第五章 结构动力学中常用的数值解法2
- 格式:pps
- 大小:2.38 MB
- 文档页数:11
结构动力学运动控制方程分段解析法1. 引言1.1 概述在工程领域中,结构动力学是研究结构物体受外界力或激励下的响应和振动特性的一门学科。
结构动力学广泛应用于建筑、桥梁、飞机等领域,对于确保结构物的安全性和稳定性具有重要意义。
随着现代科技的发展,运动控制方程在结构动力学中扮演着至关重要的角色。
通过运动控制方程,我们可以深入理解和预测结构物运动的规律,并为其设计合适的控制策略。
因此,研究和解析这些方程是结构动力学研究中必不可少的一部分。
1.2 文章结构本文将按照以下顺序进行组织和阐述:首先,在第二部分中,我们将简要介绍结构动力学的定义和原理,以及涉及到的动力学方程。
接着,在第三部分中,我们将详细介绍分段解析法作为一种常见的求解方法,包括其基本原理、算法步骤以及相关应用案例。
在第四部分中,我们将描述所设计实验的参数设置,并对实验结果进行分析和讨论。
最后,在第五部分中,我们将总结本文的主要结论,并展望未来研究方向。
1.3 目的本文的主要目的是通过对结构动力学和运动控制方程的介绍,以及分段解析法的应用案例分析,进一步加深对相关理论和方法的理解。
同时,希望为研究者提供一个清晰、系统的框架,以便于更好地理解和应用这些内容。
鉴于分段解析法在结构动力学领域具有广泛应用和良好效果,本文还旨在为读者提供相关方法在实际工程问题中的指导参考。
2. 结构动力学2.1 定义和原理结构动力学是一门研究物体在受到外部力作用下的运动规律的领域。
它主要涉及质点的运动学和动力学,以及刚体与弹性体的运动特性。
在结构工程中,结构动力学用于分析和预测建筑物、桥梁、飞机等工程结构在自然环境或人为作用下的响应情况,并提供相应的设计依据。
2.2 动力学方程结构动力学理论通过牛顿定律和哈密顿原理等基本原理推导出结构系统的运动方程。
这些方程描述了结构物各个部分之间的相互关系,并包括质量、刚度、阻尼等参数。
根据实际工程问题,可以选择合适的数值解法求解这些方程,从而得到结构系统随时间变化的运动状态。
结构动力学课后习题答案结构动力学是研究结构在动态载荷作用下的响应和行为的学科。
它涉及到结构的振动、冲击响应、疲劳分析等方面。
课后习题是帮助学生巩固课堂知识、深化理解的重要手段。
以下内容是结构动力学课后习题的一些可能答案,供参考:习题1:单自由度系统自由振动分析解答:对于一个单自由度系统,其自由振动的频率可以通过以下公式计算:\[ f = \frac{1}{2\pi}\sqrt{\frac{k}{m}} \]其中,\( k \) 是系统的刚度,\( m \) 是系统的总质量。
系统自由振动的振幅随着时间的衰减可以通过阻尼比 \( \zeta \) 来描述,其衰减系数 \( \delta \) 可以通过以下公式计算:\[ \delta = \sqrt{1-\zeta^2} \]习题2:单自由度系统受迫振动分析解答:当单自由度系统受到周期性外力作用时,其受迫振动的振幅可以通过以下公式计算:\[ A = \frac{F_0}{\sqrt{(k-m\omega^2)^2+(m\zeta\omega)^2}} \] 其中,\( F_0 \) 是外力的幅值,\( \omega \) 是外力的角频率。
习题3:多自由度系统模态分析解答:对于多自由度系统,可以通过求解特征值问题来得到系统的模态。
特征值问题通常表示为:\[ [K]{\phi} = \lambda[M]{\phi} \]其中,\( [K] \) 是系统的刚度矩阵,\( [M] \) 是系统的质量矩阵,\( \lambda \) 是特征值,\( {\phi} \) 是对应的特征向量,即模态形状。
习题4:结构的冲击响应分析解答:对于结构的冲击响应分析,通常需要考虑冲击载荷的持续时间和冲击能量。
结构的冲击响应可以通过冲击响应谱(IRF)来分析,它描述了结构在不同频率下的响应。
冲击响应分析的结果可以用来评估结构的耐冲击性能。
习题5:疲劳分析解答:结构的疲劳分析需要考虑结构在重复载荷作用下的寿命。
第五章结构动力学中常用的数值解法§5.1概述数值分析技术为结构的动态分析提供了有力的保障,为工程结构在各种复杂的动力学环境下的模拟和仿真提供了有效工具。
工程结构的动态分析主要包括两个方面:结构的动态特性分析和结构动态响应分析标准特征值问题和广义特征值问题1 雅可比方法(Jacobi)、2.Rayleigh-Ritz3.子空间迭代法4. 行列式搜索法行列式搜索法是求解大型特征值问题的另一种方法。
