初中计算题练习题
- 格式:doc
- 大小:1.33 MB
- 文档页数:39
初一数学计算题及答案50题1、计算题: 48×3+27=()答案: 1652、计算题: 90÷( 30-24)=()答案: 153、计算题: 10×[48÷(16-8)]=()答案: 804、计算题: [40-(8+2)]×9=()答案: 2705、计算题: (12-4)×3+9=()答案: 336、计算题: 12÷[( 41-34)×2]=()答案: 37、计算题: 3×[28-(13+7)]=()答案: 488、计算题: 18÷(3-1)+6=()答案: 129、计算题: 17-8÷(4-2)=()答案: 910、计算题: (9-5)×(7-2)=()答案: 28以上只是初一数学计算题及答案的一部分,希望对大家有所帮助。
初一数学找规律题及答案找规律是数学学习中一个重要的部分,它能帮助学生发展逻辑思维和解决问题的能力。
下面,我将展示一些初一数学找规律的问题,并附上相应的答案,以便帮助学生理解并解决类似的问题。
问题1:观察下列数字序列,找出规律,并预测下一个数字。
1,2,3,5,8,13,21,34,55,89...答案:这个数字序列是著名的斐波那契数列。
它的规律是每个数字是前两个数字的和。
因此,下一个数字应该是34 + 55 = 89。
问题2:观察下列图形序列,找出规律,并预测下一个图形。
图1:△图2:□△图3:△□□图4:□△□□图5:△□□□答案:这个图形序列的规律是每个图形都是由一个或多个三角形和一个正方形组成。
每个图形中的三角形数量比前一个图形多一个,而正方形数量与前一个图形相同。
因此,下一个图形应该是□△□□□。
问题3:观察下列等式序列,找出规律,并预测下一个等式。
a +b = cb +c = dc +d = ed +e = f答案:这个等式序列的规律是每个等式都是前两个等式的和。
中考数学计算题100道练习1. 解方程组:{x 3−y 2=15x +3y =82. 解下列方程组:(1){4a +b =153b −4a =13(2){2(x −y)3−x +y 4=−16(x +y)−4(2x −y)=163. 解下列方程组(1){3x +5y =112x −y =3 (2){x 2−y+13=13(x +2)=−2y +124. 解下列方程组:(1){4x −3y =11y =13−2x; (2){x 4+y 3=33x −2(y −1)=11.5. 解下列方程(组)(1) 2−x x−3+3=23−x (2){2x −y =57x −3y =206. 解下列方程:(1)1−2x−56=3−x 4;(2)1.7−2x 0.3=1−0.5+2x 0.6.7. 解下列方程12[x −12(x −1)]=23(x −1)8. 2x−112−3x−24=19.解方程:(1)5(x+8)=6(2x−7)+5(2)0.1x−0.20.02−x+10.5=310.(1)化简:(x+y)(x−y)−(2x−y)(x+3y);(2)解方程:(3x+1)(3x−1)−(3x+1)2=−8.11.解方程:(1)(x−1)2=4;(2)xx+1=2x3x+3+1.12.解方程:(1)x2=3x.(2)3x2−8x−2=0.13.x2−2(√2x−2)=2.14.解方程:(1)(x−3)(x−1)=3.(2)2x2−3x−1=0.15.解方程:(1)x2−121=0(2)2(x−1)2=33816.解方程(1)x2−2x−6=0;(2)(2x−3)2=3(2x−3).17.解方程:(1)3(x−2)2=x(x−2);(2)3x2−6x+1=0(用配方法).18. 用适当的方法解下列方程:(1)x 2−12x −4=0(2)x(3−2x)= 4 x −619. 计算:(1)|−2|+(sin36°−12)0−√4+tan45°;(2)用配方法解方程:4x 2−12x −1=0.20. 解分式方程x x−1−1=3x 2−121. 解分式方程:2x 2−4=1−x x−2.22. 解下列方程:(1)x x−1−2x−1x 2−1=1(2)2−x x −1+11−x =123.解方程(1)23+x3x−1=19x−3(2)xx2−4+2x+2=1x−224.解方程(1)x2x−5+55−2x=1(2)8x2−1+1=x+3x−125.解下列分式方程:(1)1x−2+3=1−x2−x;(2)x+1x−1−4x2−1=1.26.解方程1x−3+1=4−xx−3.27.解下列方程:(1)3x−1−1=11−x;(2)xx+1−2x2−1=1.28.解方程:5−xx−4=1−34−x.29.解方程:16x2−4−x+2x−2=−1.30.(1)计算:(√7−1)0−(−12)−2+√3tan30∘;(2)解方程:x+1x−1+41−x2=1.31.解方程:2(x+1)x−1−x−1x+1=1.32.解分式方程:(1)1x−4=1−x−34−x.(2)810.9x−661.1x=4033.解方程:(1)3x+2=43x−1(2)xx+1−2x2−1=134.解分式方程:1x +3x−3=23x−x235.(1)分解因式:3a3−27a;(2)解方程:2x =3x−2.36.解分式方程:(1)3x−2+2=x2−x.(2)2x−1=4x2−1.37.计算:(1)(a−2b)2+(a−2b)(a+2b)(2)解分式方程3x−2=3+x2−x38.解方程:x−12−x −2=3x−2.39.解答下列各题(1)解方程:x24−x2=1x+2−1.(2)先化简,再求值:a−33a2−6a ÷(a+2−5a−2),其中a2+3a−1=0.40.解方程:3x+1=x2x+2+141.(1)分解因式:(a−b)(x−y)−(b−a)(x+y)(2)分解因式:5m(2x−y)2−5mn2(3)解方程:2x+1−2x1−x2=1x−142.解方程:x2+1x2−2(x+1x)−1=0.43.解方程xx−2+6x+2=144. 解分式方程(1)3x+2=2x−3 (2)8x 2−4−x x−2=−145. 求不等式组{2x −1≤13x −3<4x 的整数解.46. 解不等式组:{3(x +1)>x −1x+92>2x47. 解不等式组{2x +3≤x +112x+53−1>2−x .48. 解不等式组:{2x −1>x +13(x −2)−x ≤449. 解下列方程:(1)解方程:x 2+4x −2=0;(2)解不等式组:{x −3(x −2)≥24x −2<5x +1.50. (1)计算:(π−2)0+√8−4×(−12)2(2)解不等式组:{3(x −2)≤4x −55x−24<1+12x51. 解不等式:1−x 2>−1.52. 