随机过程第二章random process 1
- 格式:ppt
- 大小:1.04 MB
- 文档页数:64
Adventures in Stochastic ProcessesChapter 1 Preliminaries1.1. (a) Let X be the outcome of tossing a fair die. What is the gf of X? Use the gf to find EX.(b) Toss a die repeatedly. Let n μ be the number of ways to throw die until the sum of the faces is n. (So 11μ= (first throw equals 1), 22μ= (either the first throw equals 2 or the first 2 throws give 1 each), and so on. Find the generating function of{,1n 6}n μ≤≤ .解:(a) X 的概率分布为 1[],1,2,3,4,5,66P X k k ===,X 的生成函数为 66611111()[]66kk kk k k P s P X k s s s ======⋅=∑∑∑,X 的期望为 6611111117()||662k s s k k EX P s k s k -===='==⋅==∑∑.(b) n μ:点数之和为(1)n n ≥的投掷方法数,则 点数之和为1的投掷方法:第一次投掷点数为1,即0112μ==,点数之和为2的投掷方法: 情形1,第一次投掷点数为2, 情形2,前两次投掷点数均为1,即1222μ==,点数之和为3的投掷方法: 情形1,第一次投掷点数为3,情形2,前两次投掷点数为(1,2),(2,1), 情形3,前三次投掷点数均为1,即012232222C C Cμ=++=,点数之和为6的投掷方法: 情形1,第一次投掷点数为6,情形2,前两次投掷点数为下列组合之一:1和5,2和4,3和3,情形3,前三次投掷点数为下列组合之一:1,1和4,1,2和3,2,2和2, 情形4,前四次投掷点数为下列组合之一:1,1,1和3,1,1,2和2, 情形5,前五次投掷点数为下列组合之一:1,1,1,1和2, 情形6,前六次投掷点数均为1,即015565552C C C μ=+++=,于是,n μ(6)n ≤的生成函数为66111()2nn n n n n P s s s μ-===⋅=⋅∑∑1.2. Let {},1n X n ≥ be iid Bernoulli random variables with 11[1]1[0]P X p P X ===-=and let 1nn i i S X ==∑ be the number of successes in n trials. Show n S has a binomial distribution by the following method: (1) Prove for 0,11n k n ≥≤≤+1[][][1 ] n n n P S k pP S k qP S k +===-+=.(2) Solve the recursion using generating functions. 解:(1) 由全概率公式,得1111111[][1][|1][0][|0]n n n n n n n P S k P X P S k X P X P S k X +++++++=====+===[1][]n n pP S k qP S k ==-+=(2) 1110()[]n k n n k P s P S k s +++===∑10([1][])n k n n k pP S k qP S k s +===-+=∑1110[1][]n nk kn n k k ps P S k sq P S k s +-====-+=∑∑11[][]n nlkn n l k ps P S l s q P S k s ====+=∑∑211()()()()()n n n ps q P s ps q P s ps q +-=+=+=+所以 1~(;1,)n S b k n p ++1.3 Let {,1}n X n ≥ be iid non-negative integer valued random variables independent of the non-negative integer valued random variable N and suppose()()11(), Var , , Var E X X EN N <∞<∞<∞<∞.Set 1nn i i S X ==∑. Use generating functions to check211Var()Var()()Var()N S EN X EX N =+ 证明:由1()(())N S N X P s P P s =所以 11111()()|(())()|()()N N S s N X X s E S P s P Ps P s E N E X =='''===,1111211()|[(())(())(())()]|N S s N X X N X X s P s P Ps P s P P s P s ==''''''''=+ 11112((1))((1))((1))(1)NX X N X X P P P P P P ''''''=+ (1(1)1X P =) 222111()()()()EN EN EX E N EX EX =-+- 22111Var()()EN X EN EX ENEX =+-又 2211()|()()N S s N N N P s E S ES E S ENEX =''=-=- 所以 22211()Var()()N E S EN X EN EX =+ 因此 22Var()()()N N N S E S ES =-2222111Var()()-()()EN X EN EX EN EX =+211Var()()Var()EN X EX N =+.1.4. What are the range and index set for the following stochastic processes : (a) Let i X be the quantity of beer ordered by the th i customer at Happy Harry's and let ()N t be the number of customers to arrive by time t . The process is(){}()10,N t i i X t X t ==≥∑ where ()X t is the quantity ordered by time t .(b) Thirty-six points are chosen randomly in Alaska according to some probability distribution. A circle of random radius is drawn about each point yielding a random set S . Let ()X A be the value of the oil in the ground under region A S ⋂. The process is () {,}X B B Alaska ⊂.(c) Sleeping Beauty sleeps in one of three positions: (1) On her back looking radiant. (2) Curled up in the fetal position.