整合提升密码(38)
- 格式:docx
- 大小:89.34 KB
- 文档页数:7
专训一:比较有理数大小的方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.利用作差法比较1.比较1731和5293的大小.利用作商法比较2.比较-172 016和-344 071的大小.找中间量比较大小3.比较1 0072 016与1 0092 017的大小.利用倒数法比较大小4.比较1111 111和1 11111 111的大小.利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.6.比较-623,-417,-311,-1247的大小.利用数轴比较大小7.已知a>0,b<0,且|b|<a,试比较a,-a,b,-b的大小.运用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为________________________________________________________________________.利用分类讨论法比较大小9.比较a 与a3的大小.专训二:有理数中六种易错类型对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a|=7,则a=W.误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A.负数B.负数或零C.正数或零D.正数4.已知a=8,|a|=|b|,则b的值等于()A.8B.-8C.0D.±8对括号使用不当导致错误5.计算:-7-5.6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.忽略或不清楚运算顺序7.计算:3×42+43÷2.8.计算:-81÷94×49÷(-16).9.计算:(-5)-(-5)×110÷110×(-5).乘法运算中确定符号与加法运算中的符号规律相混淆10.计算:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345.11.计算:-36×⎝ ⎛⎭⎪⎫712-56-1.除法没有分配律12.计算:24÷⎝ ⎛⎭⎪⎫13-18-16.专训三:几种常见的热门考点名师点金:本章主要学习了有理数的定义及其相关概念,有理数的运算,科学记数法与近似数等.本章内容是中考的基本考查内容之一,命题形式多以选择题和简单的计算题为主,注重对基础知识和基本技能的考查.)有理数的定义、分类1.在下列各数中:+6,-8.25,-0.49,-23,-18,负有理数有( )A .1个B .2个C .3个D .4个相反数、倒数、绝对值2.(1)化简下列各式:⎪⎪⎪⎪⎪⎪-12= ;|+(-3)|= ;-⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫-35= W.(2)-5的相反数是 ;-13的绝对值是 ;54的倒数是 W.3.式子|m -3|+5的值随m 的变化而变化,当m = 时,|m -3|+5有最小值,最小值是 W.4.已知a ,b 分别是两个不同的点A ,B 所表示的有理数,且|a|=5,|b|=2,它们在数轴上的位置如图所示.(1)试确定数a ,b ;(2)表示a ,b 两数的点相距多远?(3)若C 点在数轴上,C 点到B 点的距离是C 点到A 点距离的13,求C 点表示的数.(第4题)有理数的大小比较5.(中考·莱芜)在-12,-13,-2,-1这四个数中,最大的数是( )A .-12 B .-13C .-2D .-16.如图,数轴上A ,B 两点分别对应有理数a ,b ,则下列结论正确的是( )(第6题)A .a <bB .a +b <0C .a -b >0D .ab >0有理数的运算7.下列等式成立的是( ) A .|-2|=2 B .-(-1)=-1C .1÷(-3)=13D .-2×3=68.若四个有理数之和的14是3,其中三个数分别是-10,+8,-6,则第四个数是( )A .+8B .-8C .+20D .+119.计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)10+8÷(-2)2-(-4)×(-3);(4)(-24)÷⎝ ⎛⎭⎪⎫2232+512×⎝ ⎛⎭⎪⎫-16-0.52.非负数性质的应用10.当a 为有理数,下列说法中正确的是( ) A .⎝ ⎛⎭⎪⎫a +12 0162为正数 B .-⎝ ⎛⎭⎪⎫a -12 0162为负数 C .a +⎝ ⎛⎭⎪⎫12 0162为正数D.a2+12 016为正数11.若|a+1|+(b-2)2=0,求(a+b)9+a6的值.科学记数法、近似数的应用12.(2015·成都)今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相.新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照规划,新机场将建的4个航站楼的总面积约为126万平方米.用科学记数法表示126万为()A.126×104B.1.26×105C.1.26×106D.1.26×10713.若一个数等于5.8×1021,则这个数的整数位数是()A.20B.21C.22D.2314.把390 000用科学记数法表示为,用科学记数法表示的数5.16×104的原数是,近似数2.236×108精确到的数位是W.15.(2015·资阳)太阳的半径约为696 000千米,用科学记数法表示为千米.数学思想方法的应用a.数形结合思想16.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c.根据图中各点位置,下列式子正确的是( )(第16题)A .(a -1)(b -1)>0B .(b -1)(c -1)>0C .(a +1)(b +1)<0D .(b +1)(c +1)<0b.转化思想17.下列各式可以写成a -b +c 的是( )A .a -(+b )-(+c )B .a -(+b )-(-c )C .a +(-b )+(-c )D .a +(-b )-(+c )18.计算:⎣⎢⎡⎦⎥⎤113-⎝ ⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712.c.分类讨论思想19.比较2a 与-2a 的大小.有理数中的探究与创新20.(2015·德州)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1521.(2015·荆州)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2 015=( )A .(31,50)B .(32,47)C .(33,46)D .(34,42)22.(2015·广东)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是 W.23.(2015·绥化)填在下面各正方形(如图)中的四个数之间都有一定的规律,据此规律得出a +b +c = W.(第23题)24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.(第24题)根据此规律求:(1)这样的一个细胞经过第四个30分钟后可分裂成多少个细胞?(2)这样的一个细胞经过3小时后可分裂成多少个细胞?(3)这样的一个细胞经过n(n为正整数)小时后可分裂成多少个细胞?答案专训一1.解:因为5293-1731=5293-5193=193>0,所以5293>1731.点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方法.2.解:因为172 016÷344 071=172 016×4 07134=1 3571 344>1,所以172 016>344 071,所以-172 016<-344 071.点拨:(1)作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时,作商比较往往能起到事半功倍的效果.(2)当这两个数是负数时,可先分别求出它们的绝对值,再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3.解:因为1 0072 016<12,1 0092 017>12,所以1 0072 016<1 0092 017.点拨:对于类似的两数的大小比较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4.解:1111 111的倒数是101111,1 11111 111的倒数是1011 111,因为101111>1011 111,所以1111 111<1 11111 111.点拨:利用倒数法比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小,从而确定这两个数的大小.5.解:每个分数都加1,分别得12 015,115,12 016,116.因为12 016<12 015<116<115,所以-2 0152 016<-2 0142 015<-1516<-1415.点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了. 6.解:因为-623=-1246,-417=-1251,-311=-1244,-1244<-1246<-1247<-1251,所以-311<-623<-1247<-417. 点拨:此题如果通分,计算量太大,可以把分子变为相同的,再进行比较.7.解:把a ,-a ,b ,-b 在数轴上表示出来,如图所示,根据数轴可得-a <b <-b<a.(第7题)点拨:本题运用了数轴比较有理数的大小,在数轴上找出这几个数对应的点的大致位置,即可作出判断.8.|a +b|<|a -b|=|a|+|b| 点拨:已知a ,b 异号,不妨取a =2,b =-1或a =-1,b =2.当a =2,b =-1时,|a +b|=|2+(-1)|=1,|a -b|=|2-(-1)|=3,|a|+|b|=|2|+|-1|=3;当a =-1,b =2时,|a +b|=|(-1)+2|=1,|a -b|=|-1-2|=3,|a|+|b|=|-1|+|2|=3.所以|a +b|<|a -b|=|a|+|b|.方法总结:本题运用特殊值法解题,取特殊值时要注意所取的值既要符合题目条件又要考虑可能出现的多种情况,以本题为例,可以分为a 正、b 负和a 负、b 正两种情况.9.解:分三种情况讨论: ①当a >0时,a >a 3;②当a =0时,a =a3;③当a <0时,|a|>|a 3|,则a <a3.专训二1.D 2.±7 3.C4.D 点拨:因为|a|=|b|=8,所以b =±8. 5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920.7.解:原式=3×16+64÷2=48+32=80. 8.解:原式=-81×49×49×⎝ ⎛⎭⎪⎫-116=1.点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误.9.解:原式=(-5)-(-5)×110×10×(-5)=(-5)-25 =-30.10.解:原式=⎝ ⎛⎭⎪⎫-94×⎝ ⎛⎭⎪⎫-195 =17120.点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:⎝ ⎛⎭⎪⎫-214×⎝ ⎛⎭⎪⎫-345=-⎝ ⎛⎭⎪⎫94×195=-17120.11.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.12.解:原式=24÷⎝ ⎛⎭⎪⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.专训三1.D 2.(1)12;3;-35 (2)5;13;453.3;54.解:(1)因为|a|=5,|b|=2,所以a =±5,b =±2. 由数轴可知a <b <0,所以a =-5,b =-2. (2)相距3.(3)C 点表示的数为-0.5或-234.5.B 6.C 7.A 8.C9.解:(1)原式=17-8÷(-2)×3=17-(-12)=29.(2)原式=-10+8-6=-8.(3)原式=10+8÷4-12=0.(4)原式=(-16)×964+112×⎝ ⎛⎭⎪⎫-16-14=⎝ ⎛⎭⎪⎫-94+⎝ ⎛⎭⎪⎫-1112-14=-4112. 10.D11.解:由题意得a +1=0,b -2=0,所以a =-1,b =2.所以(a +b)9+a 6=[(-1)+2]9+(-1)6=2.12.C 13.C14.3.9×105;51 600;十万位15.6.96×10516.D 17.B18.解:原式=113÷⎝ ⎛⎭⎪⎫-712-⎝⎛⎭⎪⎫-234÷⎝ ⎛⎭⎪⎫-712 =-167-337 =-7.19.解:当a <0时,2a <-2a ;当a =0时,2a =-2a ;当a >0时,2a >-2a.20.A 点拨:根据从第三个数起,每个数都等于它前面的两个数之和,可得x =1+2=3,y =x +5=3+5=8,故选A .21.B 点拨:第1个正奇数是1,第2个正奇数是3,第3个正奇数是5,…,第n 个正奇数是2n -1,因为2 015=2n -1,所以n =1 008,即2 015是从1开始的第1 008个正奇数.由题意知,第1组有1个正奇数,第2组有3个正奇数,第3组有5个正奇数,…,第i 组有(2i -1)个正奇数,第31组有31×2-1=61(个)正奇数.因为前31组正奇数的总个数为1+3+5+7+…+57+59+61=961,前32组正奇数的总个数为961+63=1 024,所以第1 008个正奇数应在第32组奇数内.又因为1 008-961=47,所以奇数2 015是第32组的第47个正奇数,故选B . 22.1021 点拨:从这组数可以看出,这组数的分子是从1开始,逐次增加1的自然数,分母是分子的2倍加1,即第n 个数是n 2n +1,所以第10个数是102×10+1=1021. 23.110 点拨:根据前三个正方形中的数的规律可知:c 所处的位置上的数是连续的奇数,所以c =9,而a 所处的位置上的数是连续的偶数,所以a =10,而b =ac +1=10×9+1=91,所以a +b +c =10+91+9=110.24.解:(1)一个细胞经过第四个30分钟后可分裂成16个细胞.(2)一个细胞经过3小时后可分裂成64个细胞.(3)一个细胞经过n(n 为正整数)小时后可分裂成22n 个细胞.。
提高密码强度的技巧和建议随着互联网的普及,我们越来越多地依赖于密码来保护我们的个人信息和在线账户。
然而,许多人在创建密码时往往忽视了密码的强度和安全性。
简单、容易猜测的密码很容易被黑客破解,给我们的信息和资产带来威胁。
因此,提高密码强度是保护我们的隐私和安全的必要措施。
下面,我将为大家分享一些提高密码强度的技巧和建议。
1. 长度与复杂度密码的长度和复杂度是提高密码强度的关键。
强密码应该包含至少8个字符,并且要使用不同类型的字符,如大小写字母、数字和特殊字符。
选择具有多个字符间隔的密码,可以增加破解难度。
2. 避免常见密码避免使用常见的密码是确保密码安全性的一部分。
黑客有可能使用常见密码的猜测攻击策略,例如“123456”、“password”等。
选择一个不常见且与自身无关的密码会更加安全。
3. 定期更改密码定期更改密码是保护个人隐私和安全的重要步骤。
建议每个月或每个季度更改一次密码,以确保账户持续得到保护。
同时,避免在多个平台上使用相同的密码,一旦一个平台被攻破,其他平台的密码也会暴露。
4. 使用密码管理工具密码管理工具可以帮助我们创建和存储复杂的密码,并将其加密保存在我们的设备中。
这样,我们就不再需要记住多个复杂的密码,只需要记住一个主密码即可。
一些常见的密码管理工具包括LastPass、Dashlane和1Password等。
5. 多因素认证多因素认证是提高账户安全性的有效措施。
除了密码之外,多因素认证还需要使用其他一种或多种登录方式,例如指纹识别、面部识别或验证码,以确保只有授权用户才能访问账户。
6. 提防社交工程社交工程是黑客获取密码的一种常见手段。
黑客可能通过钓鱼邮件、虚假网站或电话等方式,诱导用户泄露账户信息。
因此,我们要保持警惕,不要轻易相信来自不明来源的信息,并注意验证网站的真实性。
7. 安全更新和补丁保持系统、应用程序和安全软件的更新是维护密码安全的必要步骤。
及时安装更新和补丁可以修复已知的安全漏洞,提高系统的防御能力。
专训1.因式分解的七种常见应用名师点金:因式分解是整式的恒等变换的一种重要变形,它与整式的乘法是两个互逆的过程,是代数恒等变形的重要手段,在有理数计算、式子的化简求值、几何等方面起着重要作用.用于简便计算1.利用简便方法计算:23×2.718+59×2.718+18×2.718.2.计算:2 0162-4 034×2 016+2 0172.用于化简求值3.已知x-2y=3,x2-2xy+4y2=11.求下列各式的值:(1)xy;(2)x2y-2xy2.用于判断整除4.随便写出一个十位数字与个位数字不相等的两位数,把它的十位数字与个位数字对调得到另一个两位数,并用较大的两位数减去较小的两位数,所得的差一定能被9整除吗?为什么?用于判断三角形的形状5.已知a,b,c是△ABC的三边长,且满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.用于比较大小6.已知A=a+2,B=a2+a-7,其中a>2,试比较A与B的大小.用于解方程(组)7.已知大正方形的周长比小正方形的周长多96 cm,大正方形的面积比小正方形的面积多960 cm2.请你求这两个正方形的边长.用于探究规律8.观察下列各式:12+(1×2)2+22=9=32,22+(2×3)2+32=49=72,32+(3×4)2+42=169=132,….你发现了什么规律?请用含有字母n(n为正整数)的等式表示出来,并说明理由.专训2.因式分解的六种常见方法名师点金:因式分解的常用方法有:(1)提公因式法;(2)公式法;(3)提公因式法与公式法的综合运用.在对一个多项式因式分解时,首先应考虑提公因式法,然后考虑公式法.对于某些多项式,如果从整体上不能利用上述方法因式分解,还要考虑对其进行分组、拆项、换元等.提公因式法题型1公因式是单项式的因式分解1.若多项式-12x2y3+16x3y2+4x2y2的一个因式是-4x2y2,则另一个因式是() A.3y+4x-1 B.3y-4x-1C.3y-4x+1 D.3y-4x2.(2015·广州)分解因式:2mx-6my=__________.3.把下列各式分解因式:(1)2x2-xy;(2)-4m4n+16m3n-28m2n.题型2公因式是多项式的因式分解4.把下列各式分解因式:(1)a(b-c)+c-b;(2)15b(2a-b)2+25(b-2a)2.公式法题型1直接用公式法5.把下列各式分解因式:(1)-16+x4y4;(2)(x2+y2)2-4x2y2;(3)(x2+6x)2+18(x2+6x)+81.题型2先提再套法6.把下列各式分解因式:(1)(x-1)+b2(1-x);(2)-3x7+24x5-48x3.题型3先局部再整体法7.分解因式:(x+3)(x+4)+(x2-9).题型4先展开再分解法8.把下列各式分解因式:(1)x(x+4)+4;(2)4x(y-x)-y2.分组分解法9.把下列各式分解因式:(1)m 2-mn +mx -nx ;(2)4-x 2+2xy -y 2.拆、添项法10.分解因式:x 4+14.整体法题型1 “提”整体11.分解因式:a(x +y -z)-b(z -x -y)-c(x -z +y).题型2 “当”整体12.分解因式:(x +y)2-4(x +y -1).题型3“拆”整体13.分解因式:ab(c2+d2)+cd(a2+b2).题型4“凑”整体14.分解因式:x2-y2-4x+6y-5.换元法15.分解因式:(1)(a2+2a-2)(a2+2a+4)+9;(2)(b2-b+1)(b2-b+3)+1.专训3.全章热门考点整合应用名师点金:本章的主要内容是利用提公因式法和公式法分解因式,在各类考试中,既有单独考查因式分解的,也有利用因式分解的知识进行化简求值的,题型有选择题和填空题,也有探索与创新题,命题难易度以基础和中档题为主.本章主要考点可概括为:一个概念,两个方法,三个应用,三个技巧,一种思想.一个概念——因式分解1.下列由左边到右边的变形,属于因式分解的是() A .(a +5)(a -5)=a 2-25B .mx +my +2=m(x +y)+2C .x 2-9=(x +3)(x -3)D .2x 2+1=2x 2⎝ ⎛⎭⎪⎫1+12x 2两个方法方法1 提公因式法2.