解下列不等式,并把解集在数轴上表示出来:(1)5x−13−2x >3; (2)x−12−x+43>−2.53. 解不等式组{2x −1⩽x +2x−23<x 2+1,并把解在数轴上表示出来.54.解不等式组:{x+1>05−4(x−1)<155.解不等式4(x−1)+3≤2x+5,并把它的解集在数轴上表示出来.56.解不等式组{2x≥−4①12x+1<32②,并把不等式组的解集表示在数轴上.57.因式分解:(1)24ax2−6ay2;(2)(2a−b)2+8ab 58.因式分解(1)2x2−4x59. 分解因式:8ab −8b 2−2a 2 60. (1)分解因式:2x 2−18(2)解不等式组{5m −3≥2(m +3)13m +1>12m61. 因式分解:(1)16m (m −n )2+56(n −m )3;(2)(2a +3b )(a −2b )−(3a +2b )(2b −a ).62. 因式分解:(1)4a 2−9 (2)x 3−2x 2y +xy 263.分解因式:(1)6m2n−15n2m+30m2n2;(2)x(x−y)2−y(x−y).64.因式分解:(1)x(x−12)+4(3x−1).(2)m3n−4m2n+4mn65.因式分解:(x2−5)2+8(x2−5)+1666.分解因式:(1)x3−3x2−28x(2)12x2−x−2067.化简:(1)(x+y)2−(x−2y)(x+y)(2)(2x+1x2−4x+4−1x−2)÷x+3x2−4(1)√12−|−3|−3tan30∘+(−1+√2)0 (2) (x +1)(x −1)−(x −2)269. 计算:(1)√643+|√2−1|−π0+(12)−1;(2)(2x −1)2−(3x +1)(3x −1)+5x(x −1).70. (1)计算: |−3|−4cos60°+(2019−2020)0.(2)先化简,再求值:(x +2)2−x (x −2),其中x =2.71. 化简:(√3+√2)2019⋅(√3−√2)2020.72. 解下列各题:(1)计算:(x +2)2+(2x +1)(2x −1)−4x(x +1)(2)分解因式:−y 3+4xy 2−4x 2y73. 先化简,再求值:[a (a 2b 2−ab )−b (a 2−a 3b )]÷2a 2b ,其中a =−12,b =13.74. 计算:(1)(−2)2×|−3|−(√6)0 (2)(x +1)2−(x 2−x)75. 计算(1)|−1|+(3−π)0+(−2)3−(13)−2(2)(x 4)3+(x 3)4−2x 4⋅x 876. 计算:(1)(2x 2)3−x 2·x 4;(2)−22+(12)−2−2−1×(−12)0.77. 计算:①(−2020)0+√−83+tan45∘;②(a +b)(a −b)+b(b −2).78.(1)计算:x(x−9y)−(x−8y)(x−y)(2)计算:(−12a5b3+6a2b−3ab)÷(−3ab)−(−2a2b)2.)−279.计算:|√3−2|+(π−2019)0+2cos30∘−(−13)−1+|1−2cos45°|80.√2×(−1)2017−(1281.计算:cos245∘−2sin60∘−|√3−2|.)−2−(2019+π)0−|2−√5|82.计算:(−12)0;83.(1)计算:−24−√12+|1−4sin60°|+(π−23(2)解方程:2x2−4x−1=0.)−2−|√3−2|84.计算√27−3tan 30∘+(−12)−3.85.计算:√3×(−√6)+|−2√2|+(123−√(−5)2+(π−3.14)0+|1−√2|.86.计算:√273−√1+9;(2)√(−2)2+|√2−1|−(√2−1) 87.计算(1)√16+√−2788. 计算:(12)−1+(−2019)0−√9+√27389. 计算:(−2)−1−12√8−(5−π)0+4cos45∘90. 计算:(12)−1−(√2−1)0+|1−√3|+√1291. (1)计算(−12)−1+√16−(π−3.14)0−|√2−2|(2)化简:(2m m+2−m m−2)÷m m 2−4.92. 计算下列各题.(1)√4+(π−3.14)0−|−√3|+(13)−1 (2)√−83+(√3)2+√(−3)2+|1−√2|93. 计算:|1−√2|−√6×√3+(2−√2)0.94. 计算:(√12+√3)×√6−4√32÷√395. 计算:12×(√3−1)2√2−1−(√22)−1.96. 已知a =2+√3,求1−2a+a 2a−1−√a 2−2a+1a 2−a 的值.97. √(1−√3)2−√24×√122−√398. 计算:(1)√32−√8+√12×√3 (2)|√3−2|+(√3)−1−(√2−1)099. 计算:(1)2√45+3√15+√(2−√5)2; √2√6−2√3(√6−√2).100.先化简,再求值:1−a−2a ÷a 2−4a 2+a ,请从−2,−1,0,1,2中选择一个合适的数,求此分式的值.答案和解析1.【答案】解:{x 3−y 2=1①5x +3y =8②,①×6,得2x −3y =6③②+③,得7x =14,解得x =2,把x =2代入②,得10+3y =8,解得y =−23,∴原方程组的解为{x =2y =−23.【解析】本题主要考查二元一次方程组的解法,可利用加减消元法求解,将①×6得③,再利用②+③解得x 值,再将x 值代入②求解y 值,即可得解.2.【答案】解:(1){4a +b =15 ①3b −4a =13 ②, ①+②得,4b =28,解得:b =7,把b =7代入①得:4a +7=15,解得:a =2, 则方程组的解为{a =2b =7; (2)将原方程组变形得{5x −11y =−12①x −5y =−8②, ②×5−①得:−14y =−28,解得:y =2,把y =2代入②得:x =2, 则方程组的解为{x =2y =2.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.3.【答案】 解:(1){3x +5y =11①2x −y =3②, ①+②×5,得:13x =26,解得:x =2,将x =2代入②,得:4−y =3,解得:y =1,所以方程组的解为{x =2y =1; (2)将方程组整理成一般式为{3x −2y =8①3x +2y =6②, ①+②,得:6x =14,解得:x =73,将x =73代入①,得:7−2y =8,解得:y =−12,所以方程组的解为{x =73y =−12.【解析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.4.