现代控制理论----综述论文-2015
- 格式:doc
- 大小:46.00 KB
- 文档页数:11
现代控制理论(浓缩版)绪论1.经典控制理论与现代控制理论的比较。
经典控制理论也称为古典控制理论,多半是用来解决单输入-单输出的问题,所涉及的系统大多是线性定常系统,非线性系统中的相平面法也只含两个变量。
经典控制理论是以传递函数为基础、在频率域对单输入单输出控制系统进行分析和设计的理论。
它明显具有依靠手工进行分析和综合的特点,这个特点是与20世纪40~50年代生产发展的状况,以及电子计算机的发展水平尚处于初级阶段密切相关的。
在对精度要求不高的场合是完全可用的。
最大成果之一就是PID 控制规律的产生,PID 控制原理简单,易于实现,具有一定的自适应性与鲁棒性,对于无时间延时的单回路控制系统很有效,在工业过程控制中仍被广泛采用。
现代控制理论主要用来解决多输入多输出系统的问题,系统可以是线性或非线性的、定常或时变的。
确认了控制系统的状态方程描述法的实用性,是与状态方程有关的控制理论。
现代控制理论基于时域内的状态空间分析法,着重实现系统最优控制的研究。
从数学角度而言,是把系统描述为四个具有适当阶次的矩阵,从而将控制系统的一些问题转化为数学问题,尤其是线性代数问题。
而且,现代控制理论是以庞得亚金的极大值原理、别尔曼的动态规划和卡尔曼的滤波理论为其发展里程碑,揭示了一些极为深刻的理论结果。
面对现代控制理论的快速发展及成就,人们对这种理论应用于工业过程寄于乐期望。
但现代控制在工业实践中遇到的理论、经济和技术上的一些困难。
所以说,现代控制理论还存在许多问题,并不是“完整无缺”,这是事物存在矛盾的客观反应,并将推动现代控制理论向更深、更广方向发展。
如大系统理论和智能控制理论的出现,使控制理论发展到一个新阶段。
2.控制一个动态系统的几个基本步骤有四个基本步骤:建模,基于物理规律建立数学模型;系统辨识,基于输入输出实测数据建立数学模型;信号处理,用滤波、预报、状态估计等方法处理输出;综合控制输入,用各种控制规律综合输入。
现代控制理论课程论文现代控制理论综述姓名XXXX学号XXXX学院机械工程学院班级XXXXX专业机械设计及理论学位类型学术型2014年11月21日摘要本文对现代控制理论做了一次完整综述,主要讲了现代控制理论的起源、内容、发展及其特点。
本文简要说明了现代控制理论的主要内容,对系统的状态和状态方程、线性控制系统的能控性和能观性、系统的稳定性分析、线性定常系统的常规综合、最优控制做了简要概述。
最后介绍了一下现代控制技术在21世纪的发展趋势,主要包括信息技术与控制技术的结合、虚拟现实及计算机仿真技术、集成控制技术。
关键词:现代控制理论,综述,主要内容,发展趋势AbstractThis paper made a complete summary modern control theory, concerning the origin, content, development and characteristics of modern control theory. This paper made a brief description of the main elements of modern control theory, including the system's status and state equations, linear control system controllability and observability, the stability analysis, conventional integrated of linear time-invariant systems and optimal control. Finally we made a introduction about the trends of modern control theory in modern control technology of the 21st century, including the combination of information technology and control technology, virtual reality and computer simulation technology and integrated control technology.Key words: Modern control theory, summary, main content, development trend目录第一章绪论 (1)1.1现代控制理论的起源与发展 (1)1.2现代控制理论的特点及主要内容简介 (1)1.3现代控制理论的学习意义 (1)第二章现代控制理论的主要内容 (2)2.1系统的状态和状态方程 (2)2.2线性控制系统的能控性和能观性 (2)2.3系统的稳定性分析 (2)2.4线性定常系统的常规综合 (3)2.5最优控制 (4)第三章现代控制技术在21世纪的发展趋势 (5)3.1信息技术与控制技术的结合 (5)3.2虚拟现实及计算机仿真技术 (6)3.3集成控制技术 (6)第四章总结与展望 (7)参考文献 (8)第一章绪论1.1现代控制理论的起源与发展经典控制理论考虑的对象比较简单,对象为单输入单输出、线性、时不变系统;使用图形化方法,从而依赖于设计人员的经验;不能具有处理多目标,不能揭示系统的内部特性。