求下列代数式的值:(1)x 2y -xy 2,其中x -y =1,xy =2 018;(2)8x 3(x -3)+12x 2(3-x),其中x =32;(3)a 2b +2a 2b 2+ab 2,其中a +b =23,ab =2.方法2 公式法3.把下列各式因式分解:(1)16x 2-25y 2;(2)x 2-4xy +4y 2;(3)(a +2b)2-(2a -b)2;(4)(m 2+4m)2+8(m 2+4m)+16;(5)81x 4-y 4.三个应用应用1 应用因式分解计算4.计算:(1)2.1×31.4+62×3.14+0.17×314.(2)⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×⎝ ⎛⎭⎪⎫1-142×…×⎝ ⎛⎭⎪⎫1-11002; (3)-101×190+1012+952.应用2 应用因式分解解整除问题5.对于任意自然数n ,(n +7)2-(n -5)2是否能被24整除?应用3 应用因式分解解几何问题6.已知△ABC 的三边长a ,b ,c 满足a 2-b 2=ac -bc ,试判断△ABC 的形状.7.若一个三角形的三边长分别为a ,b ,c ,且满足a 2+2b 2+c 2-2ab -2bc =0,试判断该三角形的形状,并说明理由.三个技巧技巧1 分组后用提公因式法8.因式分解:(1)a 2-ab +ac -bc ; (2)x 3+6x 2-x -6.技巧2 拆、添项后用公式法9.因式分解:(1)x 2-y 2-2x -4y -3; (2)x 4+4.技巧3 换元法10.因式分解:(m 2-2m -1)(m 2-2m +3)+4.一种思想——整体思想11.已知a +b =1,ab =316,求代数式a 3b -2a 2b 2+ab 3的值.答案专训11.解:23×2.718+59×2.718+18×2.718=(23+59+18)×2.718=100×2.718=271.8.2.解:2 0162-4 034×2 016+2 0172=2 0162-2×2 016×2 017+2 0172=(2 016-2 017)2=1.3.解:(1)∵x -2y =3,∴x 2-4xy +4y 2=9,∴(x 2-2xy +4y 2)-(x 2-4xy +4y 2)=11-9,即2xy =2,∴xy =1.(2)x 2y -2xy 2=xy(x -2y)=1×3=3.4.解:所得的差一定能被9整除.理由如下:设该两位数个位上的数字是b ,十位上的数字是a ,且a>b ,则这个两位数是10a +b ,将十位数字与个位数字对调后的数是10b +a ,则这两个两位数中,较大的数减较小的数的差是(10a +b)-(10b +a)=9a -9b =9(a -b),所以所得的差一定能被9整除.5.解:∵a 2+b 2+c 2-ab -bc -ac =0,∴2a 2+2b 2+2c 2-2ab -2bc -2ac =0.即a 2-2ab +b 2+b 2-2bc +c 2+a 2-2ac +c 2=0.∴(a -b)2+(b -c)2+(a -c)2=0.又∵(a -b)2≥0,(b -c)2≥0,(a -c)2≥0,∴a -b =0,b -c =0,a -c =0,即a =b =c ,∴△ABC 为等边三角形.6.解:B -A =a 2+a -7-a -2=a 2-9=(a +3)(a -3).因为a >2,所以a +3>0,从而当2<a <3时,a -3<0,所以A >B ;当a =3时,a -3=0,所以A =B ;当a >3时,a -3>0,所以A <B.点拨:根据a 的取值范围分类讨论是正确解此题的关键.7.解:设大正方形和小正方形的边长分别为x cm ,y cm ,根据题意,得⎩⎨⎧4x -4y =96,①x 2-y 2=960,②由①得x -y =24,③由②得(x +y)(x -y)=960,④把③代入④得x +y =40,⑤由③⑤得方程组⎩⎨⎧x -y =24,x +y =40,解得⎩⎨⎧x =32,y =8. 答:大正方形的边长为32 cm ,小正方形的边长为8 cm .点拨:根据目前我们所学的知识,还无法解方程组⎩⎨⎧4x -4y =96,x 2-y 2=960,但是我们可以利用因式分解,把这个问题转化为解关于x ,y 的二元一次方程组的问题.8.解:规律:n 2+[n(n +1)]2+(n +1)2=[n(n +1)+1]2.理由如下:n 2+[n(n +1)]2+(n +1)2=[n(n +1)]2+2n 2+2n +1=[n(n +1)]2+2n(n +1)+1=[n(n +1)+1]2.专训21.B 2.2m(x -3y)3.解:(1)原式=x(2x -y).(2)原式=-4m 2n(m 2-4m +7).点拨:如果一个多项式第一项含有“-”号,一般要将“-”号一并提出,但要注意括号里面的各项要改变符号.4.解:(1)原式=a(b -c)-(b -c)=(b -c)(a -1).(2)原式=15b(2a -b)2+25(2a -b)2=5(2a -b)2(3b +5).点拨:将多项式中的某些项变形时,要注意符号的变化.5.解:(1)原式=x 4y 4-16=(x 2y 2+4)(x 2y 2-4)=(x 2y 2+4)(xy +2)(xy -2).(2)原式=(x 2+y 2+2xy)(x 2+y 2-2xy)=(x +y)2(x -y)2.(3)原式=(x 2+6x +9)2=[(x +3)2]2=(x +3)4.点拨:因式分解必须分解到不能再分解为止,如第(2)题不能分解到(x 2+y 2+2xy)(x 2+y 2-2xy)就结束了.6.解:(1)原式=(x -1)-b 2(x -1)=(x -1)(1-b 2)=(x -1)(1+b)(1-b).(2)原式=-3x 3(x 4-8x 2+16)=-3x 3(x 2-4)2=-3x 3(x +2)2(x -2)2.7.解:原式=(x +3)(x +4)+(x +3)·(x -3)=(x +3)[(x +4)+(x -3)]=(x +3)(2x +1).点拨:解此题时,表面上看不能分解因式,但通过局部分解后,发现有公因式可以提取,从而将原多项式因式分解.8.解:(1)原式=x 2+4x +4=(x +2)2.(2)原式=4xy -4x 2-y 2=-(4x 2-4xy +y 2)=-(2x -y)2.点拨:通过观察发现此题不能直接分解因式,但运用整式乘法法则展开后,便可以运用公式法因式分解.9.解:(1)原式=(m 2-mn)+(mx -nx)=m(m -n)+x(m -n)=(m -n)(m +x).(2)原式=4-(x 2-2xy +y 2)=22-(x -y)2=(2+x -y)(2-x +y).10.解:原式=x 4+x 2+14-x 2=⎝ ⎛⎭⎪⎫x 2+122-x 2 =⎝ ⎛⎭⎪⎫x 2+x +12(x 2-x +12). 点拨:此题直接分解因式很困难,考虑到添加辅助项使其符合公式特征,因此将原式添上x 2与-x 2两项后,便可通过分组使其符合平方差公式的结构特征,从而将原多项式进行因式分解.11.解:原式=a(x +y -z)+b(x +y -z)-c(x +y -z)=(x +y -z)(a +b -c).12.解:原式=(x +y)2-4(x +y)+4=(x +y -2)2.点拨:本题把x +y 这一整体“当”作完全平方公式中的字母a.13.解:原式=abc 2+abd 2+cda 2+cdb 2=(abc 2+cda 2)+(abd 2+cdb 2)=ac(bc +ad)+bd(ad +bc)=(bc +ad)(ac +bd).点拨:本题“拆”开原式中的两个整体,重新分组,可谓“柳暗花明”,出现转机.14.解:原式=(x 2-4x +4)-(y 2-6y +9)=(x -2)2-(y -3)2=(x +y -5)(x -y +1).点拨:这里巧妙地把-5拆成4-9.“凑”成(x 2-4x +4)和(y 2-6y +9)两个整体,从而运用公式法分解因式.15.解:(1)设a 2+2a =m ,则原式=(m -2)(m +4)+9=m 2+4m -2m -8+9=m 2+2m +1=(m +1)2=(a 2+2a +1)2=(a +1)4.(2)设b 2-b =n ,则原式=(n +1)(n +3)+1=n 2+3n +n +3+1=n 2+4n +4=(n +2)2=(b 2-b +2)2.专训31.C2.解:(1)x 2y -xy 2=xy(x -y).把x -y =1,xy =2 018代入上式,原式=xy(x -y)=2 018.(2)8x 3(x -3)+12x 2(3-x)=8x 3(x -3)-12x 2(x -3)=4x 2(x -3)(2x -3).当x =32时,原式=4×⎝ ⎛⎭⎪⎫322×⎝ ⎛⎭⎪⎫32-3×⎝ ⎛⎭⎪⎫2×32-3=0. (3)a 2b +2a 2b 2+ab 2=ab(a +2ab +b)=ab[(a +b)+2ab].把a +b =23,ab =2代入上式,原式=2×⎝ ⎛⎭⎪⎫23+2×2=913. 3.解:(1)原式=(4x +5y)(4x -5y).(2)原式=(x -2y)2.(3)原式=[(a +2b)+(2a -b)]·[(a +2b)-(2a -b)]=(3a +b)(3b -a).(4)原式=[(m 2+4m)+4]2=[(m +2)2]2=(m +2)4.(5)原式=(9x 2-y 2)(9x 2+y 2)=(3x +y)(3x -y)(9x 2+y 2).4.解:(1)原式=2.1×31.4+6.2×31.4+1.7×31.4=31.4×(2.1+6.2+1.7)=31.4×10=314.(2)原式=⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+13×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+14×⎝ ⎛⎭⎪⎫1-14×…×⎝ ⎛⎭⎪⎫1+1100×⎝ ⎛⎭⎪⎫1-1100 =32×12×43×23×54×34×…×101100×99100=12×101100=101200.(3)原式=1012-2×101×95+952=(101-95)2=36.5.解:(n +7)2-(n -5)2=[(n +7)+(n -5)][(n +7)-(n -5)]=(n +7+n -5)(n +7-n +5)=(2n +2)×12=24(n +1).因为24(n +1)中含有24这个因数,所以(n +7)2-(n -5)2能被24整除.6.解:因为a 2-b 2=ac -bc ,所以(a -b)(a +b)=c(a -b).所以(a -b)(a +b)-c(a -b)=0.所以(a -b)(a +b -c)=0.因为a ,b ,c 是△ABC 的三边长,所以a +b -c ≠0.所以a -b =0.所以a =b.所以△ABC 为等腰三角形.7.解:此三角形是等边三角形.理由如下:∵a 2+2b 2+c 2-2ab -2bc =0,∴a 2-2ab +b 2+b 2-2bc +c 2=0.即(a -b)2+(b -c)2=0.∴a -b =0且b -c =0.∴a =b 且b =c.∴a =b =c.∴此三角形是等边三角形.8.思路导引:(1)按公因式分组,第一、二项有公因式a ,第三、四项有公因式c ,各自提取公因式后均剩下(a -b);(2)按系数特点分组,由系数特点知第一、三项为一组,第二、四项为一组.解:(1)原式=a(a-b)+c(a-b)=(a-b)(a+c).(2)原式=(x3-x)+(6x2-6)=x(x2-1)+6(x2-1)=(x2-1)(x+6)=(x+1)(x-1)(x +6).9.解:(1)原式=x2-y2-2x-4y-4+1=(x2-2x+1)-(y2+4y+4)=(x-1)2-(y +2)2=[(x-1)+(y+2)]·[(x-1)-(y+2)]=(x+y+1)(x-y-3).(2)原式=x4+4x2-4x2+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2).点拨:拆项和添项是在因式分解难以进行的情况下的一种辅助方法,通过适当的“拆项”或“添项”后再分组,以达到最终因式分解的目的.10.解:令m2-2m=y,则原式=(y-1)(y+3)+4=y2+2y-3+4=y2+2y+1=(y+1)2.将y=m2-2m代入上式,则原式=(m2-2m+1)2=(m-1)4.11.解:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2=ab[(a+b)2-4ab].因为a+b=1,ab=316,所以原式=316×⎝⎛⎭⎪⎫12-4×316=364.点拨:恒等变形的最后一步应用(a-b)2=a2-2ab+b2=a2+2ab+b2-4ab=(a+b)2-4ab,这一变形的目的是使所求的式子里含a+b这样的项.。
专训一:分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:设参数求值、活用公式求值、整体代入法求值、巧变形法求值等.直接代入法求值1.(2015·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x4的值.3.已知x +y =12,xy =9,求x2+3xy +y2x2y +xy2的值.整体代入法求值4.已知xy+z+yz+x+zx+y=1,且x+y+z≠0,求x2y+z+y2x+z+z2x+y的值.巧变形法求值5.已知实数x满足4x2-4x+1=0,求2x+12x的值.设参数求值6.已知x2=y3=z4≠0,求x2-y2+2z2xy+yz+xz的值.专训二:六种常见的高频考点名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.分式的概念及分式有、无意义的条件1.在式子2x ,13(x +y),x π-3,5a -x ,x +3(x +1)(x -2)中,分式有( ) A .2个 B .3个 C .4个 D .5个2.若分式2x -5有意义,则x 的取值范围是( ) A .x ≠5 B .x ≠-5C .x >5D .x >-53.若分式x2-13x -3的值为0,则( ) A .x =-1 B .x =1 C .x =±1 D .x =04.如果一个分式含有两个字母a ,b ,但不论a ,b 为何值,分式始终有意义,这样的分式可以是________(只填一个符合条件的分式即可).5.若当x =1时,分式x +ax -b 的值为0;当x =3时,分式x +a x -b无意义,则a +b 的值等于________.分式的基本性质6.若将分式2aa +b 中,a ,b 的值同时扩大到原来的5倍,则此分式的值( ) A .是原来的10倍 B .是原来的5倍C .是原来的15 D .不变 7.约分:(1)a2-4a2-4a +4; (2)x -1x2-2x +1.8.通分:(1)8-3m2n ,35mn2; (2)a -1a2+2a +1,4a2-1.分式的有关运算9.下列运算中,正确的个数是( ) ①m4n3·n4m2=m n ; ②x -y x +y ÷(y -x)·1x -y =-1x2-y2;③m a -n b =m -n a -b ; ④a -2a2-4+1a +2=2a -2.A .0B .1C .2D .310.计算a +1a2-2a +1÷⎝ ⎛⎭⎪⎫1+2a -1的结果是( ) A .1a -1 B .1a +1C .1a2-1D .1a2+111.(2015·临沂)计算:a a +2-4a2+2a =__________.12.化简:⎝ ⎛⎭⎪⎫1-1m +1(m +1)=________.13.计算下列各题.(1)4a a2-1+1+a 1-a -1-a 1+a ;(2)m m +3-69-m2÷2m -3.14.先化简x2+2x x -1·⎝ ⎛⎭⎪⎫1-1x ,然后请自选一个你喜欢的x 的值代入原式的值.整数指数幂15.下列计算正确的是( )A .x 2·x -3=2xB .x 2÷x 6=1x4 C .(-x-3)2=x 6D .⎝ ⎛⎭⎪⎫-13-2=1916.下列说法正确的是( ) A .⎝ ⎛⎭⎪⎫-12-2与22互为相反数 B .⎝ ⎛⎭⎪⎫-12-2与-22互为相反数 C .⎝ ⎛⎭⎪⎫-12-2与2-2互为相反数 D .⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-12-2-220的值为1 17.计算(π-3)0+(-2)-3=________.18.在电子显微镜下测得一个圆球体细胞的直径是5×10-5 cm ,则由2×105个这样的细胞排成的细胞链的长是________ cm .可化为一元一次方程的分式方程及其应用19.分式方程x x -1=23x -3的解是( ) A .x =-16 B .x =23 C .x =13 D .x =5620.若关于x 的方程x +2x -1=1+ax -2的解为x =3,则a 等于( )A .1B .32C .0D .-1221.(2015·菏泽)解分式方程:2x2-4+xx -2=1.22.进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务,这是记者与驻军工程指挥官的一段对话:(第22题)通过这段对话,请你求出该地驻军原来每天加固的米数.数学思想方法的应用a 数形结合思想23.如图,点A ,B 在数轴上,它们所表示的数分别是-4,2x +23x -5,且点A ,B 到原点的距离相等,求x 的值.(第23题) b 整体思想24.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.c 消元思想25.已知2x-3y+z=0,3x-2y-6z=0,且z≠0,求的值.答案专训一1.解:原式=[2a+1+a+2(a+1)(a-1)]·a-1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1.当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x ≠0,∴x +1x =5. ∴x 4+1x4=⎝ ⎛⎭⎪⎫x2+1x22-2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +1x 2-22-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x2+3xy +y2x2y +xy2=x2+2xy +y2+xy xy (x +y )=(x +y )2+xyxy (x +y ) 因为x +y =12,xy =9,所以原式=122+99×12=1712. 4.解:因为x +y +z ≠0,所以给已知等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x+z (x +y +z )x +y=x +y +z ,即x2y +z +x (y +z )y +z +y2z +x +y (z +x )z +x +z2x +y +z (x +y )x +y =x +y +z.所以x2y +z +y2z +x +z2x +y +x +y +z =x +y +z.所以x2y +z +y2z +x +z2x +y =0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0,∴(2x -1)2=0,∴2x =1.∴原式=1+11=2.6.解:设x 2=y 3=z4=k ≠0,则x =2k ,y =3k ,z =4k.所以x2-y2+2z2xy +yz +xz=(2k )2-(3k )2+2(4k )22k·3k +3k·4k +2k·4k=27k226k2=2726. 专训二1.B 2.A 3.A4.ba2+1(答案不唯一) 5.2 6.D7.解:(1)原式=(a +2)(a -2)(a -2)2=a +2a -2.(2)原式=x -1(x -1)2=1x -1. 8.解:(1)最简公分母是15m 2n 2.∴8-3m2n =-40n 15m2n2,35mn2=9m 15m2n2. (2)最简公分母是(a +1)2(a -1). ∴a -1a2+2a +1=(a -1)2(a +1)2(a -1), 4a2-1=4(a +1)(a +1)2(a -1). 9.B 10.A 11.a -2a 12.m 13.解:(1)原式=4a(a +1)(a -1)-(a +1)2(a -1)(a +1)-(a -1)(1-a )(a +1)(a -1)=4a -(a +1)2+(a -1)2a2-1=0.(2)原式=m m +3-6(3-m )(3+m )·m -32 =m m +3+3m +3=1.14.解:原式=x (x +2)x -1·x -1x =x +2.由题知x 不能取0,1,x 不妨取5,当x =5时,原式=x +2=7.15.B 16.B 17.78 18.10 19.B 20.B21.解:方程两边同时乘x 2-4,得2+x(x +2)=x 2-4,解得x =-3. 经检验,x =-3是原方程的解. 22.解:设原来每天加固x 米,根据题意得600x+4 800-6002x=9,解得x =300.检验:当x =300时,2x ≠0(或分母不等于0),∴x =300是原方程的解,故该地驻军原来每天加固300米.点拨:解决与对话有关的实际问题,应根据对话的内容确定相等关系,根据相等关系列出方程.23.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2,经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.24.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.25.解:由2x -3y +z =0,3x -2y -6z =0,z ≠0,得到⎩⎪⎨⎪⎧2x -3y =-z ,3x -2y =6z.解得⎩⎪⎨⎪⎧x =4z ,y =3z.所以,原式=16z2+9z2+z232z2+9z2-z2=.点拨:本题将z 看成已知数,解方程组求出x 与y ,然后代入原式消去x ,y 这两个未知数,从而简便求值,体现了消元思想.。