【答案】解:(1)原方程可化为{4x −3y =11①2x +y =13②, ②×2−①得:5y =15,解得:y =3,把y =3代入②得:x =5,所以方程组的解为{x =5y =3; (2)整理原方程组得{3x +4y =36①3x −2y =9②, ①−②得:6y =27,解得:y =92,把y =92代入②得:x =6,所以方程组的解为{x =6y =92.【解析】本题主要考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.5.【答案】解:(1)去分母得:2−x +3(x −3)=−2,解得:x =2.5,经检验x =2.5为原分式方程的解;(2){2x −y =5①7x −3y =20②, ②−①×3得:x =5,把x =5代入①得:y =5,则方程组的解为{x =5y =5.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程组利用加减消元法求出方程组的解即可.6.【答案】解:(1)去分母,得12−4x +10=9−3x ,移项、合并同类项,得−x =−13;系数化为1,得x =13;(2)去分母得:3.4−4x =0.6−0.5−2x ,移项合并得:2x =3.3,解得:x =1.65.【解析】本考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x 系数化为1,求出解;方程整理后,去分母,去括号,移项合并,把x 系数化为1,即可求出解.7.【答案】12[x −12(x −1)]=23(x −1)解:12x −14(x −1)]=23(x −1)6x −3(x −1)]=8(x −1)6x −3x +3=8x −86x −3x −8x =−8−3−5x =−11x =115【解析】此题考查了解一元一次方程,去括号,去分母,再去括号,移项合并,把未知数系数化为1,求出解.8.【答案】解:去分母,得2x −1−3(3x −2)=12,去括号,得2x −1−9x +6=12,移项,得2x −9x =12+1−6,合并同类项,得−7x =7,系数化成1,得x =−1.【解析】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.先去分母,再去括号,最后移项,合并同类项,化系数为1,从而得到方程的解.9.【答案】解:(1)原方程去括号得5x +40=12x −42+5,移项可得:12x −5x =40+42−5,合并同类项可得:7x =77,解得:x =11.(2)原方程去分母得5x −10−2(x +1)=3,去括号得5x −10−2x −2=3,移项合并可得:3x =15,解得:x=5.【解析】本题考查的是解一元一次方程有关知识.(1)首先对该方程去括号变形,然后再进行合并,最后再解答即可;(2)首先对该方程去分母变形,然后再解答即可.10.【答案】解:(1)原式=x2−y2−(2x2+5xy−3y2)=−x2−5xy+2y2;(2)去括号,得9x2−1−(9x2+6x+1)=−8,9x2−1−9x2−6x−1=−8,合并,得−6x−2=−8,解得x=1.【解析】(1)先根据平方差公式和多项式乘多项式法则计算,再合并同类项即可求解;(1)先根据平方差公式和完全平方公式计算,再合并同类项得到−6x−2=−8,再解一元一次方程即可求解.本题考查了平方差公式,多项式乘多项式,完全平方公式,解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.11.【答案】解:(1)(x−1)2=4,两边直接开平方得:x−1=±2,∴x−1=2或x−1=−2,解得:x1=3,x2=−1;(2)xx+1=2x3x+3+1方程两边都乘3(x+1),得:3x=2x+3(x+1),解得:x=−32,经检验x=−32是方程的解,∴原方程的解为x=−32.【解析】本题主要考查了一元二次方程的解法和分式方程的解法,解分式方程的关键是去分母,将分式方程转化为整式方程,注意解分式方程要检验.(1)先两边直接开平方,然后转化为两个一元一次方程,解之即可;(2)先在方程两边同时乘以3(x+1),去掉分母,然后解整式方程,最后检验即可.12.【答案】解:(1)x2=3xx2−3x=0x(x−3)=0x 1=0 ,x 2=3(2)3x 2−8x −2=0∵△=64−4×3×(−2)=88∴x =8±√886=4±√223 x 1=4+√223 ,x =4−√223【解析】本题考查一元二次方程的解法,熟练应用各种解法是解题的关键.(1)先把方程化为一元二次方程的一般形式,用因式分解法解方程即可;(2)用公式法解方程,先求出△的值,然后运用一元二次方程的求根公式求出方程的根即可.13.【答案】解:∵x 2−2(√2x −2)=2,∴x 2−2√2x +4=2,∴x 2−2√2x +2=0,∴(x −√2)2=0,解得:x 1=x 2=√2.【解析】本题主要考查的是直接开平方法解一元二次方程的有关知识,先将给出的方程进行变形为(x −√2)2=0,然后直接开平方求解即可.14.【答案】解:(1)原式化简得x 2−4x =0,因式分解得x(x −4)=0,即x =0或x −4=0,解得x 1=0,x 2=4;(2)2x 2−3x −1=0,∵a =2,b =−3,c =−1,则b 2−4ac =9+8=17>0,则x = 3±√174 , 则x 1= 3+√174 ,x 2= 3−√174 .【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.(1)先化简,提取公因式x 可得x(x −4)=0,然后解两个一元一次方程即可;(2)直接运用公式法来解方程.15.【答案】解:(1)x 2=121,x =±11,x 1=11,x 2=−11;(2)(x −1)2=169,x −1=±13,x 1=14, x 2=−12.【解析】略16.【答案】解:(1)x 2−2x −6=0,x 2−2x =6,x 2−2x +1=7,(x −1)2=7,x −1=±√7,∴x 1=1+√7,x 2=1−√7;(2)(2x −3)2=3(2x −3).(2x −3)2−3(2x −3)=0,(2x −3)(2x −3−3)=0,∴2x −3=0或2x −6=0,∴x 1=32,x 2=3.【解析】本题主要考查了一元二次方程的解法,解一元二次方程常用的方法有:直接开平方法,因式分解法,配方法,公式法,解答时应根据方程的特征选择恰当的方法.