题。
在本篇文章中,我们将介绍三角函数的各种定理公式。
1. 正弦定理(Sine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:a/sinA = b/sinB = c/sinC这意味着一个三角形的任意一边的长度与它所对应的角的正弦值成比例。
2. 余弦定理(Cosine Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:c² = a² + b² - 2ab*cosCb² = a² + c² - 2ac*cosBa² = b² + c² - 2bc*cosA这意味着一个三角形的任意一边的平方与其他两边的平方以及其夹角的余弦值有关。
3. 正切定理(Tangent Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:tanA = a/btanB = b/atanC = c/a这意味着一个三角形的任意一边的长度与其他两边的长度之间的比率与对应的角的正切值成比例。
4. 正割定理(Secant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:secA = 1/cosAsecB = 1/cosBsecC = 1/cosC这意味着一个三角形的任意一边的长度与对应的角的余弦值的倒数成比例。
5. 余割定理(Cosecant Rule):在任意三角形ABC中,边长a,b,c与对应的角A,B,C之间满足以下关系:cosecA = 1/sinAcosecB = 1/sinBcosecC = 1/sinC这意味着一个三角形的任意一边的长度与对应的角的正弦值的倒数成比例。
三角函数公式倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2S inA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=AA cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tan αcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotαcot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)2009-07-08 16:13公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a -b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理:[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h-----------------------三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负.3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。