专训1变量之间的关系的表示法名师点金:1.变量之间的关系的表示方法共有三种:表格法,关系式法,图象法,它们分别从数、式和形的角度反映了变量之间的关系的本质.2.根据图象读取信息时,要先读懂题意,弄清图象横、纵轴所表示的实际意义,看图象上反映的是哪个变量随哪个变量变化,再将题意和图象结合起来进行分析,注意对图象中特殊的点、线段等的分析.表格法1.地表以下的岩层的温度和它处的深度有以下关系:深度/km 1 2 3 4 5 6 7温度/℃55 90 125 160 195 230 265(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)深度每增加1 km,温度增加多少摄氏度?(3)估计10 km深处的岩层温度是多少摄氏度.关系式法2.已知池中有水600 m3,每时抽出50 m3.(1)写出剩余水的体积Q(m3)与时间t(h)之间的关系式.(2)8 h后,池中还有多少水?(3)几时后,池中还有100 m3的水?3.如图,在长方形MNPQ中,MN=6,PN=4,动点R从点N出发,沿N→P→Q→M运动至点M处停止.设点R运动的路程为x,三角形MNR的面积为y.(1)当x=3时,y=______;当x=12时,y=______;当y=6时,x=________.(2)分别求当0<x<4,4≤x≤10,10<x<14时,y与x的关系式.【导学号:60052024】(第3题)图象法4.某车间的甲、乙两名工人分别同时生产同种零件,他们生产的零件数量y(个)与生产时间t(h)之间的关系如图所示.(1)根据图象填空:①甲、乙中,________先完成40个零件的生产任务;在生产过程中,________因机器故障停止生产________h.②当t=________时,甲、乙生产的零件个数相等.(2)谁在哪一段时间内的生产速度最快?求该段时间内他每时生产零件的个数.(第4题)专训2全章热门考点整合应用名师点金:变量之间的关系是初中数学的重要内容,是学习函数知识的基础,是各类考试常考内容,题型常以填空题、选择题的形式出现.本章考点可概括为:三个关系,一种思想.三个关系关系1表格与变量之间的关系1.2016年1~12月份某地的大米价格如下表所示:月份/月 1 2 3 4 5 6平均价格/(元/千克) 4.6 4.8 4.8 5.0 4.8 4.4月份/月7 8 9 10 11 12平均价格/(元/千克) 4.0 3.8 3.6 3.6 3.8 4.0(1)表中列出的是哪两个变量之间的关系?哪个是自变量,哪个是因变量?(2)自变量是什么值时,因变量的值最小?自变量是什么值时,因变量的值最大?(3)该地区哪一段时间大米平均价格在上涨?哪一段时间大米平均价格在下跌?(4)从表中可以得到该地区大米平均价格变化方面的哪些信息?年底的平均价格比年初是降了还是涨了?关系2关系式与变量之间的关系2.小明用的练习本可以到甲超市购买,也可以到乙超市购买.已知两超市的标价都是每本1元,但甲超市的优惠条件是购买10本以上,从第11本开始按标价的70%卖.乙超市的优惠条件是从第1本开始就按标价的85%卖.(1)当小明要买20本时,到哪个超市购买较省钱?(2)写出甲超市中,收款y甲(元)与购买本数x(本)(x>10)的关系式.(3)小明现有24元钱,最多可买多少本?关系3图象与变量之间的关系3.一辆汽车行驶在某一直路上,汽车离出发地的距离s(km)和行驶时间t(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车共行驶了多少千米?(2)汽车在行驶途中停留了多长时间?(3)汽车在每段行驶过程中的速度分别是多少?(4)汽车到达离出发地最远的地方后返回,则返回时用了多长时间?(第3题)一种思想——数形结合思想4.某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少?清洗时洗衣机中的水量是多少?(2)已知洗衣机的排水速度为19 L/min.如果排水时间是2 min,求排水结束时洗衣机中剩下的水量.(第4题)答案专训11.解:(1)反映了地表以下的岩层的温度和它处的深度之间的关系,深度是自变量,温度是因变量.(2)深度每增加1 km,温度增加35 ℃.(3)估计10 km深处的岩层温度是370 ℃.2.解:(1)Q=600-50 t(0≤t≤12).(2)当t=8时,Q=600-50×8=200.即8 h后,池中还有水200 m3.(3)当Q=100时,100=600-50 t,解得t=10.即10 h后,池中还有100 m3的水.3.解:(1)9;6;2或12(2)当0<x<4时,y=12×6x=3x;当4≤x≤10时,y=12×6×4=12;当10<x<14时,y=12×6×(14-x)=42-3x.4.解:(1)①甲;甲;2②3或5.5(2)甲在4~7 h内的生产速度最快;因为40-107-4=10(个),所以他在这段时间内每时生产10个零件.专训21.解:(1)表中列出的是该地区大米平均价格与月份两个变量之间的关系,月份是自变量,大米的平均价格是因变量.(2)自变量是9月,10月时,因变量的值最小,平均价格为3.6元/千克,自变量是4月时,因变量的值最大,平均价格为5.0元/千克.(3)从1月至4月,10月至12月大米的平均价格在上涨,从4月至9月大米的平均价格在下跌.(4)大米的平均价格随时间(月份)的变化而变化,价格随市场的需求而变动,年底比年初的平均价格降了.点拨:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.(4)题从表格中获取的信息不唯一,合理即可.2.解:(1)买20本时,在甲超市购买需用10×1+10×1×70%=17(元), 在乙超市购买需用20×1×85%=17(元), 所以买20本到两家超市购买花的钱一样. (2)y 甲=10×1+(x -10)×1×70%=0.7x +3(x >10).(3)由题意知乙超市收款y 乙(元)与购买本数x (本)间的关系式为y 乙=x ×1×85%=1720x .当y 甲=24时,24=0.7x 甲+3,x 甲=30;当y 乙=24时,24=1720x 乙,x 乙≈28.2,因此在乙超市最多可买28本. 所以拿24元钱最多可以买30本练习本(在甲超市购买). 点拨:注意关系式与方程的综合应用. 3.解:(1)240 km .(2)汽车在行驶途中停留了2-1.5=0.5(h ).(3)AB 段的行驶速度为80÷1.5=1603(km /h );BC 段的行驶速度为0;CD 段的行驶速度为(120-80)÷(3-2)=40(km /h );DE 段的行驶速度为120÷(4.5-3)=80(km /h ).(4)4.5-3=1.5(h ).点拨:根据图象获取信息,应正确把握横轴、纵轴表示的意义,准确地观察图象的变化及图象各部分所表示的实际意义.4.解:(1)洗衣机的进水时间是4 min ,清洗时洗衣机中的水量是40 L . (2)剩余水量为40-2×19=2(L ).。
设置强密码的技巧
设置强密码是一种保护账户安全的重要措施,以下是一些技巧可以帮助你设置强密码:
使用多个因素:使用大小写字母、数字和特殊字符等不同类型的组合来生成强密码。
这样可以增加密码的复杂度,减少被破解的可能性。
避免重复:不要使用相同的或相似的单词或短语作为密码。
如果有人已经使用了其中一个组合,那么其他人很难猜到你的密码。
保持简单易记:确保你的密码容易记住,但也要注意不要过于简单。
选择一个长而复杂的组合,并定期更换密码以防止黑客利用暴力破解。
定期更新:定期更改你的密码,特别是当有重要活动发生时(例如新的网站或应用程序)。
这可以防止黑客利用旧密码进入你的账户。
使用多平台:如果你在不同的设备上使用同一个账户,确保每个平台的密码都不同。
这样即使一个平台上的密码被破解,黑客也不能访问其他平台的账户。
需要注意的是,虽然这些技巧可以帮助你设置更强的密码,但并不能完全保证账户的安全性。
建议在输入密码时小心谨慎,并注意观察任何可疑的活动迹象。
如果有必要,可以使用双重身份验证功能来进一步提高账户安全性。
山龙系统密码口令
(实用版)
目录
1.山龙系统密码口令的背景介绍
2.山龙系统密码口令的构成方式
3.如何设置一个安全的山龙系统密码口令
4.如何破解或找回遗忘的山龙系统密码口令
5.结论
正文
1.山龙系统密码口令的背景介绍
山龙系统是一款广泛应用于各个领域的专业密码管理软件。
用户可以为每个账户设置一个独立的密码口令,以保护账户的安全。
然而,这也给用户带来了记忆和管理的困扰。
因此,了解如何设置和管理山龙系统密码口令至关重要。
2.山龙系统密码口令的构成方式
一个安全的山龙系统密码口令应包含大写字母、小写字母、数字和特殊符号,总长度至少为 8 个字符。
这样的组合可以增加密码的复杂度,提高账户的安全性。
3.如何设置一个安全的山龙系统密码口令
(1)选择一个容易记忆的句子或短语,将其中的单词转换为对应的大写字母、小写字母、数字和特殊符号。
例如,将“我是山龙系统的用户”转换为“WoShiShanLongTongXiDeYongHu”。
(2)在设置密码时,可以添加一些额外的字符,如生日、电话号码等,以增加密码的独特性。
(3)定期更换密码,以降低密码被破解的风险。
4.如何破解或找回遗忘的山龙系统密码口令
(1)如果忘记了密码,可以尝试通过邮箱或手机号码等方式找回。
(2)如果无法找回密码,可以尝试使用一些密码破解工具。
但请注意,使用这类工具存在一定风险,可能导致账户信息泄露。
5.结论
山龙系统密码口令是保护账户安全的重要手段。
用户应学会如何设置一个安全的密码口令,并定期更换,以降低账户被破解的风险。
2020-2021学年苏教版数学小升初衔接讲义(整合提升篇)专题05 拓展提高—分数问题试卷满分:100分考试时间:100分钟一.选择题(共5小题,满分10分,每小题2分)1.(2分)(2020•泰安)商店以80元一件的价格购进一批衬衫,并以25%的利润率出售,过了一段时间发现还剩下150件,于是打九折出售,又过了一段时间发现一共卖掉了总量的90%,于是将最后几件按进货价出售,最后商店共获利2300元,则商店一共进了多少件衬衫?()A.180件B.200件C.240件D.300件【思路引导】设商店一共进了x件衬衫,则有(x﹣150)件衬衫是按80×(1+25%)=100元出售的,有(1﹣90%)x=0.1x件衬衫是按进货价80元出售的,有(150﹣0.1x)件衬衫是按100×0.9=90元出售的,由“共获利2300元”可得方程(100﹣80)(x﹣150)+(90﹣80)(150﹣0.1x)=2300元,据此列方程求解.【完整解答】设商店一共进了x件衬衫.(100﹣80)(x﹣150)+(90﹣80)(150﹣0.1x)=230020x﹣3000+1500﹣x=230019x=3800x=200答:商店一共进了200件衬衫.故选:B.2.(2分)(2020•鄞州区)疫情期间医生们夜以继日、争分夺秒的工作着,他们是最美的逆行者.张医生在某日的工作和休息时间的比是7:5,他这一天工作的时间是()A.14小时B.10小时C.7小时D.5小时【思路引导】一天是24小时,工作和休息时间的比是7:5,也就是工作的时间占全天时间的,根据一个数乘分数的意义,用乘法解答.【完整解答】24×==14(小时)答:他一天工作的时间是14小时.3.(2分)(2019•长沙)某种皮衣定价是1150元,以8折售出仍可以盈利15%,某顾客再在8折的基础上要求再让利150元,如果真是这样,那么商店是盈利还是亏损?()元.A.亏50 B.盈40 C.亏30 D.盈20【思路引导】先把定价看作单位“1”,8折是指现价是原价的80%,求出定价;再把进价看成单位“1”,它的(1+15%)就是8折后的价格,由此用除法求出进价,然后用8折后的价格减去150元与进价比较,进而求出它们的差即可。
专训一:图表信息问题的四种类型名师点金:二元一次方程组的应用是初中教材中的重要内容,也是中考的热点内容之一,特别是近几年中考中,将已知条件以图形或图表等形式给出,出题手法新颖,给人耳目一新的感觉.实物信息类1.如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm,演员踩在高跷上时,头顶距离地面的高度为224 cm,设演员的身高为x cm,高跷的长度为y cm,求x,y的值.(第1题)表格信息类2.(中考·某某)小林在某商店购买商品A,B共三次,只有一次购买时,购买商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如下表:购买商品A 的数量/个购买商品B的数量/个购买总费用/元第一次购物 6 5 1 140 第二次购物 3 7 1 110 第三次购物9 8 1 062(1)小林以折扣价购买商品A,B是第________次购物;(2)求出商品A,B的标价;(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品的?几何图形类3.某药业集团生产的某种药品的包装盒的表面展开图如图所示.已知长方体盒子的长比宽多4 cm,求这种药品包装盒的体积.(第3题)对话信息类4.在“五一”期间,小明、小亮等同学随家人一同到某公园游玩,下图是购买门票时,小明与他爸爸的对话.试根据图中的信息,解答下列问题:(1)小明他们一共去了几个大人?几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?说明理由.(第4题)专训二:巧用一次方程(组)选择方案名师点金:解方案选择题要仔细审题,弄清题目中条件之间的关系和作用;在选择合适的方案之前,应分析都有哪几种可行的方案,结合求出的每种方案的结果作出判断,培养把实际问题抽象为数学问题的能力和分析判断能力.旅行社收费方案决策1.X校长暑假将带领几名学生去旅游,甲旅行社说:“如果校长买全票一X,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按全票价的6折优惠”,全票价为240元.(1)若学生有3人和5人,甲旅行社收费多少元?乙旅行社呢?(2)学生有多少人时,两个旅行社的收费相同?运输方式方案决策2.某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时.其他主要参考数据如下:运输工具途中平均速度(千米/时) 运费(元/千米) 装卸费用(元)火车100 15 2 000汽车80 20 900(1)如果汽车的总支出费用比火车多1 100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(2)如果A市与B市之间的路程为s千米,且知道火车与汽车在路上需临时停车耽误的时间分别为2小时和3.1小时.你若是A市水果批发部门的经理,要想将这批水果运往B 市销售,你认为选择哪种运输方式比较合算?购买方案决策3.某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你帮助设计一下商场的进货方案.上网计费方案决策4.某地上网有两种收费方式,用户可任选其一:(A)计时制:2.8元/时;(B)包月制:60元/月.此外,每种收费方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种收费方式比较合算?(2)某用户有120元钱用于上网(一个月),选用哪种收费方式比较合算? (3)请你为用户设计一个方案,使用户能合理地选择收费方式.专训三:几种常见的热门考点名师点金:一元一次方程及方程组是初中数学的重点内容,也是中考的必考内容,其命题方向主要围绕方程(组)的相关概念、解法及应用几个方面.常见的题型有选择题、填空题、解答题,难度一般为中等.一次方程(组)的相关概念1.下列方程组是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +y =2y +z =3B .⎩⎪⎨⎪⎧2x =3y 2x +y =5C .⎩⎪⎨⎪⎧y =2x -2y =6D .⎩⎪⎨⎪⎧x +2y =3xy =6 2.若关于x 的方程ax +3=4x +1的解为正整数,则整数a 的值为( )A .3或2B .4C .5D .63.已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =2的解为⎩⎪⎨⎪⎧x =2,y =1,则2a -3b 的值为( )A .4B .6C .-6D .-44.若关于x 的方程(3-m)x2|m|-5+7=2是一元一次方程,则m =________.等式的基本性质5.下列等式变形正确的是( )A .如果S =12ab ,那么b =S 2aB .如果12x =6,那么x =3C .如果x -3=y -3,那么x -y =0D .如果mx =my ,那么x =y6.已知x =y≠-12,且xy≠0,下列各式:①x-3=y -3;②5x =y 5;③x 2y +1=y2x +1;④2x+2y =0,其中一定正确的有( )A .1个B .2个C .3个D .4个7.如图,标有相同字母的物体的质量相同,若A 的质量为20克,当天平处于平衡状态时,B 的质量为________克.(第7题)一次方程(组)的解法8.下列方程组适合用代入法消元的是( ) A .⎩⎪⎨⎪⎧y =12(x -y )+13x -2y =5B .⎩⎪⎨⎪⎧x =y5x -3y =6C .⎩⎪⎨⎪⎧2x -3y =13x +2y =7D .⎩⎪⎨⎪⎧2x +3y =43x +4y =59.解方程组⎩⎪⎨⎪⎧2x +3y =12,①3x -5y =2②时,为达到消元的目的,应该进行如下变形:①×________-②×________.10.解下列方程: (1)12-(3x -5)=7-5x ;(2)2x -56+3-x4=1.11.解下列方程组:(1)⎩⎪⎨⎪⎧2x +5=y ,3x +y =10; (2)⎩⎪⎨⎪⎧3x -4y =4,3x -2y =8;(3)⎩⎪⎨⎪⎧x 4+y 2=4,3x -2y =16; (4)⎩⎪⎨⎪⎧x -4y +z =-3,2x +y -z =18,x -y -z =7.一次方程(组)的应用12.“六一”儿童节前夕,某超市用3 360元购进A 、B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A .⎩⎪⎨⎪⎧x +y =12036x +24y =3 360B .⎩⎪⎨⎪⎧x +y =12024x +36y =3 360C .⎩⎪⎨⎪⎧36x +24y =120x +y =3 360D .⎩⎪⎨⎪⎧24x +36y =120x +y =3 360 13.某种商品因换季准备打折出售.如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,那么这种商品的定价是多少元?14.为建设节约型、环境友好型社会,克服因干旱而造成的电力紧X困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.小X家2015年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少.思想方法a.转化思想15.二元一次方程x+y=7的非负整数解有( )A.6个B.7个C.8个D.无数个b.整体思想16.有甲、乙、丙三种商品,购买甲3件、乙2件、丙1件共需315元;购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙三种商品各一件共需________元.c.数形结合思想17.如图,数轴上两个动点A,B开始时所表示的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(第17题)(1)A,B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,C点在-10处,求此时B点的位置.d.