(1)根据方程的特征可用直接开平方法解答,解答时先将常数项移项到方程的右边将方程变为x 2−2x =6,然后方程两边同时加上1分解可得(x −1)2=7,再用直接开平方法解答即可;(2)先移项,然后分解因式可得(2x −3)(2x −6)=0,可得2x −3=0或2x −6=0,然后解之即可.17.【答案】解:(1)原方程可变形为(x −2)(3x −6−x )=0,∴x −2=0或2x −6=0,解得:x 1=2,x 2=3(2)∵3(x 2−2x +1−1)+1=0,∴3(x −1)2−3+1=0,∴3(x −1)2=2,∴x −1=±√63, ∴x 1=1+√63,x 2=1−√63【解析】本题考查的是解一元二次方程有关知识.(1)首先对该方程进行因式分解,然后再进行解答即可;(2)首先对该方程进行配方,然后再解答.18.【答案】解:(1)∵a =1,b =−12,c =−4,∴Δ=144+16=160,∴x =12±4√102, x 1=6+2√10,x 2=6−2√10;(2)x(3−2x)+2(3−2x)= 0,(x +2)(3−2x)= 0,x 1=−2,x 2=32.【解析】本题考查利用公式法和因式分解法求一元二次方程的解.(1)按公式法,先求出判别式的值,再代入公式求解;(2)将方程右边移项到左边,提取公因式后,利用因式分解法求解.19.【答案】解:(1)原式=2+1−2+1=2(2)原方程化为x 2−3x =14x 2−3x +(32)2=104 (x −32)2=±√102∴原方程的根x 1=3+√102,x 2=3−√102.【解析】本题主要考查了实数的运算和解一元二次方程,关键是熟练掌握特殊角的三角函数值和配方法解方程的方法.(1)利用零指数幂公式、绝对值和算术平方根、特殊角的三角函数值计算,最后计算加减可得结果;(2)利用配方法进行解方程即可.20.【答案】解:x x−1−1=3(x−1)(x+1),x(x +1)−(x −1)(x +1)=3,解得,x =2,经检验:当x =2时,(x −1)(x +1)≠0,∴x =2是原分式方程的解.【解析】本题考查了解分式方程,解分式方程的基本思想是转化,把分式方程转化为整式方程求解,解分式方程一定注意要验根;先把分式方程去分母,注意没有分母的项也要乘以公分母(x −1)(x +1),求出整式方程的解得到x 的值,经检验即可得到分式方程的解.21.【答案】解:等号两边同乘(x +2)(x −2)得:2=x 2−4−x 2−2x ,2x =−6,解得:x =−3,检验,当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.22.【答案】解:(1)方程两边同时乘以x 2−1得:x (x +1)−2x +1=x 2−1, 解得:x =2,经检验,x =2是原方程的解;(2)方程两边同时乘以x −1得:2−x −1=x −1,解得:x =1,经检验,x =1是增根,∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,注意解分式方程一定要验根.(1)方程两边同时乘以x 2−1去分母,转化为整式方程x (x +1)−2x +1=x 2−1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)方程两边同时乘以x −1去分母,转化为整式方程2−x −1=x −1,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.23.【答案】解:(1)23+x3x−1=19x−3,两边同乘以3(3x−1)得,2(3x−1)+3x=1,去括号得,6x−2+3x=1,移项合并得,9x=3,系数化为1得,x=13,检验:当x=13时,3(3x−1)=0,∴x=13时原方程的增根,原方程无解;(2)xx2−4+2x+2=1x−2方程两边同乘以(x+2)(x−2)得,x+2(x−2)=x+2,去括号得,x+2x−4=x+2,移项合并得,2x=6,系数化为1得,x=3,当x=3时,(x+2)(x−2)≠0,所以原方程的解为x=3.【解析】本题主要考查了解分式方程,熟练掌握解分式方程的方法是解题的关键,两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(1)方程两边同乘以3(3x−1)转化为整式方程2(3x−1)+3x=1,解出x并检验即可;(2)方程两边同乘以(x+2)(x−2)转化为整式方程x+2(x−2)=x+2,解出x并检验即可.24.【答案】解:(1)去分母,得x−5=2x−5,移项,得x−2x=−5+5,解得x=0,检验:把x=0代入2x−5≠0,所以x=0是原方程的解;(2)去分母,得8+x2−1=(x+3)(x+1),去括号,得8+x2−1=x2+4x+3,解得x=1,把x=1代入(x+1)(x−1)=0,所以x=1是原方程的增根,所以原方程无解.【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到结论.25.【答案】解:(1)原方程可变形为1+3(x−2)=x−1,整理可得:2x=4,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解;(2)原方程可变形为(x+1)2−4=x2−1,整理可得:2x=2,解得:x=1,经检验:x=1是原方程的增根,所以原方程无解;【解析】本题考查的是解分式方程有关知识.(1)首先对该方程变形,然后再进行解答即可;(2)首先对该方程变形,然后再进行解答即可.26.【答案】解:去分母得1+x−3=4−x解得x=3.经检验x=3是原方程的增根.∴原方程无解【解析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验是原方程的增根,所以原方程无解.27.【答案】解:(1)方程两边同时乘以(x−1)得3−x+1=−1,解得x=5,经检验x=5是分式方程的解;(2)方程两边同时乘以(x2−1)得x(x−1)−2=x2−1解得x=−1,经检验x=−1是方程的增根,∴原分式方程无解.【解析】本题考查解分式方程,关键是熟练分式方程的解法步骤.(1)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解;(2)先将分式方程转化为整式方程,解得x的值进行检验即可得出方程的解.28.【答案】解:方程两边同时乘以最简公分母(x−4),得5−x=x−4+3,整理,得−2x=−6,解得x=3,检验:当x=3时,x−4≠0,所以原分式方程的根是x=3.