第一章经典控制理论和现代控制理论本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
以下是经典控制理论和现代控制理论的比较:1、经典控制理论:(1)理论基础:Evens的根轨迹,Nyquist稳定判据。
(2)研究对象:线性定常SISO系统分析与设计。
(3)分析问题:稳、准、快(4)采用方法:是以频率域中传递函数为基础的外部描述方法。
(5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。
(6)研究方法:时域法、根轨迹法、频率法。
2、现代控制理论:(1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。
(2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性)(3)分析问题:稳、准、快(4)设计(综合)问题:1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。
2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。
3)研究方法:状态空间法(时域法)、频率法。
现代控制理论方法综述研电1610 秦晓 1162201332摘要:本文将控制理论方法分为现代控制理论基础,线性最优控制,非线性最优控制三大部分,查阅文献,综述了每一部分中的经典控制方法,以及每种控制方法的优缺点和在工业中的应用,最后提出了目前在现代控制理论中依旧存在的问题。
1.引言电力系统是一个复杂的非线性动态大系统,对于这个规模庞大的系统,研究其运行的动态特性进而构建先进的安全控制系统是极富挑战性的课题。
同时,各种新技术的应用,一方面增强了系统的调控能力和经济效益,另一方面也极大的增加了电网控制的复杂性,对电力系统的安全稳定运行提出了更严格的要求。
因此,改善与提高我国电力系统的动态品质、安全稳定和经济性成为了电力工作者的首要任务。
提高电力系统稳定性的最经济和最有效的手段之一是采用先进的控制理论和方法。
在过去的时间里,电力工作者们为改进与发展电力系统控制技术进行了大量研究。
本文主要梳理总结电力系统在现代控制方面的研究成果,分析了电力系统控制技术的发展趋势,并总结了目前现代控制理论还需要解决的问题。
2.现代控制的基础现代控制理论的基础是经典控制理论,在20世纪20年代到50年代间,为了满足第二次世界大战前后军事技术和工业发展的需求,经典控制理论有了飞速的发展。
经典控制理论主要研究线性时不变、单输入单输出的控制问题。
在分析和设计大型反馈控制系统时,经典控制论主要采用频域法,其中以 Nyquist 判据、Bode 图和根轨迹法最为广泛[1~2]。
经典控制理论的设计目标是使闭环系统特征方程的特征根全部位于左半开平面上。
上述设计目标可以描述为一类无目标函数的优化问题,即约束满足问题。
由于使系统稳定的控制器解并不唯一,所以根据经典控制理论设计的PID 控制器往往带有较大的冗余性[3]。
也正是由于经典控制理论设计目标及方向简单明确,计算方便,特别适合需要依赖工程经验或现场测试进行控制器设计的系统,所以至今仍在工业中广泛应用。
李雅普诺夫稳定性理论李雅普诺夫稳定性理论是近代控制理论中一个重要的组成部分,它在近代控制理论中的最优控制,最优估计,滤波和自适应控制,神经网络等方面发挥了极其重要的作用。
在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础,经典控制理论以拉氏变换为数学工具,以单输入——单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展——对经典理的精确化、数学化及理论化。
俄国数学家和力学家李雅普诺夫在1892年所创立的用于分析系统稳定性的理论。
对于控制系统,稳定性是需要研究的一个基本问题。
在研究线性定常系统时,已有许多判据如代数稳定判据、奈奎斯特稳定判据等可用来判定系统的稳定性。
李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。