逆向思维法18.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶喝了.这三天,正好把妈妈买的全部饮料喝光,则李飒的妈妈买的饮料一共有多少瓶?答案专训一1.解:根据题意列方程组,得⎩⎪⎨⎪⎧x =2y ,x +y -28=224,解得⎩⎪⎨⎪⎧x =168,y =84. 故x 的值为168,y 的值为84.2.解:(1)三(2)设商品A ,B 的标价分别为x 元、y 元.根据题意,得⎩⎪⎨⎪⎧6x +5y =1 140,3x +7y =1 110,解得⎩⎪⎨⎪⎧x =90,y =120. 答:商品A ,B 的标价分别为90元、120元.(3)设商品A ,B 均打a 折出售.根据题意,得(9×90+8×120)×a 10=1 062. 解得a =6.答:商店是打6折出售这两种商品的.3.解:方法一:设这种药品包装盒的高为x cm ,则宽为14-2x 2cm ,长为(13-2x) cm . 依题意得13-2x -14-2x 2=4. 解得x =2.方法二:设这种药品包装盒的宽为x cm ,高为y cm ,则长为(x +4) cm .根据题意,得⎩⎪⎨⎪⎧2x +2y =14,x +4+2y =13,解得⎩⎪⎨⎪⎧x =5,y =2. 故这种药品包装盒的长为9 cm ,宽为5 cm ,高为2 cm .所以体积为9×5×2=90(cm 3).答:这种药品包装盒的体积为90 cm 3.4.解:(1)设一共去了x 个大人,y 个学生,则⎩⎪⎨⎪⎧x +y =12,35x +35y×50%=350,解得⎩⎪⎨⎪⎧x =8,y =4. 答:一共去了8个大人,4个学生.(2)按团体票一次性购买16X 门票更省钱.理由:按团体票一次性购买16X 门票需要35×60%×16=336(元),因为336<350,所以按团体票一次性购买更省钱.专训二1.解:(1)当有学生3人时,甲:240+240×0.5×3=600(元);乙:(3+1)×240×0.6=576(元).当有学生5人时,甲:240+240×0.5×5=840(元);乙:(5+1)×240×0.6=864(元).(2)设学生有x 人.由题意,得240+240×0.5x=(x +1)×240×0.6.解得x =4.答:学生有4人时,两个旅行社的收费相同.2.解:(1)设所求路程为x 千米,则选择火车用的钱数为(200x 100+15x +2 000)元,选择汽车用的钱数为(200x 80+20x +900)元. 由题意,得200x 100+15x +2 000=200x 80+20x +900-1 100,解得x =400. 答:本市与A 市之间的路程为400千米.(2)选择火车用的钱数为⎝⎛⎭⎪⎫s 100+2×200+15s +2 000=17s +2 400(元),选择汽车用的钱数为⎝ ⎛⎭⎪⎫s 80+3.1×200+20s +900=22.5s +1 520(元). 当两种运输方式所用钱数相同时,即17s +2 400=22.5s +1 520,解得s =160. 所以当s 等于160时,两种运输方式一样合算;当s 小于160时,选择汽车运输比较合算;当s 大于160时,选择火车运输比较合算.3.解:设购进甲种电视机x 台,乙种电视机y 台,丙种电视机z 台.若购进甲、乙两种电视机,列方程组为⎩⎪⎨⎪⎧1 500x +2 100y =90 000,x +y =50,解得⎩⎪⎨⎪⎧x =25,y =25.即购进甲种电视机25台,乙种电视机25台.若购进甲、丙两种电视机,列方程组为⎩⎪⎨⎪⎧1 500x +2 500z =90 000,x +z =50,解得⎩⎪⎨⎪⎧x =35,z =15.即购进甲种电视机35台,丙种电视机15台.若购进乙、丙两种电视机,列方程组为⎩⎪⎨⎪⎧2 100y +2 500z =90 000,y +z =50,解得⎩⎪⎨⎪⎧y =87.5,z =-37.5.(不合题意,舍去) 综上所述,共有两种方案:一是购进甲种电视机25台,乙种电视机25台;二是购进甲种电视机35台,丙种电视机15台.4.解:(1)计时制:20×(2.8+1.2)=80(元),包月制:60+20×1.2=84(元).因为80<84,所以选用计时制比较合算.(2)120÷(2.8+1.2)=30(小时),(120-60)÷1.2=50(小时).因为30小时<50小时,所以选用包月制比较合算.(3)设用户每月上网x 小时,两种方式的费用一样.由题意得:(2.8+1.2)x =60+1.2x ,解得x =1507. 所以当用户每月上网时间大于1507小时时,选用包月制比较合算; 当用户每月上网时间小于1507小时时,选用计时制比较合算; 当用户每月上网时间等于1507小时时,选用计时制和包月制一样合算. 专训三1.C 2.A 3.B 4.-3 5.C 6.B 7.10 8.B 9.3;210.解:(1)12-(3x -5)=7-5x ,12-3x +5= 7-5x ,2x = -10,x = -5.(2)2x -56+3-x 4=1, 2(2x -5)+3(3-x)= 12,4x -10+9-3x = 12,x = 13.11.解:(1)⎩⎪⎨⎪⎧2x +5=y ,①3x +y =10,② 将①代入②,得3x +(2x +5)=10,解得x =1.将x =1代入①,得y =7.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =7. (2)⎩⎪⎨⎪⎧3x -4y =4,①3x -2y =8,② ①-②,得-2y =-4,解得y =2.将y =2代入①,得3x -8=4,解得x =4.所以原方程组的解为⎩⎪⎨⎪⎧x =4,y =2. (3)⎩⎪⎨⎪⎧x 4+y 2=4,①3x -2y =16,②整理原方程组得⎩⎪⎨⎪⎧x +2y =16,③3x -2y =16,② ③+②,得4x =32,解得x =8.将x =8代入③,得8+2y =16,解得y =4.所以原方程组的解为⎩⎪⎨⎪⎧x =8,y =4.(4)⎩⎪⎨⎪⎧x -4y +z =-3,①2x +y -z =18,②x -y -z =7,③①+②,得3x -3y =15,即x -y =5,④②-③,得x +2y =11,⑤联立④⑤组成方程组⎩⎪⎨⎪⎧x -y =5,x +2y =11, 解得⎩⎪⎨⎪⎧x =7,y =2.将⎩⎪⎨⎪⎧x =7,y =2代入③,得7-2-z =7,解得z =-2. 所以原方程组的解为⎩⎪⎨⎪⎧x =7,y =2,z =-2.12.B13.解:设这种商品的定价是x 元.根据题意,得0.75x +25=0.9x -20,解得x =300.答:这种商品的定价是300元.14.解:设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时.由题意得⎩⎪⎨⎪⎧80x +(100-80)y =68,80x +(120-80)y =88,解得⎩⎪⎨⎪⎧x =0.6,y =1. 答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.15.C 16.15017.解:(1)设B 点的运动速度为x 个单位/秒,列方程为82=1. 答:B 点的运动速度为1个单位/秒.(2)设两点运动t 秒时相距6个单位,①当A 点在B 点的左侧时,2t -t =(4+8)-6,解得t =6;②当A 点在B 点的右侧时,2t -t =(4+8)+6,解得t =18.答:当A ,B 两点运动6秒或18秒时相距6个单位.(3)设C 点运动的速度为y 个单位/秒,始终有CB∶CA=1∶2,则列方程得2-y =2(y-1).解得y =43.当C 点停留在-10处时,所用的时间为1043=152(秒), 此时B 点所表示的数为4-152×1=-72. 答:此时B 点的位置是-72所对应的点处. 点拨:本题利用数形结合思想,运用数轴辅助分析题意,找到相等关系,列方程得以求解.18.解:设第三天李飒喝饮料之前,还有x 瓶饮料,则x 2+12=x.解得x =1, 这也是第二天喝饮料之后所剩的饮料瓶数.设第二天喝饮料之前还有y 瓶饮料,则y -⎝ ⎛⎭⎪⎫y 2+12=1.解得y =3,这也是第一天喝饮料之后所剩的饮料瓶数.再设第一天喝饮料之前有z 瓶饮料,则z -⎝ ⎛⎭⎪⎫z 2+12=3. 解得z =7,这就是李飒的妈妈买的饮料的瓶数.答:李飒的妈妈买的饮料一共有7瓶.点拨:此题若按常规思维方法考虑非常困难,我们可利用逆向思维反向推理,问题便迎刃而解.。
信息系统密码应用改造方案信息系统密码应用的改造方案取决于具体的需求、系统结构和安全标准。
以下是一些建议的改造方案:使用更强大的密码算法:确保密码存储和传输使用目前认为安全的密码学算法,如 bcrypt、Argon2 等。
避免使用弱密码算法,如MD5 或 SHA-1。
密码哈希与加盐:对密码进行哈希处理,并引入盐值以增加密码的安全性。
盐值是一个随机数,对每个用户的密码都是唯一的,这样即使用户使用相同的密码,其哈希值也会不同。
双因素认证(2FA):引入双因素认证,结合密码与其他身份验证因素(如手机验证码、硬件令牌等),提高系统的安全性。
定期密码策略检查:定期要求用户更改密码,并确保密码的复杂性。
同时,避免强制用户在短时间内频繁更改密码,以减少用户采用弱密码的可能性。
密码传输加密:确保在用户登录时以及在网络上传输密码时使用加密通信协议(如TLS/SSL)来保护密码的传输过程。
密码找回机制:提供安全而有效的密码找回机制,例如通过安全问题、短信验证码等方式。
确保找回流程本身不成为系统的弱点。
监控与审计:实施系统监控和审计机制,记录用户登录、密码重置等操作,以便追踪潜在的安全问题。
密码存储加密:如果需要在数据库中存储用户密码,确保对密码进行适当的加密,采用适当的密钥管理方法。
密码策略管理:针对不同用户群体制定合适的密码策略,并定期审查和更新这些策略。
教育与培训:对系统用户进行安全意识教育和培训,强调密码安全的重要性,以降低社会工程学攻击的风险。
这些方案可能需要根据具体情况进行调整和组合使用。
同时,与系统的其他安全措施(如身份验证、访问控制等)相结合,以建立全面的信息系统安全体系。
专训1.运用定义法列方程组求字母或式子的值名师点金:1.运用相关概念列方程组求字母系数的值的问题,一般需要从满足概念的条件入手,通过方程建模,从而求出适合这个条件的字母系数的值.2.有的条件常以隐蔽的形式出现,我们要从题目中去挖掘,同时还要注意一些限制条件.利用二元一次方程(组)的定义求字母或式子的值1.若方程(m -2)x n +ym 2-3=0是二元一次方程,则m =________,n =________.2.已知方程组⎩⎨⎧3x -y |m -2+n|-1=0,(m +1)x3n +m +2+2=0是关于x ,y 的二元一次方程组,求2m +4n 的值.3.若方程组⎩⎨⎧(2a -b )x 2+2x -y =4,3x +(b +5)y 2=0是关于x ,y 的二元一次方程组,求a 2-2b 的值.利用方程组的解求方程组中的字母系数的值4.若关于x ,y 的方程组⎩⎨⎧ax -by =1,3bx -ay =-1的解为⎩⎨⎧x =3,y =5,求a ,b 的值.利用同类项的定义求字母或式子的值5.(中考·庆阳)若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是________.6.若-x a +b y 5与3x 4y 2b -a 的和是单项式,求(2a +b)(a -3b)的值.利用几个非负数和为0求式子的值7.已知(x -y +3)2+|2x +y|=0,求(x +y)2 016的值.专训2.根据方程组中方程的特征巧解方程组名师点金:1.解二元一次方程组的常用方法是代入法和加减法,这两种方法有着不同的适用范围.2.解二元一次方程组除以上两种方法外,还有一些特殊解法.如:整体代入法、整体加减法、设辅助元法、换元法等,因此解方程组时不要急于求解,要先观察方程组的特点,因题而异,灵活选择方法,才能事半功倍.用整体代入法解方程组1.用代入消元法解方程组⎩⎨⎧4x +8y =12,①3x -2y =5.②2.解方程组⎩⎪⎨⎪⎧23(2x +y )=4,①34x +56(2x +y )=8.②用整体加减法解方程组3.解方程组⎩⎨⎧3x +2(x +y )=-1,①3y -4(x +y )=5.②反复运用加减法解方程组4.解方程组⎩⎨⎧2 017x -2 018y =2 016,①2 016x -2 015y =2 017.②用设辅助元法解方程组5.解方程组⎩⎪⎨⎪⎧x 2=y 3,①4x -3y =3.②【导学号:05742065】6.解方程组⎩⎨⎧=,①=,②x +y +z =60.③用换元法解方程组7.解方程组⎩⎪⎨⎪⎧x +y 2+x -y 3=6,2(x +y )-3x +3y =24.专训3.全章热门考点整合应用名师点金:二元一次方程组一般很少单独考查,它常常与其他知识综合起来考查,利用二元一次方程组的工具性,可使复杂的问题变得简单.其核心考点可概括为:三个概念,两个解法,三个应用,一个技巧,两种思想.三个概念概念1:二元一次方程(组)1.下列方程组是二元一次方程组的是( )A .⎩⎨⎧x +y =2,y +z =3B .⎩⎪⎨⎪⎧2x =3y ,2x +y =5C .⎩⎨⎧y =2,x -2y =6D .⎩⎨⎧x +2y =3,xy =62.已知方程3x +y =12有很多解,请你写出互为相反数的一组解是________.3.已知方程组⎩⎨⎧ax -by =4,ax +by =2的解为⎩⎨⎧x =2,y =1,则2a -3b 的值为( ) A .4 B .6 C .-6 D .-4概念3:三元一次方程组4.下列各方程组中,三元一次方程组有( )①⎩⎨⎧x +y =3,y +z =4,z +x =2; ②⎩⎪⎨⎪⎧x +y -z =5,1x -y +z =-3,2x -y +2z =1; ③⎩⎨⎧x +3y -z =1,2x -y +z =3,3x +y -2z =5; ④⎩⎨⎧x +y -z =7,xyz =1,x -3y =4A .1个B .2个C .3个D .4个两个解法解法1:二元一次方程组的解法5.(中考·枣庄)已知a ,b 满足方程组⎩⎨⎧2a -b =2,a +2b =6,则3a +b 的值为________. 6.解方程组:(1)⎩⎨⎧3x +4y =19①,x -y =4②.(2)⎩⎪⎨⎪⎧x +4y =14①,x -34-y -33=112②.7.解方程组:⎩⎨⎧x ∶y =3∶4,y ∶z =4∶5,x +y +z =36.8.在等式y =ax 2+bx +c 中,当x =1时,y =0;当x =2时,y =4;当x =3时,y =10.当x =4时,y 的值是多少?三个应用应用1:二元一次方程组与其他概念的综合应用9.已知2a m +1b m +n 与3a 2m -n b 3是同类项,则(m -n)2 017的值等于( )A .1B .-1C .2 017D .-2 01710.当m ,n 满足关系________时,关于x ,y 的方程组⎩⎨⎧x -5y =2m ,2x +3y =m -n的解互为相反数.应用2:二元一次方程与几何的综合应用11.如图,在四边形ABCD 中,∠C +∠D =180°,∠A -∠B =40°,求∠B 的度数.(第11题)12.如图是正方体的表面展开图,若正方体相对的两个面上的数或含字母的式子的值相等,求x 和y 的值.(第12题)13.(中考·北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为________________.14.(中考·南通)有大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用方程(组)解决的问题,并写出这个问题的解答过程.【导学号:05742066】一个技巧——换元法15.解方程组:⎩⎪⎨⎪⎧2x +13+4y -32=2,3(2x +1)-2(4y -3)=5.两种思想思想1:转化思想16.已知|3a -b -4|+|4a +b -3|=0,求2a -3b 的值.思想2:整体思想17.解方程组:⎩⎪⎨⎪⎧2x +3y -2=0,①2x +3y +57-2y =9.②答案专训11.-2;1 :根据二元一次方程的定义,可知⎩⎨⎧m 2-3=1,n =1且m -2≠0,解得⎩⎨⎧m =-2,n =1. 2.解:根据二元一次方程组的定义,得⎩⎨⎧m -2+n =1,3n +m +2=1或⎩⎨⎧-(m -2+n )=1,3n +m +2=1.解第一个方程组,得⎩⎨⎧m =5,n =-2.解第二个方程组,得⎩⎨⎧m =2,n =-1.当m =5时,m +1=5+1=6≠0;当m =2时,m +1=2+1=3≠0.所以2m +4n =2×5+4×(-2)=2或2m +4n =2×2+4×(-1)=0,即2m +4n 的值为2或0.:在利用二元一次方程组的定义解决问题时,如果某个未知数的系数中含有字母常数,一定要注意该未知数的系数不等于0的限制条件,由于这个条件常以隐含的形式出现,因此常被忽略而导致错解.3.解:由二元一次方程组的定义,知⎩⎨⎧2a -b =0,b +5=0,解得⎩⎪⎨⎪⎧a =-52,b =-5.所以a 2-2b =⎝ ⎛⎭⎪⎫-522-2×(-5)=654. 4.解:把⎩⎨⎧x =3,y =5代入方程组⎩⎨⎧ax -by =1,3bx -ay =-1, 得⎩⎨⎧3a -5b =1,9b -5a =-1,解得⎩⎨⎧a =2,b =1.所以a 的值为2,b 的值为1.5.2 :若-2x m -n y 2与3x 4y 2m +n 是同类项,则⎩⎨⎧m -n =4,2m +n =2. 解方程组得⎩⎨⎧m =2,n =-2.则m -3n =2-3×(-2)=8.8的立方根是2.6.解:由题意,可知-x a +b y 5与3x 4y 2b -a 是同类项,所以⎩⎨⎧a +b =4,2b -a =5,解得⎩⎨⎧a =1,b =3. 所以(2a +b)·(a -3b)=(2×1+3)×(1-3×3)=-40.7.解:因为(x -y +3)2≥0,||2x +y ≥0,而(x -y +3)2+||2x +y =0, 所以(x -y +3)2=0,||2x +y =0.所以⎩⎨⎧x -y +3=0,2x +y =0,解得⎩⎨⎧x =-1,y =2. 所以(x +y)2 016=(-1+2)2 016=1.专训21.分析:观察方程组可以发现,两个方程中x 与y 的系数的绝对值都不相等,但①中y 的系数的绝对值是②中y 的系数的绝对值的4倍,因此可把2y 看作一个整体代入.解:由②,得2y =3x -5,③把③代入①,得4x +4(3x -5)=12,解得x =2.把x =2代入③,得y =12.所以这个方程组的解是⎩⎪⎨⎪⎧x =2,y =12. 2.分析:观察本题方程①,②中都有含2x +y 的项,我们可以把它看作一个整体,由①求出2x +y 的值,代入②可求得x 的值.解:由①,得2x +y =6.③将③代入②,得34x +56×6=8,解得x =4.把x =4代入③,得2×4+y =6,解得y =-2.所以原方程组的解为⎩⎨⎧x =4,y =-2. :解题时要根据方程组的结构特点选择适当的代入方法,本题中,通过“整体”消元法达到简化解题过程的目的.3.解:①+②并化简,得x +y =4.③分别把③代入①和②,得x =-3,y =7,所以原方程组的解为⎩⎨⎧x =-3,y =7.4.解:由①-②,得x -3y =-1.③由①+②并化简,得x -y =1.④由③④组成方程组⎩⎨⎧x -3y =-1,x -y =1,解得⎩⎨⎧x =2,y =1.所以原方程组的解为⎩⎨⎧x =2,y =1.5.解:设x =2k ,则y =3k ,并代入②式,得k =-3.所以x =-6,y =-9.所以原方程组的解为⎩⎨⎧x =-6,y =-9. :方程缺少常数项或是关于两未知数成比例式时,可设辅助元解之.6.分析:方程①,②是两个比例式,所以设x =3k ,则y =2k ,z =k.解:设x =3k ,则y =2k ,z =k ,代入③,得3k +2k +k =60,解得k =10,则x =30,y =20,z =10.所以原方程组的解是⎩⎨⎧x =30,y =20,z =10.7.解:令u =x +y ,v =x -y ,则原方程组可化为⎩⎨⎧3u +2v =36,①2u -3v =24,②①×3+②×2,得13u =156,解得u =12.将u =12代入②,解得v =0.所以⎩⎨⎧x +y =12,x -y =0.所以⎩⎨⎧x =6,y =6.所以原方程组的解为⎩⎨⎧x =6,y =6.专训31.C2.⎩⎨⎧x =6y =-63.B 4.B 5.86.解:(1)由②,得x =4+y ,③把③代入①,得3(4+y)+4y =19,12+3y +4y =19,y =1.把y =1代入③,得x =4+1=5.所以原方程组的解为⎩⎨⎧x =5,y =1. (2)由12×②,得3x -4y =-2③,由①+③,得4x =12,解得x =3,把x =3代入①中,得y =114,所以原方程组的解为⎩⎪⎨⎪⎧x =3,y =114. 7.解:设x =3k ,则y =4k ,z =5k.因为x +y +z =36,所以3k +4k +5k =36,解得k =3.所以原方程组的解为⎩⎨⎧x =9,y =12,z =15.8.解:由题意得⎩⎨⎧a +b +c =0,4a +2b +c =4,9a +3b +c =10,解得⎩⎨⎧a =1,b =1,c =-2.所以等式为y =x 2+x -2.当x =4时,y =42+4-2=18.9.A10.m =34n :由题意可知x =-y ,代入方程组中,得⎩⎨⎧-6y =2m ,y =m -n ,则6m -6n =-2m ,所以m =34n.11.解:因为∠C +∠D =180°,所以AD ∥BC.所以∠A +∠B =180°.①又因为∠A -∠B =40°,② 所以由①②组成方程组,得⎩⎨⎧∠A +∠B =180°,∠A -∠B =40°, 解得⎩⎨⎧∠A =110°,∠B =70°. 答:∠B 的度数为70°.12.解:由题意可列方程组⎩⎨⎧x -3=2y ,2x -1=y +2,解得⎩⎨⎧x =1,y =-1.13.⎩⎨⎧5x +2y =10,2x +5y =814.解:本题的答案不唯一,如:问题:1辆大车与1辆小车一次可以运货多少吨?设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得⎩⎨⎧3x +4y =22,2x +6y =23,解得⎩⎨⎧x =4,y =2.5.则x +y =4+2.5=6.5.答:1辆大车与1辆小车一次可以运货6.5吨.15.思路导引:本题方程组可以先化简再求解,但通过观察,两个方程都含有2x +1与4y -3,并且两个方程的未知数的系数满足成倍数关系,因此我们可将2x +13,4y -32用其他字母替换一下,则方程组可简化.解:令2x +13=m ,4y -32=n ,将原方程组化为⎩⎨⎧m +n =2,①9m -4n =5.② ①×4+②,得13m =13,解得m =1.把m =1代入①,得n =1,即2x +13=1,4y -32=1.解得x =1,y =54.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =54. :这种解法在数学中叫做换元法,就是把方程组中的一部分(含有未知数)用其他未知数替换,使此类问题简化.16.思路导引:若两个非负数的和为零,则这两个非负数的值都为零.解:由题意得⎩⎨⎧3a -b -4=0,4a +b -3=0,解得⎩⎨⎧a =1,b =-1. 所以2a -3b =2×1-3×(-1)=5.17.思路导引:方程①及方程②中均含有2x +3y ,可用整体思想来解方程组.由①得2x +3y =2,代入方程②中,可先求出y 的值,进而求出x 的值.解:由①,得2x +3y =2.③把③代入方程②,得2+57-2y =9.解得y =-4.把y =-4代入方程③,得x =7.所以原方程组的解为 ⎩⎨⎧x =7,y =-4.。