【解析】本题考查的知识点是解分式方程,在解分式方程去分母时,两边同时乘以最简公分母,每一项都要乘,不能漏乘某一项,本题易出现如下错解:方程两边同时乘以最简公分母(x−4),得5−x=1+3,解得x=1,检验:当x=1时,x−4≠0,所以原分式方程的根是x=1,错误的原因是去分母时,常数项漏乘最简公分母,故一定要注意不能漏乘.29.【答案】解:16x2−4−x+2x−2=−1,16−(x+2)2=4−x2,16−x2−4x−4−4+x2=0,16−4x−8=0,x=2,经检验,x=2为增根,此方程无解.【解析】本题综合考查了解分式方程的解法.注意,分式方程需要验根.先去分母,然后移项、合并同类项,最后化未知数系数为1.30.【答案】解:(1)原式=1−4+√3×√33=1−4+1=−2;(2)x+1x−1+41−x2=1整理得:x+1x−1−4x2−1=1,去分母得:(x+1)2−4=x2−1,去括号得:x2+2x+1−4=x2−1,移项得:2x=−1−1+4,合并同类项得:2x=2,系数化为1得:x=1,经检验:x=1时,x−1=0,∴此方程无解.【解析】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.31.【答案】解:去分母,得2(x+1)2−(x−1)2=x2−1,化简,得6x=−2,解得x=−13.经检验,x=−13是原方程的根.所以原方程的根为x=−13.【解析】本题考查了解分式方程,根据解分式方程的步骤,去分母,去括号,化简x系数为1,即可求得答案.(注意,一定要验根)32.【答案】解:(1)去分母得:1=x−4+x−3,解得:x=4,检验:当x=4时,x−4=0,所以x=4是原方程的增根,原方程无解;(2)原方程整理得:90x −60x=40,去分母得:40x=30,解得:x=34,检验:当x=34时,0.99x≠0,所以x=34是原方程的根.【解析】本题主要考查的是解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x−4,分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)先化简方程,然后方程两边都乘以x,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.33.【答案】解:(1)方程两边乘(x+2)(3x−1),得3(3x−1)=4(x+2)解得x=115检验:当x=115时,(x+2)(3x−1)≠0是原分式方程的解,∴原分式方程的解为x=115;(2)方程两边乘(x+1)(x−1),得x(x−1)−2=(x+1)(x−1)解得x=−1检验:当x=−1时,(x+1)(x−1)=0∴x=−1不是原分式方程的解,∴原分式方程无解【解析】本题考查了分式方程的解法.解题关键是把分式方程转化为整式方程,掌握解分式方程的一般步骤,特别最后需要验根.(1)先找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.(2)先把各分母分解因式,找出最简公分母,去分母,把分式方程化为整式方程,解出整式方程后,再验根即可.注意在去分母时不能漏乘不含分母的项“1”.34.【答案】解:原方程可化为1x +3x−3=−2x(x−3)方程两边同乘x(x−3),得x−3+3x=−2,4x=1,x=14,检验:当x=14时,x(x−3)≠0,∴x=14是原分式方程的解.【解析】本题考查了解分式方程,掌握解分式方程的步骤是解题的关键,属于基础题.方程的两边同时乘以x(x−3)化为x−3+3x=−2,解之即可,注意分式方程要检验.35.【答案】(1)解:原式=3a(a2−9)=3a(a+3)(a−3);(2)解:方程两边同乘x(x−2),得2(x−2)=3x2x−4=3x2x−3x=4−x=4x=−4检验:当x=−4时,x(x−2)≠0,∴原方程的解为x=−4.【解析】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.(1)原式提取3a,再利用平方差公式分解即可;(2)分式方程两边同乘x(x−2),转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.36.【答案】解:(1)方程两边乘x−2,得3+2x−4=−x,−x−2x=−4+3,−3x=−1x=13,检验:x=13时,x−2≠0.∴原方程的根是x=1;3(2)方程两边乘(x+1)(x−1),得2(x+1)=4,2x+2=4,2x=2,解得x=1.检验:当x=1时,(x+1)(x−1)=0,x=1是增根.∴原方程无解.【解析】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;解分式方程一定注意要验根.(1)观察可得最简公分母是x−2,方程两边乘最简公分母,可以把分式方程转化为整式方程,求解即可;(2)观察可得最简公分母是(x+1)(x−1),方程两边乘最简公分母,可以把分式方程转化为整式方程,求解.37.【答案】解:(1)原式=a2−4ab+4b2+a2−4b2=2a2−4ab; (2)两边同乘以x−2得,3=3(x−2)−x,3=3x−6−x,2x=9,x=4.5,检验:当x=4.5时,x−2≠0,∴x=4.5是原方程的解,∴原分式方程的解为x=4.5.【解析】(1)此题考查了整式的混合运算,完全平方公式,平方差公式,掌握整式的混合运算法则是关键,先去括号再合并,即可得到答案.(2)此题考查了解分式方程,掌握解分式方程的步骤是关键,分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验后即可得到分式方程的解.38.【答案】解:x−1−2(2−x)=−3,x−1−4+2x=−3,3x=2,x=2,3时,2−x≠0,检验:当x=23∴x=2是原分式方程的解.3【解析】此题考查了分式方程的求解方法,此题难度不大,注意转化思想的应用,注意解分式方程一定要验根.本题的最简公分母是2−x,方程两边都乘以最简公分母转化为整式方程求解,最后要代入最简公分母验根.39.【答案】解:(1)方程两边都乘(2−x)(2+x),得x2=2−x−4+x2,解得:x=−2,检验:当x=−2时,(2−x)(2+x)=0,∴x=−2是增根,原方程无解;(2)原式=a−33a(a−2)÷(a+3)(a−3)a−2=a−33a(a−2)⋅a−2(a+3)(a−3)=13a(a+3),由a2+3a−1=0,得到a2+3a=a(a+3)=1,则原式=13.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.40.