它的特点是综合运用多项式加速割线迭代,移轴向量逆迭代,Sturm序列的性质以及Gram-Schmidt正交化过程,直接计算所需要的任意特征对,通常是计算最小的部分特征值及相应的特征向量。
因此,它是一种计算部分特征对的特殊求解方法。
此方法具有计算速度快,精度高,灵活等优点。
nczos法Lanczos方法目前被认为是求解大型矩阵特征值问题的最有效方法,与子空间迭代法相比,其计算量要少得多。
响应数值分析:1.中心差分法2.Wilson -θ法3.Newmark 法响应求解方法的选择取决的因素有:载荷、结构、精度要求、非线性影响程度、方法的稳定性等。
综合各方面的因素,比较、权衡,才能判定所应采取的方法;有时为了互相验证,也可以同时采取两种以上的方法来处理动响应分析对于载荷,一般分为波传导载荷与惯性载荷。
对结构过于复杂的情况,宜采用直接积分法,结构较简单的情况可采用模态迭加法。
对精度要求较低的初步设计阶段,可采用取少数模态的模态迭加法。
对精度要求较高的最后设计阶段,宜采用直接积分法§ 5.2 求解系统固有频率主振型的近似解法1.邓柯利法:是邓柯利首先通过实验方法建立起来的一个计算公式,后来才得到完整的数学证明。
[]M []δ设质量矩阵,柔度矩阵为则有{}[][]{}0x M x δ+=1894年邓柯利:提出一种近似计算多圆盘轴横向振动基频的实用方法(偏小)设系统作j 阶主振动,则有:2()2{}{}sin {}j j j j x A t x ωωω=-=-代入得特征方程:21([][][]){}0jM I x δω-=有111112*********2222222112221101n njn njn n n n nn nn jm m m m m m m m m δδδωδδδωδδδω--=-假设质量矩阵为对角阵,展开得:1111222222(1)11()nn nn n n jjm m m δδδωω--++++=根据多项式的根与系数之间的关系21jω211ω22211nωω的n 个根,之和为1111222222212111nn nnnm m m δδδωωω+++=+++由于二阶频率往往比基频高得多22221111n ωωω111122222111nnn nn ii ii i m m m m δδδδω==+++=∑22211n ωω得忽略111nii iii mωδ==∑ii ii m ω表示仅有质量单独存在时(原多自由度系统变成单自由度系统)的固有频率1ii ii ii ii iik m m ωδ==设2222111221111nnωωωω=+++如例题1m 2m 3m 3331122339169768768768l l l EI EI EI δδδ===22113331117689EI m l m ωωδ===⨯222322176816EI m l m ωδ==⨯333211921634768768768l m l m l mEI EI EIω⨯=+=134.752EImlω=134.933EImlω=精确解2.雅可比(Jacobi )法求特征方程[]A 设为对称阵,[]{}{}A x x λ=12[][][][](,,)Tn S A S D diag d d d ==即可断定[D]的n 个对角元素就是[A]的n 个特征值,而[S]的第i 列就是[D]中第i 个对角元素所对应的特征向量,[S]为坐标变换矩阵。
结构动力学方程常用数值解法结构动力学方程常用数值解法对于一个实际结构,由有限元法离散化处理后,动力学方程可写为:...M x C x Kx F t++=()从数学角度看,这是一个常系数的二阶线性常微分方程组,计算数学领域,常微分数值算法常用的有两大类:-、针对一阶微分方程数值积分法发展的欧拉法,中点法,Rugge-kutta(龙格—库塔)方法。
二、直接基于二阶动力学方程发展的方法。
对结构动力学问题的数值求解,常用的有两大类:一是坐标变换法,它是对结构动力方程式,在求解之前,进行模态坐标变换,实际上就是一种Rize变换,即把原物理空间的动力方程变换到模态空间中去求解。
现在,普遍使用的方法是模态(振型)迭加法。
二是直接积分法,它是对结构动力方程式在求解之前不进行坐标变换,直接进行数值积分计算。
这种方法的特点是对时域进行离散,然后将该时刻的加速度和速度用相邻时刻的各位移线性组合而成。
通常又称为逐步积分法。
模态迭加方法,比较常用,但如下情况通常使用直接积分方法(即求解之前不进行模态分析)一、非比例阻尼,非线性情况。
二、有冲击作用,激起高频模态,力作用持续时间较短,模态迭加计算量太大。