专训1几何计数的四种常用方法名师点金:1.对于几何中的计数问题,掌握一定的方法能够让我们准确、高效地得出结果,常见的计数方法有:按顺序计数、按画图计数、按基本图形计数、按从特殊到一般的思想方法计数.2.计数的原则是不重复、不遗漏.按顺序计数问题1.如图,两条直线相交于一点O,则图中共有()对邻补角.A.2B.3C.4D.5(第1题)(第2题)2.如图,在同一平面内有A,B,C,D,E五个点,以其中任意两点画直线最多有条.按画图计数问题3.请你画图说明同一平面内的4条直线的位置关系,它们分别有几个交点?4.平面内有10条直线,无任何三线共点,要使它们恰好有31个交点,请你画出示意图.按基本图形计数问题5.如图,一组互相平行的直线有6条,它们和两条平行线a,b都相交,构成若干个“#”形,则此图中共有多少个“#”形?(第5题)按从特殊到一般的思想方法计数问题6.观察如图所示的图形,寻找对顶角(不含平角).(第6题)(1)两条直线相交于一点,如图①,共有对对顶角;(2)三条直线相交于一点,如图②,共有对对顶角;(3)四条直线相交于一点,如图③,共有对对顶角;….(4)根据以上结果探究:当n条直线相交于一点时,所构成的对顶角有对;(5)根据探究结果,求2 016条直线相交于一点时,所构成的对顶角的对数.7.平面内n条直线最多将平面分成多少个部分?专训2相交线与平行线中的思想方法名师点金:1.本章体现的主要方法有:基本图形(添加辅助线)法、分离图形法、平移法.2.几种主要的数学思想:方程思想、转化思想、数形结合思想、分类讨论思想等.基本图形(添加辅助线)法1.已知AB∥CD,探讨图中∠APC与∠PAB、∠PCD的数量关系,并请你说明成立的理由.(第1题)分离图形法2.若平行直线EF,MN与相交直线AB,CD相交成如图所示的图形,则共得出同旁内角多少对?(第2题)平移法3.如图,在水平地面上有几级高度和宽度不均匀的台阶,它们的总宽度是3米,总高度是2米,图中所成角度均为直角,现要在从A到B的台阶上铺上地毯,求地毯的总长度.【导学号:19752088】(第3题)4.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路,余下部分绿化,小路的宽为2 m,则绿化的面积为多少?(第4题)方程思想5.如图,由点O引出六条射线OA,OB,OC,OD,OE,OF,且AO⊥OB,OF平分∠BOC,OE平分∠AOD,若∠EOF=170°,求∠COD的度数.(第5题)转化思想6.如图,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.(第6题)数形结合思想7.如图,直线AB,CD被EF所截,∠1=∠2,∠CNF+∠BMN=180°.试说明:AB∥CD,MP∥NQ.(第7题)分类讨论思想8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD 上的一个动点,当P在线段CD上运动时,请你探究∠1,∠2,∠3之间的关系.(第8题)专训3全章热门考点整合应用名师点金:本章知识是中考的必考内容,也是后面学习有关几何中计算和证明的基础.其常见的题目涉及角度的计算、垂线段及其应用、平行线的判定和性质,命题形式有填空题、选择题、解答与说理题,题目难度不大.其热门考点可概括为:五个概念,两个判定,两个性质,两种方法,两种思想.五个概念概念1:相交线1.图中的对顶角共有()A.1对B.2对C.3对D.4对(第1题)(第2题)2.如图,直线AB与CD相交于点O,EO⊥AB,则∠1与∠2()A.是对顶角B.相等C.互余D.互补3.如图,直线AB,CD相交于点O,OE平分∠AOC,∠COF=35°,∠BOD =60°,求∠EOF的度数.(第3题)概念2:三线八角(第4题)4.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于°,∠3的内错角等于°,∠3的同旁内角等于°.5.如图,点E在AB的延长线上,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(第5题)(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.概念3:平行线6.在同一平面内,直线a与b满足下列条件,写出其对应的位置关系.(1)a与b没有公共点,则a与b;(2)a与b有且只有一个公共点,则a与bW.(第7题)7.如图,在方格纸中,有两条线段AB,BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线BE.概念4:平移8.图中的4个小三角形都是等边三角形,边长为1 cm,你能通过平移三角形ABC得到其他三角形吗?若能,请说出平移的方向和距离.(第8题)两个判定判定1:垂线9.如图,直线AB,CD相交于点O,OM⊥AB.(1)若∠1=20°,∠2=20°,则∠DON=度;(2)若∠1=∠2,判断ON与CD的位置关系,并说明理由;(3)若∠1=14∠BOC,求∠AOC和∠MOD的度数.【导学号:19752089】(第9题)判定2:平行线10.如图,已知BE∥DF,∠B=∠D,那么AD与BC有何位置关系?请说明理由.(第10题)11.如图,已知CF⊥AB于点F,ED⊥AB于点D,∠1=∠2,猜想FG和BC的位置关系,并说明理由.(第11题)。
专训1巧用一元一次不等式(组)进行方案设计名师点金:利用一元一次不等式(组)来设计方案问题应用广泛,解答这类问题的关键是先根据题意列出不等式(组),再根据问题的实际意义得出不等式(组)的特殊解来确定方案.其主要类型有:通信计费方案、商品购买方案、车辆调配方案等.通信计费方案1.某人的移动电话(手机)可选择两种收费办法中的一种,甲种收费办法是先交月租费20元,每通一分钟电话再收费0.1元;乙种收费办法是不交月租费,每通一分钟电话收费0.2元.问每月通话时间在什么范围内选择甲种收费办法合适?在什么范围内选择乙种收费办法合适?商品购买方案2.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案.在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表:(单位:元)累计购物额130290 (x)在甲商场实际花费127…在乙商场实际花费126…(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?车辆调配方案3.某镇组织20辆汽车装运A,B,C三种脐橙共100 t到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满,根据下表提供的信息,解答以下问题.脐橙品种 A B C每辆汽车运载量/t 6 5 4(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的关系式;(2)如果装运每种脐橙的车辆都不少于4辆,那么车辆的安排方案有几种?写出所有的安排方案.4.某市果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运费300元,乙种货车每辆要付运费240元,则果农王灿应选择哪种方案,使运费最少?最少运费是多少?【导学号:86962092】专训2全章热门考点整合应用名师点金:本章中的一元一次不等式(组)的解法及应用是中考的必考内容,从近几年的中考试题来看,重点考查不等式的基本性质,求一元一次不等式(组)的解集,主要以选择题、填空题的形式出现,难度较小.有关列不等式(组)解应用题的试题不断渗透新的理念、新的情境,题型涉及选择题、填空题和解答题.全章主要热门考点脉络:四个概念―→一个性质―→四个解法―→两个应用.四个概念概念1:不等式1.判断下列各式哪些是等式,哪些是不等式,哪些既不是等式也不是不等式. (1)x +y ;(2)3x >7;(3)5=2x +3;(4)x 2>0;(5)2x -3y =1;(6)52;(7)2>3.概念2:一元一次不等式2.下列式子是一元一次不等式的是( ) A .2x 2+1>3 B .1x -4<5 C .3(x -1)<32(2x +1) D .2y >0 概念3:一元一次不等式组3.下列式子中,一元一次不等式组的有( ) ①⎩⎨⎧x >0,2x +5<-1;②⎩⎨⎧x +π>-2,3-x <0;③⎩⎪⎨⎪⎧1x +2<3,x -5>4; ④⎩⎨⎧ab <-5,a +b >0;⑤⎩⎨⎧m +2n +2≥0,m -2n -2≤0.A .1个B .2个C .3个D .4个 概念4:不等式组的解或解集 4.下列说法中,正确的有( )①x =7是不等式x >1的解;②不等式2x >4的解是x >2;③不等式组⎩⎨⎧x >3,x ≥-2的解集是-2≤x <3;④不等式组⎩⎨⎧x ≥6,x ≤6的解集是x =6;⑤不等式组⎩⎨⎧x >4,x <2无解.A .1个B .2个C .3个D .4个一个性质5.下列不等式变形中,一定正确的是( ) A .若ac >bc ,则a >b B .若a >b ,则am 2>bm 2 C .若ac 2>bc 2,则a >bD .若a >0,b >0,且1a >1b ,则a >b四个解法类型1:一元一次不等式的解法 6.(2015·安徽)解不等式:x3>1-x -36.7.解不等式12x -1≤23x -12,并把它的解集在数轴上表示出来.类型2:一元一次不等式组的解法8.解不等式组,并把解集在数轴上表示出来. (1)(2015·遂宁)⎩⎨⎧-2x <6 ①,3(x +1)≤2x +5 ②;(2)(2015·扬州)⎩⎪⎨⎪⎧3x ≥4x -1 ①,5x -12>x -2 ②.类型3:求一元一次不等式(组)的整数解 9.使x -5>4x -3成立的最大整数是什么?10.解不等式组5134,12,2x x x --⎧⎪⎨-≤-⎪⎩>①②并求它的正整数解.类型4:含字母系数的一元一次不等式组的解法 11.已知关于x ,y 的方程组⎩⎨⎧3x +y =k +1,x +3y =3的解满足-1<x +y <1,求k 的取值范围.【导学号:86962093】两个应用应用1:一元一次不等式的应用12.(中考·长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行,某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90 000元,求需购买甲、乙两种树苗各多少棵? (2)若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?应用2:一元一次不等式组的应用13.(2015·凉山州)2015年5月6日,凉山州政府在邛海“空列”项目考察座谈会上与多方达成初步合作意向,决定共同出资60.8亿元,建设40千米的环邛海空中列车,这将是国内第一条空中列车.据测算,将有24千米的“空列”轨道架设在水上,其余架设在陆地上,并且每千米水上建设费用比陆地建设费用多0.2亿元.(1)每千米“空列”轨道的水上建设费用和陆地建设费用各需多少亿元?(2)预计在某段“空列”轨道的建设中,每天至少需要运送沙石1 600 m3,施工方准备租用大、小两种运输车共10辆,已知每辆大车每天运送沙石200 m3,每辆小车每天运送沙石120 m3,大、小车每天每辆租车费用分别为1 000元、700元,且要求每天租车的总费用不超过9 300元,问施工方有几种租车方案?哪种租车方案费用最低,最低费用是多少?【导学号:86962094】答案专训11.解:设通话x分钟,则若20+0.1x<0.2x,解得x>200,若20+0.1x>0.2x,解得x<200,所以当每月通话时间多于200分钟时,选择甲种收费办法合适,当每月通话时间少于200分钟时,选择乙种收费办法合适.2.解:(1)271;0.9x +10;278;0.95x +2.5 (2)根据题意,得0.9x +10=0.95x +2.5, 解得x =150.所以当x =150时,小红在甲、乙两商场的实际花费相同. (3)令0.9x +10<0.95x +2.5,解得x >150; 令0.9x +10>0.95x +2.5,解得x <150.所以当小红累计购物超过150元时,在甲商场的实际花费少;当小红累计购物超过100元但不足150元时,在乙商场的实际花费少.点拨:此题主要考查了一元一次不等式和一元一次方程的应用,此类问题出现的较多且不简单,有一定难度,涉及方案选择时应与方程或不等式联系起来.3.解:(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为(20-x -y),则有6x +5y +4(20-x -y)=100.整理,得y =-2x +20.(2)由(1)知装运A ,B ,C 三种脐橙的车辆数分别为x ,-2x +20,x. 由题意,得-2x +20≥4,解得x ≤8.又因为x ≥4,且x 取正整数,所以x 的值为4,5,6,7,8,所以安排方案共有5种.方案一:装运A 种脐橙的汽车4辆,B 种脐橙的汽车12辆,C 种脐橙的汽车4辆; 方案二:装运A 种脐橙的汽车5辆,B 种脐橙的汽车10辆,C 种脐橙的汽车5辆; 方案三:装运A 种脐橙的汽车6辆,B 种脐橙的汽车8辆,C 种脐橙的汽车6辆; 方案四:装运A 种脐橙的汽车7辆,B 种脐橙的汽车6辆,C 种脐橙的汽车7辆; 方案五:装运A 种脐橙的汽车8辆,B 种脐橙的汽车4辆,C 种脐橙的汽车8辆. 4.解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x)辆,由题意得 ⎩⎨⎧4x +2(8-x )≥20,x +2(8-x )≥12,解得2≤x ≤4. ∵x 是整数,∴x 可取2,3,4. ∴安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三4辆4辆(2)方案一所需运费为300×2+240×6=2 040(元); 方案二所需运费为300×3+240×5=2 100(元); 方案三所需运费为300×4+240×4=2 160(元).∵2 040<2 100<2 160,∴果农王灿应选择方案一,使运费最少,最少运费是2 040元.专训21.解:等式有(3)(5),不等式有(2)(4)(7),既不是等式也不是不等式的有(1)(6). 点拨:根据等式和不等式的概念可知,用“=”连接的式子一般是等式,用“>”“<”“≥”“≤”或“≠”连接的式子一般是不等式,没有等号和不等号的式子一般既不是等式,也不是不等式.2.D3.B 点拨:③中1x 不是整式,④⑤中均含有2个未知数,所以③④⑤均不是一元一次不等式组.只有①②是一元一次不等式组.故选B .4.C 点拨:当x =7时,x >1成立,所以x =7是不等式x >1的解,故①正确;不等式2x >4的解集是x >2,故②错误;不等式组⎩⎨⎧x >3,x ≥-2的解集是x >3,故③错误;不等式组⎩⎨⎧x ≥6,x ≤6的解集是x =6,故④正确;不等式组⎩⎨⎧x >4,x <2无解,故⑤正确.故正确的有①④⑤,共3个,故选C .5.C 点拨:A 中,若c <0,则两边同时除以c ,得a <b ;B 中,若m =0,则两边同时乘m 2,得am 2=bm 2=0;C 中,由ac 2>bc 2可知c ≠0,两边同时除以c 2(c 2>0),有a >b ;D 可用特殊值法,设a =1,b =2,代入检验即可.要注意不等式中的隐含条件,如ac 2>bc 2中,隐含着“c ≠0”这一条件.6.解:去分母,得2x >6-x +3,移项,合并同类项,得3x >9,化系数为1得x >3,∴原不等式的解集为x >3.7.解:去分母,得3x -6≤4x -3,移项,得4x -3x ≥3-6,合并同类项,得x ≥-3,在数轴上表示如图:(第7题)8.解:(1)由①得x >-3,由②得x ≤2,故此不等式组的解集为-3<x ≤2.在数轴上表示如图:[第8(1)题](2)由①得x ≤1;由②得x >-1,故此不等式组的解集为-1<x ≤1.在数轴上表示如图:[第8(2)题]9.解:将原不等式移项、合并同类项,得-3x >2. 系数化为1,得x <-23.将不等式的解集在数轴上表示出来,如图(第9题)因为在这个解集范围内的最大整数为-1,所以使x -5>4x -3成立的最大整数是-1.点拨:利用数轴求不等式(组)的整数解更简捷一些.10.解:解不等式①,得x >-32.解不等式②,得x ≤4.把不等式①和②的解集在数轴上表示出来,如图.(第10题)从图中可以找出两个不等式解集的公共部分,得不等式组的解集为-32<x ≤4.所以这个不等式组的正整数解为1,2,3,4.方法总结:求不等式组的特殊解的方法:先求出这个不等式组的解集,然后在不等式组的解集里面找出需要的特殊解.找特殊解时,借助数轴会更直观一些.11.解:(方法1)解方程组⎩⎨⎧3x +y =k +1,x +3y =3.得⎩⎪⎨⎪⎧x =38k ,y =8-k 8.∵-1<x +y <1,∴-1<38k +8-k8<1.解得-8<k <0.(方法2)将方程组中的两式左右两边分别相加,得4x +4y =k +4,即x +y =k4+1.又∵-1<x +y <1,∴-1<k4+1<1.解得-8<k <0.12.解:(1)设购买甲种树苗x 棵,则购买乙种树苗(400-x)棵. 根据题意,得200x +300(400-x)=90 000,解得x =300, 400-300=100(棵).∴购买甲种树苗300棵,购买乙种树苗100棵. (2)设应购买甲种树苗a 棵,则购买乙种树苗(400-a)棵. 由题意,得200a ≥300(400-a),解得a ≥240, ∴至少应购买甲种树苗240棵.13.解:(1)设每千米“空列”轨道的水上建设费用需x 亿元,每千米陆地建设费用需y 亿元,则⎩⎨⎧24x +(40-24)y =60.8,x -y =0.2,解得⎩⎨⎧x =1.6,y =1.4.答:每千米“空列”轨道的水上建设费用需1.6亿元,每千米陆地建设费用需1.4亿元;(2)设每天租m辆大车,则需要租(10-m)辆小车,则⎩⎨⎧200m +120(10-m )≥1 600,1 000m +700(10-m )≤9 300,∴5≤m ≤233.∵m 是整数,∴m =5,6,7,∴施工方有3种租车方案:①租5辆大车和5辆小车 ;②租6辆大车和4辆小车;③租7辆大车和3辆小车.①租5辆大车和5辆小车时,租车费用为1 000×5+700×5=5 000+3 500=8 500(元);②租6辆大车和4辆小车时,租车费用为1 000×6+700×4=6 000+2 800=8 800(元);③租7辆大车和3辆小车时,租车费用为1 000×7+700×3=7 000+2 100=9 100(元).∵8 500<8 800<9 100,∴租5辆大车和5辆小车时,租车费用最低,最低费用是8 500元.。