【答案】解:去分母得:6=x+2x+2,移项合并得:3x=4,解得:x=43,经检验x=43是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.41.【答案】解:(1)原式=(a−b)(x−y)+(a−b)(x+y)=(a−b)(x−y+x+y)=2x(a−b);(2)原式=5m[(2x−y)2−n2]=5m(2x−y+n)(2x−y−n);(3)方程两边都乘以(x+1)(x−1),得:2(x−1)+2x=x+1,解得:x=1,,检验:当x=1时,(x+1)(x−1)=0,则x=1是原分式方程的增根,所以分式方程无解.【解析】本题考查因式分解及其解分式方程,掌握运算法则是解题关键.(1)直接提取公因式(a−b)进行分解即可;(2)首先提取公因式5m,然后运用平方差公式进行分解即可;(3)首先方程两边都乘以(x+1)(x−1),得到整式方程2(x−1)+2x=x+1,解这个方程并检验即可.42.【答案】解:原方程可化为(x+1x )2−2−2(x+1x)−1=0即:(x+1x )2−2(x+1x)−3=0设x+1x=y,则y2−2y−3=0,即(y−3)(y+1)=0.解得y =3或y =−1.当y =3时,x +1x =3,即x 2−3x +1=0解得∴x 1=3+√52,x 2=3−√52; 当y =−1时,x +1x =−1无实数根.经检验,x 1=3+√52,x 2=3−√52都是原方程的根. ∴原方程的根为x 1=3+√52,x 2=3−√52.【解析】本题考查了换元法解分式方程,换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.整理可知,方程的两个分式具备平方关系,设x +1x =y ,则原方程化为y 2−2y −3=0.用换元法解一元二次方程先求y ,再求x.注意检验. 43.【答案】解:x x−2+6x+2=1x (x +2)+6(x −2)=x 2−4x 2+2x +6x −12=x 2−48x =8x =1,经检验,x =1是分式方程的解.【解析】本题考查了解分式方程,先将分式方程化为整式方程,求得整式方程的解,然后进行检验即可.44.【答案】解:(1)3x+2=2x−3,3(x −3)=2(x +2)3x −9=2x +43x −2x =4+9x =13,检验:当x =13时,(x +2)(x −3)≠0,所以x =13是原方程的解;(2)2x 2−4+x x−2=12+x (x +2)=x 2−4 2+x 2+2x =x 2−42x =−6x =−3 检验:当x =−3时,(x +2)(x −2)≠0,所以x =−3是原方程的解.【解析】本题考查了解分式方程.注意验根.先去分母、去括号、合并同类项、称项、系数为1即可求出.45.【答案】解:解不等式2x −1≤1得x ≤1,解不等式3x −3<4x 得x > −3,则不等式组的解集是−3<x ≤1,则符合条件的整数解有−2、−1、0、1【解析】本题主要考查一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法是解决问题的关键.先求出每一个不等式的解集。
初一(上)解方程、有理数计算综合一、计算题(本大题共90小题,共540.0分)1.解方程(1)4x−35−1=7x−23;(2)x−40.2−x−30.5=1.2.解方程(1)2−3(x+1)=8(2)5x+34−x−13=−23.解下列方程.(1)2(x+4)=3x−8(2)2x+13−x−56=14.解下列方程:(1)x+3x=−16;(2)16y−2.5y−7.5y=5;(3)3x+5=4x+1;(4)9−3y=5y+5.5.解方程:(1)4x−3=2x+5;(2)20−5x=3x−9−15.6.解下列方程:(1)5x−2x+x=12;(2)12x−32x=6;(3)−3y−7y=10.7.解方程:7+2x=12−2x.8.解方程:x+40.2−x−30.5=2.9.解方程(1)3y+14=2−2y−13(2)x−12+2x+16−x−13=2.10.解下列方程:(1)2x−(x+10)=5x+2(x−1);(2)3x−7(x−1)=3−2(x+3).11.解方程:x−x−22=1+2x−1312.解方程:(1)2(x−4)=5x−6(2)x+34−2x−43=213.解方程:(1)4−3(8−x)=5(x−2)(2)y+24−2y−16=114.解方程:(1)4x−3(20−x)=3;(2)3x−14−1=5x−76。
15.解方程:1−3(8+x)=x−2(15−2x).16.解方程:(1)5x+2=3x−18;(2)2x+12−x−13=1.17.利用等式的性质解下列方程并检验:(1)x−5=6;(2)0.3x=45;(3)5x+4=0;(4)2−14x=3.18.利用等式的性质解方程,并检验:(1)−2x+4=2;(2)5x+2=2x+5.19.解方程(1)3x−5(x−2)=2;(2)2x+13−x−24=1.20.解方程:(1)3x+7=27−2x;(2)1−x3−x−26=1.21.解方程:(1)4(2x−1)−3(x−2)=12;(2)3x+12−2x−23=2x−1.22.(对应目标5)解下列方程:(1)−3(x+3)=24.(2)4x−3=2(x−1).(3)5−(2x−1)=x.(4)5(x−6)=−4x−3.23.解方程:3x+12−2=3x−210−2x+35.24.解方程:x−73−1+x2=1.25.解下列方程:(1)2x−19=7x+6;(2)x−2=13x+43;(3)2.5m+10m−15=6m−21.5;(4)43+112y=3+8y.26.(对应目标4)解下列方程:(1)−3x+3=1−x−4x;(2)5x−3x+7=1−3x;(3)−4x+6=5x−3;(4)−2x−7x+5=3x−x−6.27.解下列方程:(1)3(x+3)=5x−1(2)1−x3=2−x+2528.解方程:x+13+1=x−x−12.29.解方程:(1)x+5(2x−1)=3−2(−x−5)(2)x+32−2=−2x−2530.解下列方程:(1)x+12−1=2+2−x4;(2)3x+x−12=3−2x−13.31.解下列方程:(1)x+325=x−32;(2)3y−14−1=5y−76.32.解下列方程:(1)y+24−1=2y−16;(2)x+74−x−13=x+1.33.解下列方程:(1)3(2x+1)=5−4(x−2);(2)2(2−x)−5(2−x)=9.34.(对应目标6)解方程:(1)4−2(x+4)=2(x−1);(2)13(x+7)=25−12(x−5);(3)0.3x−0.40.2+2=0.5x−0.20.3.35.解方程:(1)2x+13−5x−16=1;(2)1−x+23=x−12.36.