李雅普诺夫稳定性理论主要指李雅普诺夫第二方法,又称李雅普诺夫直接法。
李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。
对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。
与第二方法相对应的是李雅普诺夫第一方法,又称李雅普诺夫间接法,它是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。
第一方法的影响远不及第二方法。
在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
学科内容现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。
线性系统理论它是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。
按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。
非线性系统理论非线性系统的分析和综合理论尚不完善。
研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。
现代控制理论小论文1. 引言现代控制理论是控制理论的一个重要分支,它在工程控制领域有着广泛的应用。
随着科技的发展,控制系统越来越复杂,要求控制系统具备更高的性能指标和更强的鲁棒性。
现代控制理论的研究和应用为工程控制带来了很大的推动力,以提升系统的控制性能和鲁棒性。
本篇小论文将介绍现代控制理论的基本概念、方法和应用,并讨论其在实际系统中的应用情况。
2. 现代控制理论的基本概念现代控制理论是基于数学模型的控制理论,其核心概念包括控制系统、系统模型和控制器等。
2.1 控制系统控制系统是由一组相互作用的组件组成的系统,旨在通过对系统输入进行调节以达到预期的输出。
控制系统通常包括传感器、执行器、控制算法和反馈环路等。
2.2 系统模型系统模型是控制系统的数学描述,可分为传递函数模型和状态空间模型。
传递函数模型描述了系统的输入与输出之间的关系,而状态空间模型描述了系统的状态随时间的变化。
2.3 控制器控制器是控制系统中的关键组件,根据系统的输入和输出信息,使用控制算法来生成控制信号,以调节系统的行为。
常见的控制器包括比例-积分-微分(PID)控制器、模糊控制器和自适应控制器等。
3. 现代控制理论的方法现代控制理论提供了多种方法来设计控制系统,以满足不同的控制需求。
3.1 线性控制线性控制是现代控制理论的重要方法之一,它基于线性系统的模型和理论,通过设计线性控制器来实现对系统的控制。
线性控制具有较好的稳定性和可调节性,在许多工业应用中得到广泛应用。
3.2 非线性控制非线性控制是应对非线性系统的控制方法,它考虑系统的非线性特性,并设计相应的非线性控制器来实现对系统的控制。
非线性控制可用于对复杂系统进行建模和控制,具有更强的适应性和鲁棒性。
3.3 鲁棒控制鲁棒控制是一种针对不确定性和扰动的控制方法,通过设计具有鲁棒性的控制器来使控制系统对不确定因素具有一定的容忍能力。
鲁棒控制可以提高系统的稳定性和鲁棒性,适用于对不确定因素较多的系统进行控制。
非线性动态系统的稳定性和鲁棒控制理论研究上世纪50年代,Kallman成功的将状态空间法引入到系统控制理论中,从而标志着现代控制理论研究的开始。
现代控制理论的研究对象是系统的数学模型,它根据人们对系统的性能要求,通过对被控对象进行模型分析来设计系统的控制律,从而保证闭环系统具有期望的性能。
其中,线性系统理论已经形成一套完整的理论体系。
过去人们常用线性系统理论来处理很多工程问题,并在一定范围内取得了比较满意的效果。
然而,这种处理方法是以忽略系统中的动态非线性因素为代价的。
实际中很多物理系统都具有固有的动态非线性特性,如库仑摩擦、饱和、死区、滞环等,这些非线性动态非线性特性的存在常常使系统的控制性能下降,甚至变得不稳定。
这就使得利用线性系统理论处理非线性动态系统面临巨大的困难。
此外,在控制系统运行过程中,环境的变化或者元件的老化,以及外界干扰等不确定因素也会造成系统实际参数和标称值之间出现较大差别。
因此,基于标称数学模型所设计的控制律一般很难达到期望的性能指标,甚至会使系统不稳定。
综上所述,研究不确定条件下非线性动态系统的鲁棒稳定性及鲁棒控制间题具有重要的理论意义和迫切的实际需要。
非线性动态系统是指按确定性规律随时间演化的系统,又称动力学系统,其理论来源于经典力学,一般由微分方程来描述。
美国数学家Birkhoff[1]发展了法国数学家Poincare在天体力学和微分方程定性理论方面的研究,奠定了动态系统理论的基础。