专训一:巧用一元一次方程解图表信息问题名师点金:解图表信息题的一般方法:(1)“识图表”:①先整体阅读,对图表资料有一个整体了解,进而搜索有效信息;②关注数据变化;③注意图表细节的提示作用.(2)“用图表”:通过认真阅读、观察、分析图表,获取信息.根据信息中数据或图形特征,找出相等关系.(3)“建模型”:在正确理解各量之间关系的基础上,建立合理的数学模型,解决问题.积分问题类型1球赛积分问题1.学校举行排球赛,积分榜部分情况如下:班级比赛场次胜场平场负场积分七(1) 6 3 2 1 14七(2) 6 1 4 1 12七(3) 6 5 0 1 16七(4) 6 5 1 0 17(1)分析积分榜,平一场比负一场多得分;(2)若胜一场得3分,七(6)班也比赛了6场,胜场数是平场数的一半且共积14分,那么七(6)班胜几场?类型2考试积分问题2.某小组8名同学参加一次知识竞赛,共答题10道,每题分值相同.每题答对得同样多的分,答错或不答扣同样多的分.情况如下:学号答对题数答错题数得分/分1 82 702 9 1 853 9 1 854 5 5 255 7 3 556 10 0 1007 4 6 108 8 2 70(1)如果答对的题数为n(0≤n≤10,且n为整数),用含n的式子表示得分;(2)什么情况下,得分为零分,得分为负分?月历问题(建模思想)3.你对生活中常见的月历了解吗?月历中存在许多数字奥秘,你想知道吗?(下表是2016年12月的月历)2016年12月一二三四五六日1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31(1)它的横行、竖列上相邻的两数之间有什么关系?(2)如果告诉你一竖列上连续三个数的和为72,你能知道是哪几天吗?(3)如果用一个正方形圈出四个数,且这四个数的和为56,这里圈出的四天你知道分别是几号吗?分段计费问题类型1出租车计费问题4.在外地打工的赵先生下了火车,为尽快赶回位于市郊的赵庄与家人团聚,他打算乘坐市内出租车.市客运公司规定:起步价为5元(不超过3收5元),超过3 ,每千米要加收一定的费用.赵先生上车时看了一下计费表,车到家门口时又看了一下计费表,已知火车站到赵庄的路程为18 .上车时里程表下车时里程表起步价(元) 5.00元×××总价(元) 5.00时间17:05起步价(元) 5.00元×××总价(元) 29.00时间17:25求行程超过3 时,每千米收多少元.类型2阶梯电价计费问题(转化思想、分类讨论思想)5.某省公布的居民用电阶梯电价听证方案如下:第一档电量第二档电量第三档电量月用电量不超过210度,每度价格为0.52元月用电量超过210度不超过350度,每度比第一档提价0.05元月用电量超过350度,每度比第一档提价0.30元例:若某户月用电量400度,则需交电费为210×0.52+(350-210)×(0.52+0.05)+(400-350)×(0.52+0.30)=230(元).(1)如果按此方案计算,小华家5月份的电费为138.84元,请你求出小华家5月份的用电量;(2)以此方案请你回答:若小华家某月的电费为a元,则小华家该月用电量属于第几档?类型3工资纳税问题6.(中考·永州)中国现行的个人所得税法自2011年9月1日起施行,其中规定个人所得税纳税办法如下:①以个人每月工资收入额减去3 500元后的余额作为其每月应纳税所得额;②个人所得税纳税率如下表:纳税级数个人每月应纳税所得额纳税税率1 不超过1 500元的部分3%2超过1 500元至4 500元的部分10%3超过4 500元至9 000元的部分20%4超过9 000元至35000元的部分25%5超过35 000元至55000元的部分30%6超过55 000元至80000元的部分35%7超过80 000元的部分45%(1)若甲、乙两人的每月工资收入额分别为4 000元和6000元,请分别求出甲、乙两人每月应缴纳的个人所得税;(2)若丙每月缴纳的个人所得税为95元,则丙每月工资收入额应为多少?平面图形的拼组问题7.如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,其中C,D两个正方形的大小相同,已知中间最小的正方形A的边长是1米.(1)若设图中最大正方形B的边长是x米,请用含x的式子表示出正方形F、E 和C的边长分别为,,;(2)观察图形的特点可知,长方形相对的两边是相等的(如图中的和),请根据这个等量关系,求出x的值;(3)现沿着长方形广场的四条边铺设下水管道,由甲、乙两个工程队单独铺设分别需要10天、15天完成,如果两队从同一点开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,试问还要多少天完成?(第7题)专训二:巧用一元一次方程选择方案名师点金:解方案选择题要仔细审题,弄清题目中条件之间的关系和作用,在选择合适的方案之前,应分析都有哪几种可行的方案,结合求出的每种方案的结果作出判断,体现了把实际问题抽象为数学问题的能力和分析判断能力.旅行社收费方案决策1.张校长暑假将带领部分学生去北京旅游,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”;乙旅行社说:“包括校长在内全部按全票价的6折优惠”,全票价为240元.(1)若学生有3人和5人,甲旅行社收费多少元?乙旅行社呢?(2)学生有多少人时,两个旅行社的收费相同?运输方式方案决策2.某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时.其他主要参考数据如下:运输工具途中平均速度(千米/时) 运费(元/千米) 装卸费用(元)火车100 15 2 000 汽车80 20 900(1)如果汽车的总支出费用比火车的总支出费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(2)如果A市与B市之间的路程为s千米,且知道火车与汽车在路上需临时停车耽误的时间分别为2小时和3.1小时.你若是A市水果批发部门的经理,要想将这批水果运往B市销售,你认为选择哪种运输方式比较合算?购买方案决策3.某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1 500元,乙种每台2100元,丙种每台2500元.若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你帮助设计一下商场的进货方案.上网计费方案决策4.某地上网有两种收费方式,用户可任选其一:(A)计时制:2.8元/时;(B )包月制:60元/月.此外,每种收费方式都加收通信费1.2元/时.(1)某用户每月上网20小时,选用哪种收费方式比较合算?(2)某用户有120元钱用于上网(一个月),选用哪种收费方式比较合算?(3)请你为用户设计一个方案,使用户能合理地选择收费方式.专训三:几种常见的热门考点名师点金:一元一次方程的知识是方程的基础,在初中数学中占有非常重要的地位,因此一元一次方程一直是中考的必考内容.本章主要考查一元一次方程及方程的解的概念、等式的基本性质、解方程、利用一元一次方程解决实际问题等.一元一次方程的相关概念1.下列方程中,是一元一次方程的是( )A.1-=3y-2 -2=yC.3x+1=2x D.3x2+1=02.下列一元一次方程中,以x=4为解的是( )A.x+5=2x+1 B.3x=-12C.3x-8=5x D.3(x+2)=2x+23.若关于x的方程+3=4x+1的解为正整数,则整数a 的值为( )A.2或3 B.4C.5 D.64.若关于x的方程(3-m)x2-5+7=2是一元一次方程,则m=.等式的基本性质5.下列等式变形正确的是( )A.如果S=,那么b=B.如果x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如果=,那么x=y6.已知x=y≠-,且≠0,下列各式:①x-3=y-3;②=;③=;④2x +2y=0,其中一定正确的有( )A.1个B.2个C.3个D.4个7.如图,图中标有相同字母的物体的质量相同,若A的质量为20g,当天平处于平衡状态时,B的质量为.(第7题)解一元一次方程8.解下列方程:(1)12-(3x-5)=7-5x;(2)+=1;(3)-(3y+2)=-(y-1).9.已知方程x+11=9-x的解比关于x的方程8x+=3x+的解小2,求a的值.一元一次方程的应用10.某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及价格如下表:备选体育用品篮球排球羽毛球拍价格50元/个40元/个25元/副(1)若400元全部用来购买篮球和羽毛球拍共10件,则各自购买多少件?(2)400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?若能,写出购买方案即可;若不能,请说明理由.11.在某复印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元.在某图书馆复印文件,不论复印多少页,每页收费0.1元.设需要复印文件x页,请根据提供的信息回答下列问题:(1)用含x的式子填写下表:x≤20 x>20复印社计费/元0.12x图书馆计费/元0.1x(2)当x为何值时,两处收费相等?(3)当40<x<50时,你认为在哪里复印省钱?(直接写出结果即可)数学思想方法的应用a.整体思想12.解方程(2x-1)+(2x-1)=-(2x-1)+9.b.分类讨论思想13.解关于x的方程2+2=12x+3b.c.数形结合思想14.如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B 两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位长度/秒.(第14题)(1)A,B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发向同方向运动,且在运动过程中,始终有∶=1∶2,若干秒后,C 点在-10处,求此时B点的位置.d.逆向思维法15.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒索性将第二天所剩的饮料的一半零半瓶喝了.这三天,正好把妈妈买的全部饮料喝光,则李飒的妈妈买的饮料一共有多少瓶?答案专训一1.解:(1)1(2)设平一场得x分,则负一场得(x-1)分.由表中任何一行数据可求出x=2,则x-1=1,即平一场得2分,负一场得1分.设七(6)班胜a场,平2a场,负(6-3a)场,列方程得3a+2×2a+(6-3a)=14.解得a=2.答:七(6)班胜2场.2.解:(1)设答对一道题得x分,由6号同学的数据可得10x=100,解得x=10.设答错或不答一题扣y分,由1号同学的数据可得8×10-2y=70,解得y=5.所以当答对的题数为n时,得分为10n-5(10-n)=15n-50(分).(2)因为n为整数,所以不可能出现得零分的情况;当答对题数为0,1,2或3时,得分为负分.3.解:(1)月历中,横行上相邻两数之差为1,竖列上相邻两数之差为7.(2)设一竖列上连续三个数的中间的一个数为x,则上面的一个数为x-7,下面的一个数为x+7.根据题意,得(x-7)+x+(x+7)=72.解这个方程,得x=24.所以x-7=24-7=17,x+7=24+7=31.答:这三天分别是17号、24号、31号.(3)设圈出的四个数中,最小数为y,则另三个数分别为y+1,y+7,y+8.根据题意,得y+(y+1)+(y+7)+(y+8)=56.解这个方程,得y=10.所以y+1=10+1=11,y+7=10+7=17,y+8=10+8=18.答:这四天分别是10号、11号、17号、18号.点拨:这是生活中常见的月历问题,把它进行数学建模,则可将其转化为数字问题:它的横行上相邻两数之差为1,即为连续整数;竖列上相邻两数之差为7.这些数最小为1,最大为31.4.解:设行程超过3 时,每千米收x元.根据题意列方程,得5+(18-3)x=29.解得x=1.6.答:行程超过3 时,每千米收1.6元.5.解:(1)月用电量为210度时,需交电费为210×0.52=109.2(元),月用电量为350度时,需交电费为210×0.52+(350-210)×(0.52+0.05)=189(元),故可得小华家5月份的用电量在第二档.设小华家5月份的用电量为x度,则210×0.52+(x-210)×(0.52+0.05)=138.84.解得x=262.即小华家5月份的用电量为262度.(2)由(1)得,当a≤109.2时,小华家该月用电量在第一档;当109.2<a≤189时,小华家该月用电量在第二档;当a>189时,小华家该月用电量在第三档.点拨:本题运用转化思想和分类讨论思想求解.解答本题要先计算出分界点处需交的电费.6.解:(1)(4 000-3 500)×3%=500×3%=15(元),1 500×3%+(6 000-3 500-1 500)×10%=45+1000×10%=45+100=145(元).答:甲每月应缴纳的个人所得税为15元;乙每月应缴纳的个人所得税为145元.(2)设丙每月工资收入额应为x元,易知纳税级数为2,则1 500×3%+(x-3 500-1 500)×10%=95,解得x=5 500.答:丙每月工资收入额应为5 500元.7.解:(1)(x-1)米;(x-2)米;(x-3)米(2)由题图可得2(x-3)+(x-2)=x+x-1,解得x=7.(3)由(2)可知=13米,=11米.长方形的周长为(13+11)×2=48(米).所以甲队平均每天完成=4.8(米),乙队平均每天完成=3.2(米).设余下的工程由乙队单独施工,还要y天完成.由题意得3.2y+(4.8+3.2)×2=48,解得y=10.答:余下的工程由乙队单独施工,还要10天完成.专训二1.解:(1)当有学生3人时,甲:240+240×0.5×3=600(元),乙:(3+1)×240×0.6=576(元);当有学生5人时,甲:240+240×0.5×5=840(元),乙:(5+1)×240×0.6=864(元).(2)设学生有x人.由题意,得240+240×0.5x=(x+1)×240×0.6.解得x=4.答:学生有4人时,两个旅行社的收费相同.2.解:(1)设路程为x千米,则选择火车用的钱数为元,选择汽车用的钱数为(+20x+90 0)元.+15x+2 000=+20x+900-1 100,解得x=400.答:本市与A市之间的路程为400千米.(2)选择火车用的钱数为×200+15s+2 000=17s+2400(元),选择汽车用的钱数为×200+20s+900=22.5s+1 520(元).当两种运输方式所用钱数相同时,即17s+2 400=22.5s+1520,解得s=160.所以当s等于160时,两种运输方式一样合算;当s小于160时,选择汽车运输比较合算;当s大于160时,选择火车运输比较合算.3.解:当购进甲、乙两种电视机时:设购进甲种电视机x台,则购进乙种电视机(50-x)台,列方程为1 500x+2 100(50-x)=90000,解得x=25,所以50-x=25,即购进甲种电视机25台,乙种电视机25台.当购进甲、丙两种电视机时:设购进甲种电视机y台,则购进丙种电视机(50-y)台,列方程为1 500y+2 500(50-y)=90000,解得y=35,所以50-y=15,即购进甲种电视机35台,丙种电视机15台.当购进乙、丙两种电视机时:设购进乙种电视机z台,则购进丙种电视机(50-z)台,列方程为2 100z+2 500(50-z)=90 000,解得z=87.5(不合题意,舍去).综上所述,共有两种方案:一是购进甲种电视机25台,乙种电视机25台;二是购进甲种电视机35台,丙种电视机15台.4.解:(1)设用户上网的时间为t小时,则(A)种方式的费用为2.8t+1.2t=4t(元);(B)种方式的费用为(60+1.2t)元.当t=20时,4t=80,60+1.2t=84,因为80<84,所以选用(A)种方式比较合算.(2)若用户有120元钱用于上网,设(A)种方式下可上网t1小时,(B)种方式下可上网t2小时,则4t1=120,60+1.2t2=120,解得t1=30,t2=50.因为30<50,所以用户选用(B)种方式比较合算.(3)当两种方式费用相同时,即4t=60+1.2t,解得t=.所以上网时间恰好为小时时,两种方式一样合算;当上网时间少于小时时,选择(A)方式比较合算;当上网时间多于小时时,选择(B)方式比较合算.专训三1.C234.-35.C67.10 g8.解:(1)去括号,得12-3x+5=7-5x.移项、合并同类项,得2x=-10.系数化为1,得x=-5.(2)去分母,得2(2x-5)+3(3-x)=12.去括号,得4x-10+9-3x=12.移项、合并同类项,得x=13.(3)去分母,得-4(3y+2)=1-15(y-1).去括号,得-12y-8=1-15y+15.移项、合并同类项,得3y=24.系数化为1,得y=8.9.解:解方程x+11=9-x,得x=-4.则第二个方程的解为x=-4+2=-2.把x=-2代入8x+=3x+,得8×(-2)+=3×(-2)+.整理,得-16=-6.解这个方程,得a=-5.10.解:(1)设购买篮球x个,则购买羽毛球拍(10-x)副.由题意,得50x+25(10-x)=400.解得x=6.所以10-x=4.答:购买篮球6个,羽毛球拍4副.(2)能实现.购买篮球3个,排球5个,羽毛球拍2副.11.解:(1)2.4+0.09(x-20);0.1x(2)由题意,得2.4+0.09(x-20)=0.1x.解得x=60.答:当x为60时,两处收费相等.(3)当40<x<50时,在图书馆复印省钱.12.解:原方程可化为(2x-1)+(2x-1)+(2x-1)=9,即×(2x-1)=9,即2x-1=9,解得x=5.点拨:本题将2x-1作为一个整体来求解可简化运算过程,体现了整体思想的运用.13.解:把方程2+2=12x+3b变形,得(2a-12)x=3b-2.分三种情况:(1)当2a-12≠0,即a≠6时,方程只有一个解,其解为x=.(2)当2a-12=0且3b-2=0时,方程有无数个解.由2a-12=0,得a=6;由3b-2=0,得b=.所以当a=6且b=时,方程有无数个解.(3)当2a-12=0且3b-2≠0时,方程无解.由2a-12=0,得a=6;由3b-2≠0,得b≠.所以当a=6且b≠时,方程无解.点拨:本题求方程的解时,对=n化简时应根据m,n的取值讨论解的情况,体现了分类讨论思想的运用.14.解:(1)设B点的运动速度为x个单位长度/秒,列方程为x=4.解得x=1.答:B点的运动速度为1个单位长度/秒.(2)设两点运动t秒时相距6个单位长度,列方程为:①当A点在B点左侧时,2t-t=(4+8)-6,解得t=6.②当A点在B点右侧时,2t-t=(4+8)+6,解得t=18.答:当A,B两点运动6秒或18秒时相距6个单位长度.(3)设C点运动的速度为y个单位长度/秒,始终有∶=1∶2,则列方程得2-y=2(y-1).解得y=.当C点停留在-10处时,所用的时间为=(秒),此时B点所表示的数为4-×1=-.答:此时B点的位置是-所对应的点处.点拨:本题利用数形结合思想,运用数轴辅助分析题意,找到相等关系,列方程得以求解.15.解:设第三天李飒喝饮料之前,还有x瓶饮料,则+=x.解得x=1.这也是第二天喝饮料之后所剩的饮料瓶数.设第二天喝饮料之前,还有y瓶饮料,则y-=1.解得y=3.这也是第一天喝饮料之后所剩的饮料瓶数.再设第一天喝饮料之前,有z瓶饮料,则z-=3.解得z=7.这就是李飒的妈妈买的饮料的瓶数.答:李飒的妈妈买的饮料一共有7瓶.点拨:此题若按常规思维方法考虑非常困难,我们可利用逆向思维反向推理,则可迎刃而解.。