解方程:3x+5=30−2x.37.解下列方程:(1)6x−7=4x−5;(2)12x−6=34x.38.解方程:x−12=2+3x4.39.解方程:(1)4y−3(20−y)=6y−7(11−y);(2)2(x+1)3=5(x+1)6−1.40.解方程:(1)3x−2=−6+5x;(2)3x+22−x−53=1.41.(对应目标5,6)解方程:(1)2−3x=0.5(14−2x);(2)x+24−1=3−2x6.42.解方程:x−3=−12x−4.43.解下列方程:(1)6(x−5)=−24;(2)−2x+9=3(x−2);(3)7y+(3y−5)=y−2(7−3y);(4)3x−2(x−1)=2−3(5−2x).44.解方程(1)3(x+1)−x=13−(2x−1)(2)y+12−1=2+2−y445.解方程:0.5x−0.7=6.5−1.3x.46.解下列一元一次方程:(1)4−2x=3(2−x);(2)4x+3(2−x)=12−(x−4);(3)(y−2)+1=5−2(2y−1).47.解下列方程:(1)2x−13=x−34;(2)1+x−12=x+26;(3)y−y+12=2−y+25;(4)3x+x−12=2−2x−13;(5)3x−14−5x−76=1;(6)1−0.1x1.2−x−0.12.4=1.48.解方程:(1)2x−20=−3x;(2)2x+2.5x=−6−1.5x;(3)2x−5=15−3x;(4)−3+y=1.2y−5.49.解方程:12[x−12(x−1)]=23(x−1);50.解方程:2(x−1)=3(x+1);51.解方程3x+22−1=2x−14−2x+1552.解下列方程:(1)19100x=21100(x−2);(2)x+12−2=x4;(3)5x−14=3x+12−2−x3;(4)3x+22−1=2x−14−2x+15.53.解下列方程:(1)43−8x=3−112x;(2)0.5x−0.7=6.5−1.3x;(3)16(3x−6)=25x−3;(4)1−2x3=3x+17−3.54.解下列方程:(1)3x+52=2x−13;(2)x−3−5=3x+415;(3)3y−14−1=5y−76; (4)5y+43+y−14=2−5y−512.55. (人教七上P23练习T1变式2)计算:(1)5−9; (2)(+6)−(−4); (3)(−8)−(−2); (4)0−(−7); (5)(−3.5)−7.5; (6)2.1−(−2.9).56. (人教七上P25习题T4变式2)计算:(1)(+15)−(−45); (2)(−27)−(−57); (3)15−17; (4)(−13)−13; (5)−12−(−56); (6)0−(−35);(7)(−2)−(+14); (8)(−1235)−(−835)−(+25).57. (人教七上P25习题T3变式1)计算:(1)(−6)−6; (2)(−5)−(−5); (3)5−(−5); (4)9−9; (5)0−7; (6)0−(−3); (7)17−37; (8)24−(−54); (9)(−7.8)−(+7); (10)(−7.9)−(−6.9).58. (人教七上P20练习T1变式1)计算:(1)21+(−17)+8+(−23); (2)(−5)+3+1+(−2)+5+(−3).59.计算题:(1)|−12|−(−18)+(−7)+6;(2)−12−(−32)×(34−212+158);(3)16×[1−(−3)2]÷(−13).60.(人教七上P23练习T1变式1)计算:(1)6−8;(2)(+4)−(−9);(3)(−4)−(−10);(4)0−(−9);(5)(−5.5)−9.5;(6)1.9−(−2.9).61.(人教七上P20练习T1变式2)计算:(1)12.4+(−20.4)+37.6+(−6.6);(2)(−4)+2+1+(−5)+2+(−6).62.计算(1)(−79+56−34)×(−36);(2)−14−(1−0.5)×13×|1−(−5)2|.63.(人教七上P25习题T3变式2)计算:(1)(−10)−10;(2)(−7)−(−7);(3)7−(−17);(4)0−0;(5)0−8;(6)0−(−9);(7)18−48;(8)39−(−61);(9)(−9.8)−(+7.8);(10)(−6.9)−(−9.9).64.(人教七上P24习题T2变式2)计算(1)(−18)+20+2+(−4);(2)9+(−6)+4+9+(−4)+(−9);(3)(−2.8)+1.2+(−1.4)+(−2.1)+2.8+3.5; (4)15+(−27)+45+(−12)+(−27).65. 计算:(1)(−1)3−14×[2−(−3)2]; (2)(14+16−12)×12+(−2)3÷(−4).66. (人教七上P24习题T1变式1)计算:(1) 1−4+3−0.5; (2) −2.4+3.5−4.6+3.5; (3) (−7)−(+5)+(−4)−(−10);(4)34−12+(−13)−(−23).67. (人教七上P24习题T2变式1)计算:(1)(−8)+8+2+(−2);(2)6+(−6)+4+9+(−4)+(−9);(3)(−0.18)+1.4+(−0.7)+(−1.4)+0.18+3.7;(4)13+(−15)+45+(−23)+(−35).68. (人教七上P19练习T3变式1)计算:(1)18+(−28); (2)(−21)+(−9); (3)(−1.8)+1.2; (4)13+(−12).69. 计算:(1)−5+(−6)−(−9); (2)(−83)×(−58)÷19;(3)−32−(−2)3÷32; (4)(−43+56−78)×(−24).70. (人教七上P25习题T4变式1)计算:(1)(+27)−(−57); (2)(−23)−(−13); (3)14−13; (4)(−14)−13; (5)−25−(−15); (6)0−(−35); (7)(−2)−(+27); (8)(−1235)−(−1045)−(+115).71. (人教七上P24习题T1变式2)计算:(1)(−10)+(+10); (2)(+12)+(−22); (3)(−17)+(−13); (4)(+16)+(−10); (5)(−1.2)+(−2.8); (6)0.67+(−2.87); (7)(−313)+23; (8)(−215)+(−145). .72. (人教七上P24习题T1变式1)计算:(1)(−8)+(+6); (2)(+3)+(−4); (3)(−5)+(−5); (4)(+7)+(−7); (5)(−0.9)+(−2.1); (6)27+(−37);(7)(−15)+45; (8)(−315)+(−1110).73. (人教七上P24习题T1变式2)计算:(1)3−5+2−3.5; (2)−4.4+2.5−5.6+7.5; (3)(−10)−(+4)+(−5)−(−8); (4)37−74+(−14)−(−47)−1.74.