在实际动态系统中,对象往往受到各种各样的不确定的影响,所以其数学模型一般不可能精确得到。
因此,我们只能用近似的标称数学模型来描述被控对象,并据此来设计控制系统,动态系统鲁棒控制由此产生。
所谓鲁棒性就是指系统预期非线性动态系统的稳定性和鲁棒控制理论研究的设计品质不因不确定性的存在而遭到破坏的特性,鲁棒控制是非线性动态系统控制理论研究的一个非常重要的分支。
现代控制理论的发展促进了对动态系统的研究,使它的应用从经典力学扩大到一般意义下的系统。
2015级硕士期末论文《现代控制理论综述》课程现代控制理论姓名学号专业2016 年1 月 4 日经典控制理论与现代控制理论的差异现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
摘要最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。
它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。
最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。
一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。
然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。
系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。
因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。
变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。
庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。
尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。
关键词:最优控制;控制规律;最优性能指标;线性二次型AbstractThe optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control.A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value.Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic一绪论1.1背景和意义要求将最优控制问题典型解决方法变分法、极值原理和动态规划及其在时间最短控制问题的应用和线性二次型最优控制问题(包括线性二次型实验及仿真结果)作为主要内容。
最优控制方法及其应用摘要:主要阐述了关于最优控制问题的基本概念,最优控制是最优化方法的一个应用。
最优化一般可以分为最优设计、最优计划、最优管理和最优控制四个方面。
而最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科,解决最优控制问题的主要方法有变分法、极大值原理和动态规划。
常使用到的主要有时间最短控制问题和线性二次型最优控制问题等。
通过以上知识的了解和应用可以使初学者能够快速掌握最优控制的问题。
关键字:最优化最优控制极值时间最优控制线性二次型目录第一章最优控制的基础 (4)1.1 最优控制理论 (4)1.2 最优控制问题的一般形式 (5)1.3 最优控制方法 (6)第二章变分法 (7)2.1 变分法基础 (7)2.2 变分法应用 (7)第三章极大值原理 (10)3.1 极大值原理的提出和形式 (10)3.2 极大值原理的应用 (11)第四章动态规划方法 (13)4.1 动态规划概念及意义 (13)4.2 动态规划算法的基本思想和结构 (13)4.3 动态规划算法的运用 (14)第五章时间最优控制问题 (16)第六章线性二次型最优控制问题 (20)6.1 线性二次型最优控制问题的提出 (20)6.2 应用MATLAB求解二次型最优控制问题(实验部分) (22)第七章关于倒立摆的最优控制 (34)结束语 (39)参考文献 (39)第一章最优控制的基础§ 1.1 最优控制理论最优控制理论是研究和解决从一切可能的控制方案中寻找最优解的一门学科。
它是现代控制理论的重要组成部分。
最优控制是最优化方法的一个应用,如果想了解最优控制必须知道什么是最优化方法。
所谓最优化方法为了达到最优化目的所提出的各种求解方法。
从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。
从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大(如产值、利润),或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。
