模式识别聚类分析
- 格式:ppt
- 大小:499.00 KB
- 文档页数:49
化学模式识别在生药鉴别和质量评价中的应用摘要:化学模式识别是物以类聚,同类或相似的样本间的距离较近,不同类的/样本间的距离应较远。
这样可以根据各样本的距离或距离的函数来判别、分类,并利用分类的结果预报未知。
模式识别属于多变量数值分析方法,它是借助于计算机来揭示隐含于事物内部规律的一种综合技术,是用现代分离分析检测方法对中药材或药品样本中的有机或无机的药用化学成分进行检测,用化学计量学方法关联检测数据阵,确定可用于样品质量控制的模式,通过上述方法进行整体分析、分类和描述来对未知样本进行识别。
关键词:聚类分析法、主成分分析法、矩阵、空间模式识别(pattern recognition)是一门用机器代替人对模式即所研究的事物进行分析、描述、判断和识别的技术[1]。
它的中心任务就是要识别出某个样本与哪一种模式(样本)相同或相近,即在一定的度量和观测的基础上把待识别的模式划分到各自模式类中。
模式识别可分为基于统计学习理论的统计模式识别和基于语法的结构模式识别。
统计模式识别是目前最成熟也是应用最广泛的方法。
以完成识别过程的方式而论,模式识别又可分为两个系统:有监督学习系统和无监督学习系统。
有监督学习系统要运用一组已知其类别的样本进行训练(或学习)获得分类准则,再利用准则来判别未知模式所属的类别。
常用的方法有: SIMCA法(Simple classification algorithm,简单分类法)、Bayes判别、逐步判别分析(Step-wise discriminate analysis, STEPDA)、人工神经网络(Artificial neural networks,ANN)等。
而无监督学习系统则是把模式划分到目前为止仍然未知的类别中,即无须预先知道模式所属的类别。
其中最重要的一种就是聚类分析的方法。
如系统聚类分析(Hierarchical clustering analysis)、模糊聚类分析(Fuzzy clustering analysis)等。
模式识别中的聚类分析方法聚类分析是一种常用的机器学习方法,用于将大量数据分为不同的类别或群组,并在其中寻找共性和差异性。
在模式识别中,聚类分析可以帮助我们理解数据集中不同对象之间的关系,以及它们之间的相似性和差异性。
本文将介绍聚类分析的基本概念、算法和应用,以及一些实用的技巧和方法,以帮助读者更好地理解和应用这一方法。
一、聚类分析的基础概念在聚类分析中,我们通常会面对一个数据点集合,其特征被表示为$n$个$d$维向量$x_{i}=(x_{i1},x_{i2},…,x_{id})$。
聚类分析的目标是将这些数据点划分为$k$个不同的类别或群组$G_{1},G_{2},…,G_{k}$,并使得同一类别中的数据点相似性较高,不同类别之间的相似性较低。
为了完成这个任务,我们需要先定义一个相似性度量方法,用于计算数据点之间的距离或相似度。
常用的相似性度量方法包括欧式距离、余弦相似度、Jaccard相似度和曼哈顿距离等,具体选择哪一种方法取决于我们要研究的数据类型和应用要求。
定义了相似性度量方法后,我们可以使用聚类算法将数据点分成不同的类别。
聚类算法的主要分类包括层次聚类和基于中心点的聚类。
层次聚类是通过自下而上的方法将数据点归属到不同的类别中,以便于构建聚类树或聚类图。
基于中心点的聚类则是通过不断地计算每个数据点离其所属类别的中心点的距离来更新类别簇,直到收敛为止。
通常来说,基于中心点的聚类算法更快且更易于应用,因此被广泛应用于实际问题中。
二、聚类分析的主要算法1. K-means 聚类算法K-means 聚类算法是一种基于中心点的聚类算法,其核心思想是通过不断更新每个数据点所属的类别,同时更新该类别的中心点,直到找到最优的聚类结果。
具体而言,K-means 聚类算法首先需要预设$k$个初始的聚类中心点,然后计算每个数据点与这$k$个聚类中心的距离,并将其分配到最近的一个聚类中心点所代表的类别中。
完成初始聚类后,算法会重新计算每个类别的中心点,并根据新的中心点重新分配所有数据点,直到所有数据点都不再变换为止。
机器学习中的聚类分析方法机器学习中的聚类分析是一种数据挖掘技术,该技术可以将大量的数据集按照特定的规则进行分类和分组。
聚类分析主要用于数据分析、分类、数据挖掘和模式识别等领域,该技术的应用范围非常广泛,包括自然语言处理、图像识别、推荐系统等领域。
在聚类分析中,数据集合被分为不同的类别,每个类别都有相似的属性、特征或属性。
聚类分析方法可以通过设置聚类算法的参数来对数据进行分组,对于同一类别的数据,聚类算法能够产生一个类别标签。
聚类分析方法的优点在于能够将大量不同的数据进行有意义的分类,从而可以实现多种应用。
聚类分析方法的类型在机器学习中,聚类分析方法主要分为以下几种类型:1. 划分式聚类:这种方法通过将数据集分成互不重叠的子集来实现聚类。
在划分式聚类中,每个数据点只属于一个簇。
这种方法适合于数据集中每个数据点都属于同一个类别的情况。
划分式聚类算法包括K-Means算法等。
2. 层次式聚类:这种方法通过渐进地将数据点分成更多的子集来实现聚类。
在层次式聚类中,每个数据点都可以被分配到多个簇中。
这种方法适合于数据集中数据点属于多个类别的情况。
层次式聚类算法包括凝聚层次聚类、分裂式层次聚类等。
3. 密度式聚类:这种方法通过密度划分数据簇来实现聚类。
密度式聚类算法包括DBSCAN、OPTICS等。
4. 模型式聚类:这种方法通过使用统计学模型来实现聚类。
模型式聚类算法包括高斯混合模型等。