沪科版数学七年级上册:第四章直线与角整合提升密码小等问题时,由于题目中没有给出具体的图形,而根据题意又可能出现多种情况,就应不重不漏地分情况加以讨论,这种思想称为分类讨论思想.需要进行分类讨论的题目,综合性一般较强.)分类思想在线段的计算中的应用1.已知线段AB=12,在AB上有C,D,M,N四点,且AC∶CD∶DB=1∶2∶3,AM=12AC,DN=14DB,求线段MN的长.2.如图,点O为原点,点A对应的数为1,点B对应的数为-3.(1)若点P在数轴上(不与A,B重合),且PA+PB=6,求点P对应的数;(2)若点M在数轴上(不与A,B重合),且MA∶MB=1∶3,求点M对应的数;(3)若点A的速度为5个单位长度/秒,点B的速度为2个单位长度/秒,点O的速度为1个单位长度/秒,A,B,O同时向右运动,几秒后,点O恰为线段AB的中点?(第2题)分类思想在角的计算中的应用3.如图,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°.(1)求∠AOB的度数;(2)过点O作射线OD,使得∠AOC=4∠AOD,请你求出∠COD的度数.(第3题)4.已知OM和ON分别平分∠AOC和∠BOC.(1)如图,若OC在∠AOB内部,探究∠MON与∠AOB的数量关系;(2)若OC在∠AOB外部,且OC不与OA,OB重合,请你画出图形,并探究∠MON与∠AOB的数量关系.(提示:分三种情况讨论)(第4题)专训三:几种常见的热门考点名师点金:本章知识从大的方面可分为两部分,第一部分是立体几何的初步知识,第二部分是平面图形的认识,这些都是几何学习的基础.本章主要考查立体图形的识别,图形的展开与折叠,直线、射线、线段及角的有关计算.立体图形的平面展开图是中考中常见考点,通常以选择,填空形式呈现.立体图形的识别1.在①球体;②柱体;③圆锥;④棱柱;⑤棱锥中,必是多面体(指由四个或四个以上多边形所围成的立体图形)的是()A.①②③④⑤B.②和③C.④D.④和⑤2.如图所示的立体图形中,是柱体的是________.(填序号)(第2题)图形的展开与折叠3.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的表面展开图可能是()(第3题)4.如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体(第4题)的容积是(包装材料厚度不计)()A.40×40×70B.70×70×80C.80×80×80D.40×70×80直线、射线、线段5.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB相交6.如图,已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB的长度之比为()(第6题)A.3∶4B.2∶3C.3∶5D.1∶27.开学整理教室时,老师总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌摆在一条线上,整整齐齐,这是因为________________________.8.乘火车从A站出发,沿途经过4个车站方可到达B站,那么需要安排________种不同的车票.9.如图,已知AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求 AB,CD的长.(第9题)角及角的有关计算10.有下列说法:(1)两条射线所组成的图形叫做角;(2)一条射线旋转而成的图形叫做角;(3)两边成一条直线的角是平角;(4)平角是一条直线.其中正确的个数是()A.1 B.2 C.3 D.411.4点10分,时针与分针的夹角为()A.55°B.65°C.70°D.以上结论都不对12.如图所示,两块三角板的直角顶点O重合在一起,且OB恰好平分∠COD,则∠AOD的度数是________度.(第12题)13.若一个角的余角比它的补角的12少20°,则这个角的度数为________.14.如图,O是直线AB上一点,OC,OD是从O点引出的两条射线,OE 平分∠AOC,∠BOC∶∠AOE∶∠AOD=2∶5∶8,求∠BOD的度数.(第14题)数学思想方法的应用a.数形结合思想15.往返于A,B两个城市的客车,中途有三个停靠站.(1)共有多少种不同的票价(任何两站票价均不相同)?(2)要准备多少种车票?b.方程思想16.互为补角的两个角的度数之比是5∶4,这两个角的度数分别是多少.17.如图,C,D,E将线段AB分成2∶3∶4∶5四部分,M,P,Q,N 分别是AC,CD,DE,EB的中点,且MN=21,求线段PQ的长度.(第17题) c.分类讨论思想18.已知同一平面内四点,过其中任意两点画直线,仅能画4条,则这四个点的位置关系是()A.任意三点不在同一条直线上B.四点在同一条直线上C .最多三点在同一条直线上D .三点在同一条直线上,第四点在这条直线外19.已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB =80°,∠BOC =40°,若OD 平分∠AOC ,则∠BOD 等于________.d .转化思想20.如图所示,一观测塔的底座部分是四棱柱,现要从下底面A 点修建钢筋扶梯,经过点M ,N 到点D′,再进入顶部的观测室,已知AB =BC =CD ,试确定使扶梯的总长度最小的点M ,N 的位置.(第20题)答案专训一1.解:(1)3;2;1;3;2;1;6 (2)4;3;2;1;4;3;2;1;10 (3)n (n -1)2(4)七年级进行辨论赛的有6个班,类似于一条直线上有6个点,每两个班赛一场,类似于两点之间有一条线段,那么七年级这6个班的辩论赛共要进行6×(6-1)2=15(场). (5)从A 站出发,中间经过5个车站后方可到达B 站,类似于一条直线上有7个点,此时共有线段7×(7-1)2=21(条),即A ,B 两站之间最多有21种不同的票价.因为来往两站的车票起点与终点不同,所以A ,B 两站之间需要安排21×2=42(种)不同的车票.2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5(2)45;56(3)当直线条数为n(n ≥2)时,最多有1+2+3+…+(n -1)=n (n -1)2(个)交点; 把平面最多分成1+1+2+3+…+n =⎣⎢⎡⎦⎥⎤n (n +1)2+1部分.3.解:(1)显然这条射线会和∠BAC的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)再在图①的角的内部增加一条射线,即为图②,显然这条射线会和图①中的三条射线再组成三个角,所以图②中共有1+2+3=6(个)角.(3)在角的内部作三条射线,即在图②中再增加一条射线,同样这条射线会和图②中的四条射线再组成四个角,所以图③中共有1+2+3+4=10(个)角.(4)综上可知,如果在一个角的内部作n条射线,则图中共有1+2+3+…+n+(n+1)=(n+1)(n+2)2(个)角.专训二1.解:因为AB=12,AC∶CD∶DB=1∶2∶3,所以AC=16AB=12×16=2,CD=13AB=12×13=4,DB=12AB=12×12=6.因为AM=12AC,DN=14DB,所以MC=12AC=2×12=1,DN=14DB=6×14=32.①当点N在点D右侧时,如图①,MN=MC+CD+DN=1+4+32=132;(第1题)②当点N在点D左侧时,如图②,MN=MC+CD-DN=1+4-32=72.综上所述,线段MN的长为132或72.点拨:首先要根据题意,画出图形.由于点N的位置不确定,故要考虑分类讨论.2.解:(1)①当点P在A,B之间时,不合题意,舍去;②当点P在A点右边时,点P对应的数为2;③当点P在B点左边时,点P对应的数为-4.(2)①当点M在线段AB上时,点M对应的数为0;②当点M在线段BA的延长线上时,点M对应的数为3;③当点M在线段AB的延长线上时,不合题意,舍去.(3)设运动x秒时,点B运动到点B′,点A运动到点A′,点O运动到点O′,此时O′A′=O′B′,点A′,B′在点O′两侧,则BB′=2x,OO′=x,AA′=5x,所以点B′对应的数为2x-3,点O′对应的数为x,点A′对应的数为5x+1,所以O′A′=5x+1-x=4x+1,O′B′=x-(2x-3)=3-x,所以4x+1=3-x,解得x=0.4.即0.4秒后,点O恰为线段AB的中点.3.解:(1)设∠BOC=x,则∠AOC=2x,由题意得90°-2x+30°=x,解得x=40°.所以∠BOC=40°.因为∠AOC=2∠BOC,所以∠AOB=∠BOC=40°.(2)情况一:当OD在∠AOC内部时,如图①,由(1)易得∠AOC=80°.因为∠AOC=4∠AOD,所以∠AOD=20°,所以∠COD=∠AOC-∠AOD=80°-20°=60°.(第3题)情况二:当OD在∠AOC外部时,如图②,由(1)易得∠AOC=80°.因为∠AOC=4∠AOD,所以∠AOD=20°,所以∠COD=∠AOD+∠AOC=20°+80°=100°.综上所述,∠COD的度数为60°或100°.4.解:(1)因为OM和ON分别平分∠AOC和∠BOC,所以∠MOC=12∠AOC,∠NOC=12∠BOC.所以∠MON=∠MOC+∠NOC=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12∠AOB.(2)情况一:如图①,因为OM和ON分别平分∠AOC和∠BOC,所以∠MOC =12∠AOC =12(∠AOB +∠BOC),∠NOB =12∠BOC. 所以∠MON =∠MOB +∠NOB =∠MOC -∠BOC +12∠BOC =∠MOC -12∠BOC =12(∠AOB +∠BOC)-12∠BOC =12∠AOB. (第4题)情况二:如图②,因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠AOM =12∠AOC ,∠NOC =12∠BOC =12(∠AOB +∠AOC)=12∠AOB +12∠AOC. 所以∠MON =∠AOM +∠AON =12∠AOC +(∠NOC -∠AOC)=∠NOC -12∠AOC =12∠AOB +12∠AOC -12∠AOC =12∠AOB. 情况三:如图③,因为OM 和ON 分别平分∠AOC 和∠BOC ,所以∠MOC =12∠AOC ,∠NOC =12∠BOC. 所以∠MON =∠MOC +∠NOC =12∠AOC +12∠BOC =12(∠AOC +∠BOC)=12(360°-∠AOB)=180°-12∠AOB. 综上所述,∠MON 与∠AOB 的数量关系是∠MON =12∠AOB 或∠MON =180°-12∠AOB. 专训三 1.D 2.②③ 3.C 4.D 5.D 6.A7.两点确定一条直线 8.309.解:因为BD =13AB =14CD ,所以CD =43AB. 因为F 是CD 的中点,所以DF =12CD =12×43AB =23AB.因为E是AB的中点,所以EB=12AB,所以ED=EB-DB=12AB-13AB=16AB.所以EF=ED+DF=16AB+23AB=56AB=10 cm,所以AB=12 cm,所以CD=43AB=16 cm.10.A11.B12.13513.40°14.解:设∠BOC=2x°,则∠AOE=5x°,∠AOD=8x°.因为O是直线AB上一点,所以∠AOB=180°,所以∠COE=(180-7x)°.因为OE平分∠AOC,所以∠AOE=∠COE,即5x=180-7x,解得x=15,所以∠AOD=8×15°=120°,所以∠BOD=180°-∠AOD=180°-120°=60°.15.解:(1)根据题意画出示意图,如图所示,线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共有10条,因此有10种不同的票价.(2)同一路段,往返时起点和终点正好相反,所以要准备20种车票.(第15题)16.解:设这两个角的度数分别为5x°、4x°.由题意得5x+4x=180,9x=180,x=20.5x=100,4x=80.答:这两个角的度数分别为100°和80°.17.解:设AC=2x,则CD=3x,DE=4x,EB=5x,由M,N分别是AC,EB的中点,得MC=x,EN=2.5x.由题意,得MN=MC+CD+DE+EN=x+3x+4x+2.5x=21,即10.5x=21,所以x=2,则PQ=12CD+12DE=3.5x=7.点拨:解答此题的关键是设出未知数,利用线段长度的比及中点建立方程,求出未知数的值,进而求解.体现了方程思想在解题中的应用.18.D19.60°或20°20.解:画出四棱柱的侧面展开图,点M,N的位置如图(2)所示,则M,N的位置在四棱柱的位置如图(1)所示.(第20题)。
专训一:求代数式值的技巧名师点金:用数值代替代数式里的字母,按照代数式里的运算符号,计算出的结果就是代数式的值.如果要求值的式子比较简单,可以直接代入求值;如果要求值的式子比较复杂,可考虑先将式子化简,然后代入求值;有时我们还需根据题目的特点,选择特殊的方法求式子的值,如整体代入求值等.直接代入求值1.(2015·大连)若a=49,b=109,则ab-9a的值为W.2.当a=3,b=2或a=-2,b=-1或a=4,b=-3时,(1)求a2+2ab+b2,(a+b)2的值.(2)从中你发现怎样的规律?先化简再代入求值3.已知A=1-x2,B=x2-4x-3,C=5x2+4,求多项式A-2[A-B-2(B-C)]的值,其中x=-1.特征条件代入求值4.已知|x-2|+(y+1)2=0,求-2(2x-3y2)+5(x-y2)-1的值.整体代入求值5.已知2x-3y=5,求6x-9y-5的值.6.已知当x=2时,多项式ax3-bx+1的值是-17,那么当x=-1时,多项式12ax-3bx3-5的值是多少?整体加减求值7.已知x2-xy=-3,2xy-y2=-8,求代数式2x2+4xy-3y2的值.8.已知m2-mn=21,mn-n2=-12.求下列代数式的值:(1)m2-n2;(2)m2-2mn+n2.取特殊值代入求值9.已知(x+1)3=ax3+bx2+cx+d,求a+b+c的值.专训二:与数有关的排列规律名师点金:1.数(式)中的排列规律,关键是找出前面几个数(式)与自身序号数的关系,从而找出一般规律,进而解决问题.2.数阵中的排列规律的探究一般都是先找一个具有代表性的数(设为某个字母)作为切入点,然后找出其他数与该数的关系,并用字母表达式写出来,从而解决相关问题.数式的排列规律1.(2015·淄博)从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()A.21 B.22 C.23 D.992.(2015·包头)观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.62633.下列各图形中的三个数之间均具有相同的规律,根据此规律,图形中M与m、n的关系是()(第3题)A.M=mnB.M=n(m+1)C.M=mn+1D.M=m(n+1)数阵中的排列规律类型1长方形排列4.如图是某月的日历.(第4题)(1)带阴影的长方形框中的9个数之和与其正中间的数有什么关系?(2)不改变长方形框的大小,如果将带阴影的长方形框移至其他几个位置试一试,你还能得出上述结论吗?你知道为什么吗?(3)这个结论对于任何一个月的日历都成立吗?类型2十字排列5.将连续的奇数1,3,5,7,9,…按如图所示的规律排列.(第5题)(1)十字框中的五个数的平均数与15有什么关系?(2)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于315吗?若能,请求出这五个数;若不能,请说明理由.类型3斜排列6.如图所示是2016年6月份的日历.(第6题)(1)平行四边形框中的5个数的和与其中间的数有什么关系?(2)(1)题中的关系对任意这样的平行四边形框都适用吗?设中间这个数为a,请将这5个数的和用含有a的式子表示出来.专训三:图形中的排列规律名师点金:图形中的排列规律都与它所处位置的序号有关,所以解题的切入点是:先设法列出关于序号的式子,再用关于序号的式子表示图形的变化规律.图形变化规律探究1.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征()(第1题)2.一组“穿心箭”按如下规律排列,照此规律,画出第2 016支“穿心箭”是W.(第2题)图形个数规律探究类型1三角形个数规律探究3.(2015·山西)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形……依此规律,第n个图案有个三角形(用含n的代数式表示).(第3题)类型2四边形中个数规律探究4.(2014·重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有2个,第2个图形中面积为1的正方形有5个,第3个图形中面积为1的正方形有9个,…,按此规律,则第6个图形中面积为1的正方形的个数为()(第4题)A.20B.27C.35D.405.(2014·金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图所示方式进行拼接.(第5题)(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的有90人,则需要这样的餐桌多少张?类型3点阵图形中个数规律探究6.观察如图的点阵图形和与之相对应的等式,探究其中的规律:①4×0+1=4×1-3;②4×1+1=4×2-3;③4×2+1=4×3-3;④;⑤W.…(第6题)(1)请你在④和⑤后面的横线上分别写出相对应的等式;(2)通过猜想,写出与第n(n为正整数)个图形相对应的等式.专训四:整体思想在整式加减中的应用名师点金:整式化简时,经常把个别多项式作为一个整体(当作单项式)进行合并;整式的化简求值时,当题目中含字母的部分可以看成一个整体时,一般用整体代入法,整体代入的思想是把联系紧密的几个量作为一个整体来看的数学思想,运用这种方法,有时可使复杂问题简单化.应用整体思想合并同类项1.化简:4(x+y+z)-3(x-y-z)+2(x-y-z)-7(x+y+z)-(x-y-z).应用整体思想去括号2.计算:3x2y-[2x2z-(2xyz-x2z+4x2y)].直接整体代入3.设M=2a-3b,N=-2a-3b,则M+N=()A.4a-6bB.4aC.-6bD.4a+6b4.当x=-4时,代数式-x3-4x2-2与x3+5x2+3x-4的和是()A.0B.4C.-4D.-25.已知A =2a 2-a ,B =-5a +1. (1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值.添括号后再整体代入6.(中考·威海)若m -n =-1,则(m -n )2-2m +2n 的值是( ) A .3 B .2 C .1 D .-17.已知3x 2-4x +6的值为9,则x 2-43x +6的值为( ) A .7 B .18 C .12 D .98.已知-2a +3b 2=-7,则代数式9b 2-6a +4的值是 W.9.已知a +b =7,ab =10,则式子(5ab +4a +7b )-(4ab -3a )的值为 W. 10.已知14x +5-21x 2=-2,求式子6x 2-4x +5的值.11.当x=2时,多项式ax3-bx+5的值是4,求当x=-2时,多项式ax3-bx+5的值.特殊值法代入12.已知(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,求:(1)a0+a1+a2+a3+a4的值;(2)a0-a1+a2-a3+a4的值;(3)a0+a2+a4的值.专训五:整式加减常见的热门考点名师点金:本章的主要内容有整式的定义及其相关概念,整式的运算等,学好这些内容为后面学习整式乘法打好基础.而在中考命题中,对这些内容的考查常与其他知识相结合,主要以填空、选择题的形式出现.整式的概念1.下列说法正确的是( )A .整式就是多项式B .π是单项式C .x 4+2x 3是七次二项式D .3x -15是单项式2.若5a 3b n 与-52a m b 2是同类项,则mn 的值为( )A .3B .4C .5D .63.-13πx 2y 的系数是 ,次数是 W.整式的加减运算4.下列正确的是( )A .7ab -7ba =0B .-5x 3+2x 3=-3C .3x +4y =7xyD .4x 2y -4xy 2=05.当a =-2,b =-1时,代数式1-|b -a|的值是( )A .0B .-2C .2D .46.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )(第6题)A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm7.化简:(1)5x -(2x -3y );(2)-3a +[2b -(a +b )].8.先化简,再求值:(1)43a -⎝ ⎛⎭⎪⎫2a -23a 2-⎝ ⎛⎭⎪⎫-23a +13a 2,其中a =-14;(2)2(2x -3y )-(3x +2y +1),其中x =2,y =-12.9.