<<现代控制理论>>的文献综述轮机1305班 1049721301970 陈彬彬内容摘要通过查阅这些参考资料和文献,深入了解了现代控制理论的产生、发展、内容和研究方法,并通过将其与本科期间学过的古典控制理论进行了对比,了解了两种控制理论的异同。
最后初步认识了现代控制理论在各领域中的应用。
这些参考资料和文献对以后对现代控制理论的学习将会有方向性的指导作用。
关键词:现代控制理论经典控制理论发展应用第一章前言建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
第二章主体部分2.1 现代控制理论的产生、发展、内容和研究方法2.1.1现代控制理论的产生及其发展第一阶段:经典(自动)控制理论经典控制理论即古典控制理论,也称为自动控制理论。
它的发展大致经历了以下几个过程:1.萌芽阶段如果要追朔自动控制技术的发展历史,早在两千年前中国就有了自动控制技术的萌芽。
两千年前我国发明的指南车,就是一种开环自动调节系统。
公元1086-1089年(北宋哲宗元祐初年),我国发明的水运仪象台,就是一种闭环自动调节系统。
2.起步阶段随着科学技术与工业生产的发展,到十八世纪,自动控制技术逐渐应用到现代工业中。
论文题目:现代控制理论综述摘要本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。
本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。
关键词:现代控制;状态方程;稳定性;最优控制;AbstractThis article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department.Keywords: Modern control; State equation;Stability;Optimal control目录摘要 (I)Abstract ........................................................... I I一、控制理论的发展历史 (1)二、现代控制理论的基本内容 (2)2.1 控制系统的状态空间表达式 (3)2.2 线性控制系统的能控性和能观性 (3)2.2.1 线性控制系统的能控性 (3)2.2.2 线性控制系统的能观性 (4)2.3 自动控制系统的稳定性 (5)2.4 最优控制 (6)三、控制理论的发展展望 (6)四、总结 (6)参考文献 (8)一、控制理论的发展历史控制理论是关于各种系统的一般性控制规律的科学,它研究如何通过信号反馈来修正动态系统的行为和性能,以达到预期的控制目的。
控制理论综述经典控制理论20世纪初研制成装在飞机上的电动陀螺稳定装置,并发展成自动驾驶仪,但这仅仅是人们在实践中直观摸索的结果,尚无理论上的指导。
当时的自动驾驶仪在结构上比较简陋,对飞机的稳定和控制也极为简单,控制质量不高。
30年代末至40年代初形成经典控制理论。
在这种理论指导下飞机上自动驾驶仪的性能得到提高,并在40年代为研制V-1、V-2导弹提供了基础。
经典控制理论适用于单输入、单输出的线性定常(参数不随时间而变)系统,所以在分析设计V-1、V-2导弹控制系统时,将导弹的运动分解成单输入、单输出的运动。
V-2导弹从地面飞出大气层,其特性参数变化很大,是一个时变对象,但为了应用经典控制理论而采用系数冻结法将时变对象简化为定常的对象。
这样,V-1和V-2导弹虽都投入使用,但命中精度不高。
经典控制理论中的非线性理论在40~50年代得到发展,经典的分析方法有描述函数法、相平面法等。
这些分析方法在分析战术导弹制导系统(较多采用典型非线性的继电控制方式)时较为有效,成为50年代战术导弹得到较大发展的因素之一。
随着导弹和航天活动的进展,对飞行器控制的精度要求大大提高,飞行器完成的任务更趋复杂,加上飞行器飞行时环境的急剧变化,对飞行器控制系统提出了更高的要求。
为了满足这些要求,必须寻求新的理论来指导控制系统的设计。
现代控制理论60年代产生的现代控制理论是以状态变量概念为基础,利用现代数学方法和计算机来分析、综合复杂控制系统的新理论,适用于多输入、多输出,时变的或非线性系统。
飞行器及其控制系统正是这样的系统。
应用现代控制理论对它进行分析、综合能使飞行器控制系统的性能达到新的水平。
从60年代“阿波罗”号飞船登月,70年代“阿波罗”号飞船与“联盟”号飞船的对接,直到80年代航天飞机的成功飞行,都是与现代控制理论和计算机的应用分不开的。
在控制精度方面,应用现代控制理论、计算机和新型元、部件,使洲际导弹的命中精度由几十公里减小到百米左右。