(3) In the fetal position, sucking her thumb and looking radiant only to an orthodontist.Let ()X t be Sleeping Beauty's position at time t. The process is (){} ,0X t t ≥. (d) For 0,1,n =, let n X be the value in dollars of property damage to West PalmBeach, Florida and Charleston, South Carolina by the th n hurricane to hit the coast of the United States.解:(a) The range is {0,1,2,,}S =∞,the index is {|0}T t t =≥;(b) The range is [0,)S =∞,the index is {1,2,,36}T =;(c) The range is {1,2,3}S =,the index is {|0}T t t =≥; (d) The range is [0,)S =∞,the index is {0,1,2,}T =.1.5. If X is a non-negative integer valued random variable with~{},()X k X p P s Es =express the generating functions if possible, in terms of () P s , of (a) []P X n ≤, (b)[]P X n <, (c) []P X n ≥. 解:0()[]k k P s P X k s ∞===∑1000()[]k kki k k i P s P X k s p s ∞∞===⎛⎫=≤= ⎪⎝⎭∑∑∑001i k i i i k i i s s p p s ∞∞∞===⎛⎫== ⎪-⎝⎭∑∑∑ 011()11i i i s p P s s s ∞===--∑; 12000()[]k kki k k i P s P X k s p s ∞∞-===⎛⎫=<= ⎪⎝⎭∑∑∑10101i k i i i k i i s s p p s +∞∞∞==+=⎛⎫== ⎪-⎝⎭∑∑∑0()11i i i s ss p P s s s∞===--∑; 300()[]kki k k i k P s P X k s p s ∞∞∞===⎛⎫=≥= ⎪⎝⎭∑∑∑100011i i k i i i k i s s p p s +∞∞===-⎛⎫== ⎪-⎝⎭∑∑∑ 0011()111ii ii i s sP s p p s s s s ∞∞==-=-=---∑∑. 1.8 In a branching process 2()P s as bs c =++, where 0,0,0,(1)1a b c P >>>=. Compuct π. Give a condition for sure extinction. 解:由(1)1P a b c =++=,可得 1()b a c -=-+,2()s P s as bs c ==++ 2(1)0as b s c +-+=2(+)0as a c s c -+=,1cs s a== (1)21m P a b '==+≤.1.10. Harry lets his health habits slip during a depressed period and discovers spots growing between his toes according to a branching process with generating function23456()0.150 .050.030.070.40.250.05P s s s s s s s =++++++Will the spots survive? With what probability?解:由 2345()0 .050.060.21 1.6 1.250.3P s s s s s s '=+++++, 可得 (1)0 .050.060.21 1.6 1.250.3 3.471m P '==+++++=>, 又由 23456()0.150 .050.030.070.40.250.05s P s s s s s s s ==++++++, 依据1π<,可得=0.16π.1.23. For a branching process with offspring distribution,0,1,01,n n p pq n p q p =≥+=<<解: ()1pP s qs=- ()1ps P s qs==- 210qs s q -+-=1s = 或 p s q=1(1)1k k qm P p kq p∞='===≤∑, 112p p p -≤⇒≥.Chapter 2 Markov Chains2.1. Consider a Markov chain on states {0, 1, 2} with transition matrix0.30.30.4=0.20.70.10.20.30.5P ⎛⎫⎪⎪ ⎪⎝⎭.Compute 20[2|0]P X X == and 210[2,2|0]P X X X ===.解:由题意得 20.230.420.350.220.580.20.220.420.36P ⎛⎫⎪= ⎪ ⎪⎝⎭,(2)202[2|0]0.35P X X p ====, 120[2,2|0]P X X X === 2110[2|2][2|0]P X X P X X =====(1)(1)22020.50.40.2p p =⋅=⨯=2.8. Consider a Markov chain on {1, 2, 3} with transition matrix1001112631313515P ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭. Find ()3n i f for 1,2,3,n =.解:当1i =时,对任意1n ≥,()1313[(1)]0n f P n τ===;当2i =时,对于1n ≥,()112323222311[(1)]()63n n n f P n p p τ--====⋅; 当3i =时,对于1n =,(1)3333331[(1)1]15f P p τ====, 对于2n ≥,()222333332222331111[(1)]()()56356n n n n f P n p p p τ---===⋅⋅=⋅⋅=⋅. Exercise. Consider a Markov chain on states {1,2,3,4,5} with transition matrix1000001000120012000120120120120P ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,(1) What are the equivalence classes ?(2) Which states are transient and which states are recurrent ?(3) What are the periods of each state? (详细过程自己完成!)解:(1) 分为三类:{1},{2}和{3,4,5}.(2) 1,2为正常返状态,3,4,5为瞬过状态.(3) 状态1,2的周期为1,状态3,4,5的周期为2.。
第二章 随机过程的一般概念2.1 随机过程的基本概念和例子定义2.1.1:设(P ,,F )Ω为概率空间,T 是某参数集,若对每一个,是该概率空间上的随机变量,则称为随机过程(Stochastic Process)。