有这样一道题目:计算13x 2-⎝⎛⎭⎪⎫3x 2+3xy -35y 2+(83x 2+3xy +25y 2)的值,其中x =-12,y =2. 甲同学把“x =-12”错抄成了“x =12”,他的计算结果也是正确的,你知道这是怎么回事吗?整式的应用10.可以表示“比a 的平方的3倍大2的数”的是( )A.a2+2B.3a2+2C.(3a+2)2D.3a(a+2)211.某养殖场2015年底的生猪出栏价格是每千克a元,受市场影响,2016年第一季度出栏价格平均每千克下降了15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克()A.(1-15%)(1+20%)a元B.20%(1-15%)a元C.(1+15%)(1-20%)a元D.15%(1+20%)a元12.大客车上原有(4a-2b)人,中途下车一半人,又上车若干人,这时车上共有(8a-5b)人,那么上车乘客是人.(用含a,b的代数式表示)13.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有人.(用含m 的代数式表示)14.若一个长方形的长是a+b,它的宽比长短a-b(a>b),则这个长方形的周长是W.15.某服装厂有三个加工车间,9月份的生产情况是:第一车间加工服装x套,第二车间加工的服装套数比第一车间的3倍少8套,第三车间加工的服装套数是第一车间的一半,你能求出9月份三个车间共加工多少套服装吗?当x=600时,三个车间共加工多少套服装?数学思想方法的应用类型1整体思想16.若a2+2a=1,则2a2+4a-1=W.17.已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为W.18.已知2x2-5x+4=5,求式子(15x2-18x+4)-(-3x2+19x-32)-8x的值.类型2数形结合思想19.已知有理数a,b,c在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是()(第19题)A.a+cB.c-aC.-a-cD.a+2b-c20.观察图中正方形四个顶点所标数的规律,可知2 016应标在()(第20题)A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角21.若单项式-3x a-b y5与单项式2xy5a+b的和仍是单项式,则a+b=W.类型3转化思想22.已知A=-3x2-2mx+3x+1,B=2x2+2mx-1,且2A+3B的值与x无关,求m的值.探究规律23.观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,…,这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为W.24.用黑、白两种正六边形地面瓷砖按如图所示规律拼成若干个图案,则第n个图案中有白色地面瓷砖块.(第24题)25.用如图(a)所示的三种不同花色的地砖铺成如图(b)的地面图案.(1)用①+②+③+④+⑤+⑥+⑦+⑧+⑨的方法计算地面面积,请列出整式并化简.(2)你有更简便的计算方法吗?请你列出式子.(3)你认为由(1)(2)两种方法得到的两个式子有什么关系?为什么?(第25题)答案专训一1.4 9002.解:(1)当a=3,b=2时,a2+2ab+b2=32+2×3×2+22=25,(a+b)2=(3+2)2=25;当a=-2,b=-1时,a2+2ab+b2=(-2)2+2×(-2)×(-1)+(-1)2=9,(a+b)2=[(-2)+(-1)]2=9;当a=4,b=-3时,a2+2ab+b2=42+2×4×(-3)+(-3)2=1,(a+b)2=(4-3)2=1.(2)a2+2ab+b2=(a+b)2.3.解:原式=A-2A+2B+4(B-C)=A-2A+2B+4B-4C=-A+6B-4C.因为A=1-x2,B=x2-4x-3,C=5x2+4,所以原式=x2-1+6x2-24x-18-4(5x2+4)=-13x2-24x-35.当x=-1时,原式=-13×(-1)2-24×(-1)-35=-13+24-35=-24.4.解:由条件|x-2|+(y+1)2=0,得x-2=0且y+1=0,所以x=2,y=-1.原式=-4x+6y2+5x-5y2-1=x+y2-1.当x=2,y=-1时,原式=2+(-1)2-1=2.5.解:6x-9y-5=3(2x-3y)-5=3×5-5=10.6.解:因为当x=2时,多项式ax3-bx+1的值是-17,所以8a-2b+1=-17.所以8a-2b=-18.当x=-1时,12ax-3bx3-5=-12a+3b-5=(-12a+3b)-5=-32(8a-2b)-5=-32×(-18)-5=22.7.解:由x2-xy=-3,得2x2-2xy=-6①;由2xy-y2=-8,得6xy-3y2=-24②.①+②,得(2x2-2xy)+(6xy-3y2)=(-6)+(-24)=-30,即2x2+4xy-3y2=-30.8.解:(1)因为m2-mn=21,mn-n2=-12,所以m2-n2=(m2-mn)+(mn-n2)=21-12=9.(2)因为m2-mn=21,mn-n2=-12,所以m2-2mn+n2=(m2-mn)-(mn-n2)=21-(-12)=21+12=33.9.解:令x=0,得(0+1)3=d,所以d=1.再令x=1,得(1+1)3=a+b+c+d,所以a +b+c+d=8.所以a+b+c=8-1=7.专训二1.A点拨:由题意知这列数为1,2,4,8,16,22,24,28,36,42,44,48,56,62,64,68,76,82,84,88,96,…,故小于100的个数为21.2.C点拨:观察数据,发现第n个数为n22n-1,再将n=6代入计算即可求解.3.D4.解:(1)带阴影的长方形框中的9个数之和是其正中间的数的9倍.(2)带阴影的长方形框中的9个数之和仍是其正中间数的9倍,理由如下:设带阴影的长方形框的正中间的数为x,则其余8个数分别为x-8,x-7,x-6,x-1,x+1,x+6,x +7,x+8,带阴影的长方形框中的9个数之和为(x-8)+(x-7)+(x-6)+(x-1)+x+(x+1)+(x+6)+(x+7)+(x+8)=9x,所以带阴影的长方形框中的9个数之和是其正中间的数的9倍.(3)这个结论对于任何一个月的日历都成立.5.解:(1)十字框中的五个数的平均数与15相等.(2)这五个数的和能等于315.设正中间的数为x,则上面的数为x-10,下面的数为x+10,左边的数为x-2,右边的数为x+2.令x+(x-10)+(x+10)+(x-2)+(x+2)=315.解得x=63.这五个数分别是53、61、63、65、73.6.解:(1)平行四边形框中的5个数的和是平行四边形框中间的数的5倍;(2)适用.因为中间的数为a,所以其余4个数分别为a-12,a-6,a+6,a+12,它们的和为(a-12)+(a-6)+a+(a+6)+(a+12)=5a.专训三1.B 2.3.(3n+1)点拨:方法1:因为4=1+3×1,7=1+3×2,10=1+3×3,…,所以第n个图案有1+3×n=3n+1(个)三角形.方法2:因为4=4+0×3,7=4+1×3,10=4+2×3,…,所以第n个图案有4+(n-1)×3=3n+1(个)三角形.4.B5.解:(1)1张长方形餐桌的四周可坐4+2=6(人),2张这样的餐桌拼接起来,四周可坐4×2+2=10(人),3张这样的餐桌拼接起来,四周可坐4×3+2=14(人),…n张这样的餐桌拼接起来,四周可坐(4n+2)人.所以4张这样的餐桌拼接起来,四周可坐4×4+2=18(人),8张这样的餐桌拼接起来,四周可坐4×8+2=34(人).(2)设需要这样的餐桌x张,由题意得4x+2=90,解得x=22.答:需要这样的餐桌22张.6.解:(1)④4×3+1=4×4-3⑤4×4+1=4×5-3(2)4(n-1)+1=4n-3(n为正整数).点拨:结合图形观察①、②、③中等式左右两边,发现有规律可循.等式左边都是比式子顺序数少1的数的4倍,再加上1;而等式右边,恰好是式子顺序数的4倍减3,这样④、⑤中的等式可以写出,进而我们可以归纳出第n个图形相对应的等式为4(n-1)+1=4n-3(n 为正整数).专训四1.解:原式=-3(x+y+z)-2(x-y-z)=-3x-3y-3z-2x+2y+2z=-5x-y-z.2.解:原式=3x2y-2x2z+(2xyz-x2z+4x2y) =3x2y-2x2z+2xyz-x2z+4x2y=7x2y-3x2z+2xyz.3.C 4.D5.解:(1)3A-2B+2=3(2a2-a)-2(-5a+1)+2=6a2-3a+10a-2+2=6a2+7a.(2)当a=-12时,原式=6a2+7a=6×⎝⎛⎭⎪⎫-122+7×⎝⎛⎭⎪⎫-12=-2.6.A点拨:原式=(m-n)2-2(m-n)=(-1)2-2×(-1)=3.7.A8.-17点拨:9b2-6a+4=3(3b2-2a)+4=3×(-7)+4=-17.9.5910.解:因为14x+5-21x2=-2,所以14x-21x2=-7,所以3x2-2x=1.所以6x2-4x +5=2(3x2-2x)+5=7.11.解:当x=2时,23×a-2b+5=4,即8a-2b=-1.当x=-2时,ax3-bx+5=(-2)3×a-(-2)×b+5=-8a+2b+5=-(8a-2b)+5=-(-1)+5=6.点拨:求多项式的值时,有时给出相应字母的值,直接求值;有时不能求出字母的值,就需要观察已知与所求之间的关系,有时可将已知条件和所求式子经过适当变形后,运用整体代入的方法求解.12.解:(1)将x=1代入(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,得a0+a1+a2+a3+a4=(2+3)4=625.(2)将x=-1,代入(2x+3)4=a0x4+a1x3+a2x2+a3x+a4,得a0-a1+a2-a3+a4=(-2+3)4=1.(3)因为(a 0+a 1+a 2+a 3+a 4)+(a 0-a 1+a 2-a 3+a 4)=2(a 0+a 2+a 4),所以625+1=2(a 0+a 2+a 4),所以a 0+a 2+a 4=313.点拨:直接求各项系数所组成的式子的值是行不通的,通过观察各式的特点,通过适当地赋予x 特殊值可以求出.专训五1.B 2.D 3.-13π;3 4.A 5.A6.B 点拨:设小长方形的长为a cm ,宽为b cm ,则上面的长方形周长为:2(m -a +n -a) cm ,下面的长方形周长为:2(m -2b +n -2b) cm ,则总周长为[4m +4n -4(a +2b)] cm .因为a +2b =m(由题图可知),所以周长和=4m +4n -4(a +2b)=4n(cm ).7.解:(1)原式=5x -2x +3y =3x +3y.(2)原式=-3a +(2b -a -b)=-3a +b -a =-4a +b.8.解:(1)原式=43a -2a +23a 2+23a -13a 2=13a 2.当a =-14时,原式=13a 2=13×⎝ ⎛⎭⎪⎫-142=148. (2)原式=4x -6y -3x -2y -1=x -8y -1.当x =2,y =-12时,原式=x -8y -1=2-8×⎝ ⎛⎭⎪⎫-12-1=5. 9.解:原式=13x 2-3x 2-3xy +35y 2+83x 2+3xy +25y 2=⎝ ⎛⎭⎪⎫13-3+83x 2+(-3+3)xy +⎝ ⎛⎭⎪⎫35+25y 2=y 2,由于化简的结果中不含字母x ,故原多项式的值与x 的值无关,因而无论甲把x 的值错抄成什么数,只要y 值没错,结果都是正确的.10.B 11.A12.(6a -4b) 13.(2m +3) 14.2a +6b15.解:x +(3x -8)+12x=x +3x -8+12x=92x -8(套)当x =600时,92x -8=92×600-8=2 692.答:9月份三个车间共加工⎝ ⎛⎭⎪⎫92x -8套服装,当x =600时,三个车间共加工2 692套服装. 16.1 17.618.解:因为2x2-5x+4=5,所以2x2-5x=1.所以(15x2-18x+4)-(-3x2+19x-32)-8x=18x2-45x+36=9(2x2-5x)+36=9×1+36=45.19.A20.D21.122.解:2A+3B=2(-3x2-2mx+3x+1)+3(2x2+2mx-1)=(2m+6)x-1. 因为2A+3B的值与x无关,所以2m+6=0,即m=-3.23.(n+2)2-n2=4(n+1)24.(4n+2)25.解:(1)x+1+x+1+x+1+x+1+x2=x2+4x+4.(2)有.因为题图(b)是正方形,边长为x+2,所以面积为(x+2)2.(3)x2+4x+4=(x+2)2.因为图形的面积不变.初中数学试卷桑水出品。
密码培训计划一、培训目标1. 帮助学员了解密码的重要性和安全性2. 提高学员创建和管理密码的能力3. 帮助学员避免常见的密码安全问题二、培训内容1. 密码的重要性和安全性- 介绍密码在个人和组织数据安全中的作用- 分析密码泄露对个人隐私和财产的影响- 讨论密码安全对组织业务和声誉的重要性2. 创建强密码- 讲解强密码的特点- 示范使用密码生成工具创建强密码- 分析常见密码破解方式,避免使用容易被破解的密码3. 安全管理密码- 讲解密码管理工具的使用方法- 教授如何安全地保存密码- 分析多因素认证的作用和重要性4. 避免常见的密码安全问题- 介绍常见的密码保护错误- 分析社会工程攻击和钓鱼攻击的特点和防范方法- 讲解密码变更的最佳实践和时间间隔三、培训形式1. 线上培训- 提供在线视频进行密码知识的讲解- 提供在线模拟练习,帮助学员创建和管理密码- 提供在线答疑,解决学员在培训中遇到的问题2. 线下培训- 提供面对面的讲座,详细介绍密码的重要性和安全性- 提供实践操作,让学员实际创建和管理密码- 提供案例分析,让学员学会避免常见的密码安全问题四、培训教材1. 《密码安全指南》2. 《密码保护手册》3. 《网络安全原理与技术》五、培训评估1. 在培训结束后,通过问卷调查评估学员对培训内容的掌握程度和满意度2. 对学员进行密码创建和管理的实际测试,评估其密码安全能力3. 定期跟踪学员在实际工作中的密码安全情况,及时纠正错误和不足六、培训后续1. 为学员提供密码保护相关的定期更新和培训2. 针对学员的实际需求,提供个性化的密码安全指导和帮助3. 组织密码安全经验分享,让学员相互学习和共同进步七、培训效果1. 提高学员对密码的重视程度,增强密码安全意识2. 提高学员创建强密码的能力,降低密码泄露风险3. 提高学员避免常见密码安全问题的能力,增强组织信息安全水平八、培训总结密码培训计划旨在帮助学员提高密码安全意识和能力,降低个人和组织的密码泄露风险,保护信息安全。
专训1.证垂直在解题中的应用
名师点金:
证垂直的方法:(1)在同一平面内,垂直于两条平行线中的一条直线;(2)等腰三角形中“三线合一”;(3)勾股定理的逆定理:在几何中,我们常常通过证垂直,再利用垂直的性质来解各相关问题.
利用三边的数量关系说明直角
1.如图,在△中,点D为边上一点,且=10,=6,=8,=17,求的长.
(第1题)
利用转化为三角形法构造直角三角形
2.如图,在四边形中,∠B=90°,=2,=,=5,=4,求S四边形.
(第2题)
利用倍长中线法构造直角三角形
3.如图,在△中,D为边的中点,=5,=6,=13,求证:⊥.
(第3题)
利用化分散为集中法构造直角三角形
4.在△中,=,∠=α,点P为△内一点,将绕点C顺时针旋转α得到,连接.
(1)如图①,当α=60°,=10,=6,=8时,求∠的度数;
(2)如图②,当α=90°时,=3,=1,=2时,求∠的度数.
(第4题)
利用“三线合一”法构造直角三角形
5.如图①,在△中,=,∠=90°,D为的中点,M,N分别为,上的点,且⊥.
(1)求证:+=;
(2)如图②,若M,N分别在,的延长线上,探究,,之间的数量关系.
(第5题)
专训2.全章热门考点整合应用
名师点金:
本章主要学习了勾股定理、勾股定理的逆定理及其应用,勾股定理揭示了直角三角形三边长之间的数量关系.它把直角三角形的“形”的特点转化为三边长的“数”的关系,是数形结合的典范,是直角三角形的重要性质之一,也是今后学习直角三角形的依据之一.本章的考点可概括为:两个定理,两个应用.
两个定理
勾股定理
1.如图,在△中,∠C=90°,点D是上一点,=.若=8,=5,求的长.
(第1题)
勾股定理的逆定理
2.在△中,=a,=b,=c,设c为最长边.当a2+b2=c2时,△是直角三
角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,可以判断△的形状(按角分类).
(1)请你通过画图探究并判断:当△三边长分别为6,8,9时,△为三角形
;当△三边长分别为6,8,11时,△为三角形.
(2)小明同学根据上述探究,有下面的猜想:
“当a2+b2>c2时,△为锐角三角形;当a2+b2<c2时,△为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△是锐角三角形、直角三角形、钝角三角形?
两个应用
勾股定理的应用
3.如图,在公路l旁有一块山地正在开发,现需要在C处爆破.已知C与公路上的停靠站A的距离为300 m,与公路上的另一停靠站B的距离为400 m,且⊥.为了安全起见,爆破点C周围半径250 m范围内(包括250 m)不得有人进入.问:在进行爆破时,公路段是否有危险?需要暂时封锁吗?
(第3题)
勾股定理逆定理的应用
4.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙
两艘巡逻艇立即从相距5 n 的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行40 n,乙巡逻艇每小时航行30 n,航向为北偏西37°,问:甲巡逻艇的航向?
(第4题)
答案
1.解:∵2+2=100=2,
∴△为直角三角形,且∠=90°.
在△中,2+2=2,
∴===15.
2.解:连接.在△中,2+2=2,
∴=3,∴2+2=2.
∴△为直角三角形,且∠=90°,
∴S四边形=×2×+×3×4=6+.
(第3题)
3.证明:如图,延长至点E,使=,连接,.
∵D为的中点,
∴=.
又∵=,∠=∠,
∴△≌△,
∴==13.
在△中,=2=12,
∴2+2=122+52=169.
又∵2=132=169,∴2+2=2,
∴△是直角三角形,且∠=90°,即⊥.
点拨:本题运用倍长中线法构造全等三角形证明线段相等,再利用勾股定理的逆定理证明三角形为直角三角形,从而说明两条线段垂直.
4.解:(1)如图①,连接,易知△为等边三角形,易证得△≌△,∴∠=∠,∠=60°,=6,=8,∴2+2=2,∴∠=90°,∴∠=150°,
∴∠=150°.
(第4题)
(2)如图②,连接,易得△为等腰直角三角形,易证得△≌△,∴∠=∠,∠=45°,=1,==2 ,
∴2+2=2,∴∠=90°,∴∠=135°,
∴∠=135°.
5.(1)证明:如图①,连接,∵⊥,
∴∠+∠=90°.
∵∠=90°,=,D为的中点,∴⊥,∠=∠=45°,∴∠+∠=90°.∴∠=∠.
∵⊥,∠=45°,
∴=.在△和△中,
∵∠=∠,∠=∠,=,
∴△≌△,∴=.∴+=+=.
在△中,∠B=45°,∠=90°,∴=.∴+=.
(2)解:-=,如图②,连接,证法同(1).
1.解:设=x,在△中,有2+(+)2=2,
整理,得2=2-(+)2=64-(x+5)2.①
在△中,有2+2=2,
整理,得2=2-2=25-x2.②
由①②两式,得64-(x+5)2=25-x2,解得x=1.4,即的长是1.4.
点拨:勾股定理反映了直角三角形三边长之间的数量关系,利用勾股定理列方程思路清晰、直观易懂.
2.解:(1)锐角;钝角
(2)a2+b2=22+42=20,∵c为最长边,2+4=6,∴4≤c<6.
①由a2+b2>c2,得c2<20,0<c<2 ,∴当4≤c<2 时,这个三角形是锐角三角形;
②由a2+b2=c2,得c2=20,c=2 ,∴当c=2 时,这个三角形是直角三角形;
③由a2+b2<c2,得c2>20,c>2 ,∴当2 <c<6时,这个三角形是钝角三角形.
3.解:如图,过点C作⊥于点D.在△中,因为2+2=2,=400 m,=300 m,
所以2=4002+3002=5002,所以=500 m.
(第3题)
=·=·,
因为
△
所以500×=400×300,所以=240 m.
因为240<250,所以公路段有危险,需要暂时封锁.
4.解:=40×0.1=4(n ),=30×0.1=3(n ).
因为=5 n,所以2=2+2,所以∠=90°. 因为∠=90°-37°=53°,所以∠=37°,所以甲巡逻艇的航向为北偏东53°.。