2015级硕士期末论文《现代控制理论综述》课程现代控制理论姓名学号专业2016 年1 月 4 日经典控制理论与现代控制理论的差异现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。
空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。
这类控制问题十分复杂,采用经典控制理论难以解决。
1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。
在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。
他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。
1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。
几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。
状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。
其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。
到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。
现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。
线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。
按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。
非线性系统理论的分析和综合理论尚不完善。
研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。
更一般的非线性系统理论还有待建立。
从70年代中期以来,由微分几何理论得出的某些方法对分析某些类型的非线性系统提供了有力的理论工具。
最优控制理论是设计最优控制系统的理论基础,主要研究受控系统在指定性能指标实现最优时的控制规律及其综合方法。
在最优控制理论中,用于综合最优控制系统的主要方法有极大值原理和动态规划。
最优控制理论的研究范围正在不断扩大,诸如大系统的最优控制、分布参数系统的最优控制等。
随机控制理论的目标是解决随机控制系统的分析和综合问题。
维纳滤波理论和卡尔曼-布什滤波理论是随机控制理论的基础之一。
随机控制理论的一个主要组成部分是随机最优控制,这类随机控制问题的求解有赖于动态规划的概念和方法。
适应控制理论系统是在模仿生物适应能力的思想基础上建立的一类可自动调整本身特性的控制系统。
适应控制系统的研究常可归结为如下的三个基本问题:①识别受控对象的动态特性;②在识别对象的基础上选择决策;③在决策的基础上做出反应或动作。
一、现代控制理论的发展1.智能控制(Intelligent Control)智能控制是人工智能和自动控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的自动控制。
智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。
智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采用符号信息处理、启发式程序设计、知识表示和自学习、推理与决策等智能化技术,对外界环境和系统过程进行理解、判断、预测和规划,使被控对象按一定要求达到预定的目的。
2.非线性控制(Nonlinear Control)非线性控制是复杂控制理论中一个重要的基本问题,也是一个难点课题,它的发展几乎与线性系统平行。
非线性系统的发展,数学工具是一个相当困难的问题,泰勒级数展开对有些情况是不能适用的。
古典理论中的“相平面”法只适用于二阶系统,适用于含有一个非线性元件的高阶系统的“描述函数”法也是一种近似方法。
由于非线性系统的研究缺乏系统的、一般性的理论及方法,于是综合方法得到较大的发展3.自适应控制(Adaptive Control)自适应控制系统通过不断地测量系统的输入、状态、输出或性能参数,逐渐了解和掌握对象,然后根据所得的信息按一定的设计方法,作出决策去更新控制器的结构和参数以适应环境的变化,达到所要求的控制性能指标。
4.鲁棒控制(Robust Control)过程控制中面临的一个重要问题就是模型不确定性,鲁棒控制主要解决模型的不确定性问题,但在处理方法上与自适应控制有所不同。
自适应控制的基本思想是进行模型参数的辩识。
进而设计控制器。