T t ∈),(w t X ),w t (X 随机过程就是定义在同一概率空间上的一族随机变量。
随机过程可以看成定义在),(w t X Ω×T 上的二元函数,固定Ω∈0w ,即对于一个特定的随机试验,称为样本路径(Sample Path),或实现(realization),这是通常所观测到的过程;另一方面,固定,是一个随机变量,按某个概率分布随机取值。
),(0w t X T t ∈0),(0w t X抽象一点:令,即∏∈=Tt T R R T R 中的元素为),(T t x X t t ∈=,为其Borel域(插乘)(T R B σ域),随机过程实质上是()F ,Ω到())(,T T R R B 上的一个可测映射,在())(,T TR RB 上诱导出一个概率测度:T P ()B X P B P R B T T T ∈=∈∀)(),(B 。
一般代表的是时间。
根据参数集T 的性质,随机过程可以分为两大类: t 1)为可数集,如T {}L ,2,1,0=T 或{}L L ,1,0,1,−=T ,称为离散参数随机过程,也称为随机序列;2)为不可数集,如T {}0≥=t t T 或{}∞<<∞−=t t T ,称为连续参数随机过程。
随机过程的取值称为过程所处的状态(State),所有状态的全体称为状态空间(State Space)。
通常以表示随机过程的状态空间。
根据状态空间的特征,一般把随机过程分为两大类:T t t X ∈),(S 1) 离散状态,即取一些离散的值; )(t X 2)连续状态,即的取值范围是连续的。
)(t X离散参数离散状态随机过程: Markov 链 连续参数离散状态随机过程: Poisson 过程 离散参数连续状态随机过程: *Markov 序列连续参数连续状态随机过程: Gauss 过程,Brown 运动例2.1.1:一醉汉在路上行走,以的概率向前迈一步,以q 的概率向后迈一步,以p r 的概率在原地不动,1=++r q p ,选定某个初始时刻,若以记它在时刻的位置,则就是直线上的随机游动(Random Walk)。
第二章随机过程基本概念.2随机过程的基本概念§2.1 基本概念随机过程是指一族随机变量 .对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 .其研究对象是随机现象,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 .一随机过程的定义1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数t ∈ T , X(e,t为建立在 S 上的随机变量,(2对每一个e ∈ S , X(e,t为t 的函数,那么称随机变量族{X(e,t, t∈ T, e∈ S}为一个随机过程,简记为{X(e,t, t∈ T}或 X(t。
((((({}{}[](为随机序列。
时,通常称 , 取可列集合当可以为无穷。
通常有三种形式:参数一般表示时间或空间, 或有时也简写为一个轨道。
随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。
为即若用映射来表示注意:t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X RS T t e X t21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。
则令掷一均匀硬币, 例 , ( (cos (}, {1t e X t X Rt T e t H e t t X T H S =??íì====p2 随机过程举例例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则(1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..},且对于不同的 t, 是不同的随机变量 .(2对于固定的样本点 n, X(t=n是一个 t 的函数 .(即:在多长时间内来 n 个人 ?所以 {X(t,t>0}为一个随机过程 .相位正弦波。
第⼆章随机过程第 2 章随机过程2.1 引⾔确定性信号是时间的确定函数,随机信号是时间的不确定函数。
?通信中⼲扰是随机信号,通信中的有⽤信号也是随机信号。
描述随机信号的数学⼯具是随机过程,基本的思想是把概率论中的随机变量的概念推⼴到时间函数。
2.2 随机过程的统计特性⼀.随机过程的数学定义:设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到⼀个样本函数,所有可能出现的结果的总体就构成⼀随机过程,记作)(t g 。
随机过程举例:⼆.随机过程基本特征其⼀,它是⼀个时间函数;其⼆,在固定的某⼀观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
●随机过程)(t g 在任⼀时刻都是随机变量;●随机过程)(t g 是⼤量样本函数的集合。
三.随机过程的统计描述设)(t g 表⽰随机过程,在任意给定的时刻T t ∈1, )(1t g 是⼀个⼀维随机变量。
1.⼀维分布函数:随机变量)(t g ⼩于或等于某⼀数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.⼀维概率密度函数:⼀维概率分布函数对x 的导数.xt x P t x p ??=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的⼆维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.⼆维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p = 2.2.4 四.随机过程的⼀维数字特征设随机过程)(t g 的⼀维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1?∞∞-==µ 2.2.5 2.⽅差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222µµσ-=-==?∞∞- 2.2.6五.随机过程的⼆维数字特征1.⾃协⽅差函数(Covariance)21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g µµµµ--=--=??∞∞-∞∞- 2.2.72. ⾃相关函数(Autocorrelation)2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ∞∞-∞∞-== 2.2.83.⾃相关函数和⾃协⽅差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g ?-= 2.2.94.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协⽅差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh µµ--= 2.2.112.3 平稳随机过程⼀.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满⾜ ),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p=+???++???τττ 2.3.1 则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移⽽变化的随机过程称为平稳随机过程。