一振型迭加法与Duhamel积分数值解按照有限单元法的一般规则, 经过边界条件的约束处理, 结构在强迫振动时多自由度体系的运动平衡方程可以表示为:&&& (1)++=MU CU KU R其中, M 是体系的质量矩阵, C 是体系的阻尼矩阵, 而K 则是刚度矩阵. R 为外荷载向量. U 、U &和U &&则分别是体系单元节点的位移、速度和加速度向量. 上述动力平衡方程实质上是与加速度有关的惯性力MU &&和与速度有关的阻尼力CU &及与位移有关的弹性力KU 在时刻t 与荷载的静力平衡。
振型叠加法是把多自由度体系的结构的整体振动分解为与振型次数相对应的单自由度体系, 求得各个单自由度体系的动力响应后, 再进行叠加得出结构整体响应. 振型叠加法原理是利用结构无阻尼自由振动的振型矩阵作为变换矩阵, 将结构动力方程式(1)式变换成一组非耦合的微分方程. 逐个地求解这些方程后, 将解叠加即可得到动力方程的解。
第五章 结构动力学中的常用数值方法5.1.结构动力响应的数值算法....0()(0)(0)M x c x kx F t x a x v ⎧++=⎪⎪=⎨⎪=⎪⎩当c 为比例阻尼、线性问题→模态叠加最常用。
但当C 无法解耦,有非线性存在,有冲击作用(激起高阶模态,此时模态叠加法中的高阶模态不可以忽略)。
此时就要借助数值积分方法,在结构动力学问题中,有一类方法称为直接积分方法最为常用。
所识直接是为模态叠加法相对照来说,模态叠加法在求解之前,需要对原方程进行解耦处理,而本节的方法不用作解耦的处理,直接求解。
(由以力学,工程中的力学问题为主要研究对象的学者发展出来的)中心差分法的解题步骤1. 初始值计算(1) 形成刚度矩阵K ,质量矩阵M 和阻尼矩阵C 。
(2) 定初始值0x ,.0x ,..0x 。
(3) 选择时间步长t ∆,使它满足cr t t ∆<∆,并计算 021()a t =∆,112a t=∆,202a a =(4) 计算...0011122t x x x x a a -∆=-+(5) 形成等效质量阵01M a M a C -=+ (6) 对M -阵进行三角分解T M LDL -= 2.对每一时间步长(1) 计算时刻t 的等效载荷21()()t t t tt Q Q K a M x a Ma C x --∆=---- (2) 求解t t +∆时刻的位移 ()Tt t t L D L x Q -+∆=(3) 如需要计算时刻t 的速度和加速度值,则.1()t t t t t x a x x +∆-∆=-..0(2)t t t t t t x a x x x +∆-∆=-+若系统的质量矩阵和阻尼矩阵为对角阵时,则计算可进一步简化。
纽马克法的解题步骤1.初始值计算(1)形成系统刚度矩阵K ,质量矩阵M 和阻尼矩阵C(2)定初始值0x ,.0x ,..0x 。
(3)选择时间步长t ∆,参数γ、σ。
5章 动力反应的数值计算如果激励[作用力或地面加速度]是随时间任意变化的,或者体系)(t p )(t ug 是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。
这类问题可以通过数值时间步进法对微分方程进行积分来处理。
在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。
然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。
尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。
5.1 时间步进法对于一个非弹性体系,欲采用数值求解的运动方程为或者 (5.1.1))(),(t p u u f u c um s =++ )(t u m g -初始条件)0(0u u =)0(0u u=假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。
然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。
作用力由一系列离散值给出:,)(t p )(i i t p p =0=i 到N 。
时间间隔(5.1.2)i i i t t t -=∆+1图5.1.1 时间步进法的记号通常取为常数,尽管这不是必需的。
在离散时刻(表示为时刻)确定反i t i 应,单自由度体系的位移、速度和加速度分别为、和。
假定这些值是已i u i ui u 知的,它们在时刻满足方程i(5.1.3)i i s i i p f u c um =++)( 式中,是时刻的抗力,对于线弹性体系,,但是如果体系i s f )(i i i s ku f =)(是非弹性的,那么它会依赖于时刻以前的位移时程和速度。