其中,划分式聚类和层次式聚类是常用的聚类分析方法。
K-Means聚类算法K-Means算法是目前应用最多的划分式聚类算法之一,其主要思想是将输入数据分成K个簇,每个簇有一个中心点,根据输入数据与各个簇的中心距离进行分类。
K-Means算法通过多次更新簇中心点和分类,来达到最终的聚类结果。
K-Means算法的优点在于其算法简单、时间复杂度较低,同时也适合于大规模数据和高维数据的处理。
但是,K-Means算法也存在着一些问题。
首先,初始点的随机性可能会对聚类结果产生较大的影响。
聚类分析方法及其应用条件扩展研究聚类分析是一种将数据根据其相似性进行自动分类的方法,具有广泛的应用领域,包括数据挖掘、模式识别、信息检索等。
本文将介绍聚类分析的基本概念和常用方法,并探讨其在不同应用场景下的扩展研究。
一、聚类分析基本概念和常用方法聚类分析是一种无监督学习的方法,它试图将数据集划分为若干个类别,使得同一类别内的数据相似性最大,不同类别之间的相似性最小。
聚类分析的基本概念包括距离度量和聚类准则。
1.1 距离度量距离度量是聚类分析的基础,常用的距离度量方法有欧氏距离、曼哈顿距离和闵可夫斯基距离等。
欧氏距离是最常用的距离度量方法,它基于向量空间中的欧氏距离定义。
曼哈顿距离是城市街区距离的度量方法,它在计算距离时只考虑了水平和垂直方向上的位移。
闵可夫斯基距离是欧氏距离和曼哈顿距离的一种推广,当参数取不同的值时可以得到不同的距离度量。
1.2 聚类准则聚类准则用于评估数据集划分的好坏程度,常用的聚类准则有最小平方误差准则、最大间隔准则和最大密度准则等。
最小平方误差准则试图将同一类别内的数据点尽可能的靠近,不同类别之间的距离尽可能的大。
最大间隔准则则是通过最大化同一类别内部的相似度,同时最小化不同类别之间的相似度来进行数据集划分。
最大密度准则是通过计算数据点的密度来进行聚类分析,将密度较大的数据点划分到同一类别中。
二、经典聚类分析方法经典聚类分析方法包括层次聚类分析和划分聚类分析,它们使用不同的算法来进行数据集的划分。
2.1 层次聚类分析层次聚类分析是一种自底向上或自顶向下的聚类方法,它根据数据点之间的相似性建立一个层次结构,从而得到不同层次的聚类结果。
自底向上的层次聚类方法将每个数据点作为一个初始聚类,然后通过计算两个聚类之间的相似度来合并聚类,直到达到聚类的最终结果。
自顶向下的层次聚类方法则是从一个包含所有数据点的初始聚类开始,然后通过分裂聚类来得到最终的聚类结果。
2.2 划分聚类分析划分聚类分析是一种将数据集划分为不相交的子集的方法,最常用的划分聚类算法是k-means算法。
模式识别试题及总结一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3) (4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A ? 0A1 , A ? 1A0 , B ? BA , B ? 0}, A) (2)({A}, {0, 1}, {A?0, A ? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A ? 0A1, A ? 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。
10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。
(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
如何进行分类与聚类分析分类与聚类分析是数据挖掘中常用的技术手段,通过对数据进行不同属性的划分和聚合,能够帮助我们洞察数据的内部规律和特征。
本文将介绍分类与聚类分析的基本概念和方法,并提供一些实际案例进行说明。
I. 分类分析分类分析是对数据进行归类的过程,将具有相似性质的数据归为一类。
分类分析的基本思想是通过特征提取和模式识别,将数据分为预先定义的类别,以便进一步理解和解释数据。
1. 数据准备在进行分类分析前,需要准备好适合分析的数据集。
数据集一般包含多个样本和多个属性,其中样本是指具体的数据实例,属性是指样本所具有的特征。
2. 特征选择特征选择是分类分析的重要步骤,其目的是从给定的属性中选择出最能代表数据特征的属性。
特征选择需要根据实际问题和数据集的特点来进行,通常可以采用统计学方法或信息论方法来评估属性的重要性。
3. 模型构建在分类分析中,需要选择适当的分类模型来对数据进行分类。
常见的分类模型包括决策树、朴素贝叶斯、支持向量机等。
模型的选择需要考虑数据的性质和问题的要求。
4. 分类效果评估在进行分类分析后,需要对分类结果进行评估。
常用的评估指标有准确率、召回率、精确率等。
评估结果可以反映分类模型的性能,并帮助我们判断模型的优劣。
II. 聚类分析聚类分析是对数据进行聚合的过程,将具有相似性质的数据聚为一类。
聚类分析的目的是发现数据的内部结构,揭示数据的潜在规律和关系。
1. 数据准备聚类分析前,需要准备好适合分析的数据集。
数据集包含多个样本和多个属性,其中样本是指具体的数据实例,属性是指样本所具有的特征。
2. 相似性度量在聚类分析中,需要选择合适的相似性度量来衡量数据之间的相似程度。
常用的相似性度量有欧氏距离、余弦相似度等。
3. 聚类算法聚类分析需要选择合适的聚类算法来对数据进行聚类。
常见的聚类算法有K均值聚类、层次聚类、密度聚类等。
选择聚类算法需要考虑数据的性质和问题的要求。
4. 聚类结果评估在进行聚类分析后,需要对聚类结果进行评估。