控制器参数的调整依赖于模型参数的更新,不能预先把可能出现的不确定性考虑进去。
而鲁棒控制在设计控制器时尽量利用不确定性信息来设计一个控制器,使得不确定参数出现时仍能满足性能指标要求。
鲁棒控制认为系统的不确定性可用模型集来描述,系统的模型并不唯一,可以是模型集里的任一元素,但在所设计的控制器下,都能使模型集里的元素满足要求。
5.模糊控制(Fuzzy Control)模糊控制借助模糊数学模拟人的思维方法,将工艺操作人员的经验加以总结,运用语言变量和模糊逻辑理论进行推理和决策,对复杂对象进行控制。
模糊控制既不是指被控过程是模糊的,也不意味控制器是不确定的,它是表示知识和概念上的模糊性,它完成的工作是完全确定的。
1974年英国工程师E.H.Mamdam首次把Fuzzy集合理论用于锅炉和蒸气机的控制以来,开辟了Fuzzy控制的新领域,特别是对于大时滞、非线性等难以建立精确数学模型的复杂系统,通过计算机实现模糊控制往往能取得很好的结果。
模糊控制的特点是不需要精确的数学模型,鲁棒性强,控制效果好,容易克服非线性因素的影响,控制方法易于掌握。
最近有人提出神经——模糊Inter3融合控制模型,即把融合结构、融合算法及控制合为一体进行设计。
又有人提出利用同伦BP网络记忆模糊规则,以“联想方式”使用这些经验。
模糊控制有待进一步研究的问题:模糊控制系统的功能、稳定性、最优化问题的评价;非线性复杂系统的模糊建模,模糊规则的建立和模糊推理算法的研究;找出可遵循的一般设计原则。
6.神经网络控制(Neural Network Control)神经网络是由所谓神经元的简单单元按并行结构经过可调的连接权构成的网络。
神经网络的种类很多,控制中常用的有多层前向BP网络,RBF络,Hopfield 网络以及自适应共振理论模型(ART)等。
神经网络控制就是利用神经网络这种工具从机理上对人脑进行简单结构模拟的新型控制和辨识方法。
神经网络在控制系统中可充当对象的模型,还可充当控制器。
7.实时专家控制(Real Time Expert Control)专家系统是一个具有大量专门知识和经验的程序系统,它应用人工智能技术,根据某个领域一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。
专家系统和传统的计算机程序最本质的区别在于:专家系统所要解决的问题一般没有算法解,并且往往要在不完全、不精确或不确定的信息基础上作出结论。
实时专家系统应用模糊逻辑控制和神经网络理论,融进专家系统自适应地管理一个客体或过程的全面行为,自动采集生产过程变量,解释控制系统的当前状况,预测过程的未来行为,诊断可能发生的问题,不断修正和执行控制计划。
实时专家系统具有启发性、透明性、灵活性等特点,目前已经在航天试验指挥、工业炉窑的控制、高炉炉热诊断中得到广泛应用。
目前需要进一步研究的问题是如何用简洁语言来描述人类长期积累的经验知识,提高联想化记忆和自学习能力。
8.定性控制(Qualitative Control)定性控制是指系统的状态变量为定性量时(其值不是某一精确值而只知其处于某一范围内),应用定性推理对系统施加控制变量使系统在某一期望范围。
9.预测控制(Predictive Control)预测控制是在工业实践过程中独立发展起来的一种新型控制方法,它不仅适用于工业过程这种“慢过程”的控制,也能适用于快速跟踪的伺服系统这种“快过程”控制。
目前实用的预测控制方法有动态矩阵控制(DMC),模型算法控制(MAC),广义预测控制(GPC),模型预测启发控制(MPHC)以及预测函数控制(PFC)等。
最近有人提出一种新的基于主导内模概念的预测控制方法:结构对外来激励的响应主要由其本身的模态所决定,即结构只对激励信息中与其起主导作用的几个主要自振频率相接近的频率成分有较大的响应。
目前利用神经网络对被控对象进行在线辨识,然后用广义预测控制规律进行控制得到较多重视。
预测控制目前存在的问题是预测精度不高;反馈校正方法单调;滚动优化策略少;对任意的一般系统,其稳定性和鲁棒性分析较难进行;参数调整的总体规则虽然比较明确,但对不同类型的系统的具体调整方法仍有待进一步总结。
10.分布式控制系统(Distributed Control System)分布式控制系统又称集散控制系统,是70年代中期发展起来的新型计算机控制系统,它融合了通信技术(Communication),计算机技术(Computer),图像显示技术(CRT),控制技术(Control)的“4C”技术,形成了以微处理器为核心的系统,实现对生产过程的监视、控制和管理。
既打破了常规控制仪表功能的局限,又较好地解决了早期计算机系统对于信息、管理过于集中带来的危险,而且还有大规模数据采集、处理的功能以及较强的数据通信能力。
分布式控制系统既有计算机控制系统控制算法灵活,精度高的优点,又有仪表控制系统安全可靠,维护方便的优点。