将要介绍的数值方i 法将使我们能够确定+1时刻满足方程(5.1.1)的反应、和,即在+1i 1+i u 1+i u1+i u i 时刻(5.1.4)1111)(++++=++i i s i i p f u c um 对于=0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,…所有瞬时所需的反应。
结构动力学:理论及其在地震工程中的应用45章动力反应的数值计算如果激励[作用力)(t p 或地面加速度)(t ug ]是随时间任意变化的,或者体系是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。
这类问题可以通过数值时间步进法对微分方程进行积分来处理。
在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。
然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。
尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。
5.1 时间步进法对于一个非弹性体系,欲采用数值求解的运动方程为)(),(t p u u f u c um s =++ 或者)(t u m g - (5.1.1) 初始条件)0(0u u = )0(0u u= 假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。
然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。
作用力)(t p 由一系列离散值给出: )(i i t p p = ,0=i到N 。
时间间隔i i i t t t -=∆+1 (5.1.2)图5.1.1 时间步进法的记号通常取为常数,尽管这不是必需的。
在离散时刻i t (表示为i 时刻)确定反应,单自由度体系的位移、速度和加速度分别为i u 、i u 和i u 。
假定这些值是已知的,它们在i 时刻满足方程i i s i i p f u c um =++)( (5.1.3)式中,i s f )(是i 时刻的抗力,对于线弹性体系,i i s ku f =)(,但是如果体系是非弹性的,那么它会依赖于i 时刻以前的位移时程和速度。
将要介绍的数值方法将使我们能够确定i +1时刻满足方程(5.1.1)的反应1+i u 、1+i u 和1+i u ,即在i +1时刻1111)(++++=++i i s i i p f u c um (5.1.4)对于i =0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,…所有瞬时所需的反应。
MIDAS/GEN六层框架结构的动力分析工程概况建筑地点:北京市建筑类型:六层综合办公楼,框架填充墙结构。
地质条件:根据设计任务说明地震设防烈度为8度。
柱网与层高:本办公楼采用柱距为6.0m的内廊式小柱网,边跨为6.0m,中间跨为2.7m,层高取首层为4.5m,其余为3.3m,如下图所示:框架结构的计算简图:典型结构单元梁、柱、板截面尺寸的初步确定:1、梁截面高度一般取梁跨度的1/12至1/8。
本方案取1/10×6000=600mm,截面宽度取600×1/2=250mm,可得梁的截面初步定为b×h=250*600。
楼板取120mm,楼梯板及休息平台板为100mm,平台梁250×400。
2、框架柱的截面尺寸梁截面尺寸(mm)柱截面尺寸(mm)结构动力学分析用来求解随时间变化的载荷对结构或部件的影响。
与静力分析不同,动力分析要考虑随时间变化的力载荷以及它对阻尼和惯性的影响。
MIDAS/GEN可进行的结构动力学分析类型包括:瞬态动力学分析、模态分析、屈曲分析、动力非线性分析等。
本文将以一个六层框架结构为例对结构进行模态分析和谱分析。
一.模态分析模态分析是用于确定设计中的结构或机器部件的振动特性。
它也是其他更详细动力学分析的起点,例如瞬态动力学分析和谱分析等,可以通过模态分析确定结构部件的频率响应和模态。
一般对于动力加载条件下的结构设计而言,频率响应和模态是非常重要的参数,即使在谱分析及瞬态分析中也是需要的。
1.1动力学求解方法MIDAS目前提供了三种特征值分析方法,它们是子空间法、分块Lanczos 算法、多重Ritz向量法。
本文采用子空间法进行计算求解。
子空间法使用迭代技术,求出结构的前r阶振型,它内部使用广义Jacobi迭代算法。
由于该方法采用了完整的质量和刚度矩阵,因此精度很高,但计算速度较慢,特别适用于大型对称特征值求解问题。
分块Lanczos法特征值求解器采用Lanczos算法,Lanczos算法是用一组向量来实现递归计算。
第5章结构动力学中的数值方法
6. 传递矩阵法
⏹❒场传递矩阵⏹如左图所示第n 跨距为L 的
均质梁分离体。
根据平衡条件有
L i i R
i L i R
i L i Q L M M Q Q 1
11
----==;⏹(6-1)⏹由弯矩
和剪力引起的转角Φ的变化为L n M L n V L n n L n n R n L
n V EI L M EI L ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=Φ-Φ-221⏹(6-2)
⏹由式(6-1)和(6-2)整理后得
R n n
R n n R n L
n V EI L M EI L 12112---⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+Φ=Φ⏹跨距内挠度Y 的改变为L n n L n n R n R n L n V EI L M EI L L Y Y ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+Φ=---32321
1⏹
右端的第一项是由转角引起的挠度,第二项是弯矩引起的挠度,第三项是剪切力引起的挠度。
假定梁的剪切
变形忽略不计,将式(6-1)弯矩和剪力代入上
式整理后有L n M L n V R n n R n n R n R n L n V EI L M EI L L Y Y 13121162----⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+Φ+=⏹(6-3)⏹(6-4)
⏹将式(6-1)、(6-3)、(6-4)写成矩阵形式,可得场传递矩阵
R n L n
V M Y L EI L EI L EI L EI L L V M Y 12321121621-⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧Φ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣
⎡---=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧Φ⏹记为R n n L
n 1-=Z
F Z ⏹这里,称为状态向量;F n 称为弹性元件传递矩阵,也称为场传递矩阵,简称场阵。
T
V M Y ][Φ=Z ⏹(6-5)
⏹❒点传递矩阵⏹如左图所示,惯性载荷
和,其中J 是质量m 对
于z 轴的转动惯量。
则有
L
n mY 2ω-L n J Φ-2ωL
n L n R
n L n R n L n J M
M mY V
V Φ-=-=--2121 ωω;⏹对于m 作刚体运动,有
R n
L n R n L
n Y Y =Φ=Φ ;⏹则可得点传递矩阵L
n R n V M Y m J V M Y ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧Φ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧Φ111122ωω
⏹
记为L n n R n Z P Z =⏹
式(6-6)中P n 称为点传递矩阵,简称点阵。
⏹由式(6-5)和式(6-6)可得
R n n R n 1-=Z H Z ⏹式中H n =P n F n ,称为第n 段的传递矩阵。
利用式(6-7)表示的递推公式,就能得到位于典型位置n 处的状态向量Z n R 与边界处的状态向量Z 0R 的关系
R n n R n Z H H H H Z 0121 -=⏹
在式(6-8)中,代入边界条件即可得到系统的频率方程。
求取频率后,依次将求得的频率代入点阵方程(6-
6),计算各状态向量,即可求得振型。
⏹(6-6)⏹(6-7)
⏹(6-8)
作业:5-1(6)
考试时间:2009年12月6日下午
13:45-15:45
地点:A32
实验模型
实验报告要求:
⏹模态识别三种方法:频域分解法(FDD)、随机子空间法
(SSI)、特征系统实现方法(ERA)要求选择其一查找文献建立完整的理论模型;
⏹通用软件仿真分析至少获得其前5阶振型;
⏹试验结果与仿真结构对比分析
⏹试验结论。