计算(1)2×(−3)3−4×(−3)+15(2)(−2)3+(−3)×[(−4)2+2]−(−3)2÷(−2) 75.(教材P33练习变式1)(1)−85×(−0.25)×(−4)(2)−(222022)×16×10112023(3)(79−38)×36(4)713×(−23)+73×71376.(教材P38习题T7变式1)计算:(1)−12×13×(−14);(2)−16×(−15)×(−17);(3)254×12.5×8;(4)0.2÷(−0.001)÷(−10);(5)23×(−114)÷23;(6)−6×(−0.5)×532;(7)(−9)×(−12)×0÷(−2022);(8)−15×(−14)÷6÷(−2).77.(教材P36练习变式2)(1)12×(−3)+(−152)÷(112)(2)(−14)×2÷13−12(3)6+23−(−12)÷1378.(对应目标4、6)合并同类项:(1)−3x2y+5xy2−6xy2+4−7x2y−9;(2)a3−a2b+ab2+a2b−ab2+b3.79.计算:(1)−7x2+(8x2+3xy)−(2y2−xy+x2);(2)(3x2−xy−2y2)−2(x2+xy−2y2).80.若(a+3)2+|b−2|=0,求3ab2−{2a2b−[5ab2−(6ab2−2a2b)]}的值.81.计算:(1)(3a2+2a+1)−(2a2+3a−5);(2)(−x2+2xy−y2)−2(xy−3x2)+3(2y2−xy).82.化简:(1)4a2+3b2+2ab−4a2−4b2;(2)2(x2+xy−5)−4(2x2−xy).83.计算:(1)x2y−3x2y;(2)10y2+0.5y2;(3)−12a2bc+12cba2;(4)14mn−13mn+7;(5)7ab−3a2b2+7+8ab2+3a2b2−3−7ab;(6)3x3−3x2−y2+5y+x2−5y+y2.84.计算:(1)x2y−3x2y;(2)10y2+0.5y2;(3)−12a2bc+12cba2;(4)14mn−13mn+7;(5)7ab−3a2b2+7+8ab2+3a2b2−3−7ab;(6)3x3−3x2−y2+5y+x2−5y+y2.85.计算:(1)(4a3b−10b3)+(−3a2b2+10b3);(2)(4x2y−5xy2)−(3x2y−4xy2);(3)5a2−[a2+(5a2−2a)−2(a2−3a)];(4)15+3(1−a)−(1−a−a2)+(1−a+a2−a3);(5)(4a2b−3ab)+(−5a2b+2ab);(6)(6m2−4m−3)+(2m2−4m+1);(7)(5a2+2a−1)−4(3−8a+2a2);(8)3x2−[5x−(12x−3)+2x2].86.计算:(1)12x−20x;(2)x+7x−5x;(3)−5a+0.3a−2.7a;(4)13y−23y+2y;(5)−6ab+ba+8ab;(6)10y2−0.5y2.87.计算:(1)(9x−6y)−(5x−4y);(2)3−(1−x)+(1−x+x2);(3)2(x2−y2+1)−2(x2+y2)+xy;(4)(3x−2y)−[−4x+(z+3y)].88.计算:(1)3−2x2+3x+3x2−5x−x2−7(2)−3(2a2−ab)+4(a2+ab−6)89.化简:(1)x−2x.(2)−12(4x−6).(3)2(a2−ab)−3(23a2−ab).90.先化简,再求值.(1)(3x2+y2−5xy)+(−4xy−y2+7x2),其中x=2,y=32.(2)−8m2+[7m2−2m−(3m2−4m)],其中m=−12.答案和解析1.【答案】解:(1)4x−35−1=7x−23去分母得:3(4x−3)−15=5(7x−2),去括号得:12x−9−15=35x−10,移项得:12x−35x=−10+9+15,合并同类项得:−23x=14,系数化为1得:x=−1423;(2)x−40.2−x−30.5=1整理得:5x−20−2x+6=1,移项得:5x−2x=1+20−6,合并同类项得:3x=15,系数化为1得:x=5.【解析】(1)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.2.【答案】解:(1)去括号得:2−3x−3=8,移项合并得:−3x=9,系数化为1得:x=−3;(2)去分母得:3(5x+3)−4(x−1)=−24,去括号得:15x+9−4x+4=−24,移项合并得:11x=−37,系数化为1得:x=−3711.【解析】(1)方程去括号,移项合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.此题考查解一元一次方程,熟练掌握运算法则是解本题的关键.3.【答案】解:(1)去括号,得:2x+8=3x−8,移项,得:2x−3x=−8−8,合并同类项,得:−x=−16,系数化为1得:x=16.(2)去分母,得:2(2x+1)−(x−5)=6,去括号,得:4x+2−x+5=6,移项,得:4x−x=6−2−5,合并同类项,得:3x=−1,系数化为1得:x=−1.3【解析】本题主要考查了一元一次方程的解法.(1)去括号,移项,合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项,合并同类项,系数化为1即可得到答案.4.【答案】解:(1)合并同类项,得4x=−16.系数化为1,得x=−4.(2)合并同类项,得6y=5..系数化为1,得y=56(3)移项,得3x−4x=1−5.合并同类项,得−x=−4.系数化为1,得x=4.(4)移项,得−3y−5y=5−9.合并同类项,得−8y=−4..系数化为1,得y=12【解析】见答案5.【答案】解:(1)4x−3=2x+5移项,得4x−2x=3+5,合并同类项,得2x=8,系数化为1,得x=4.(2)20−5x=3x−9−15移项,得−5x−3x=−9−15−20,合并同类项,得−8x=−44,系数化为1,得x=5.5.【解析】见答案.6.【答案】解:(1)5x−2x+x=124x=12x=3;(2)12x−32x=6−x=6x=−6;(3)−3y−7y=10−10y=10y=−1.【解析】本题考查的是一元一次方程的解法.(1)按照一元一次方程的解法先合并同类项,再系数化为1即可;(2)按照一元一次方程的解法先合并同类项,再系数化为1即可;(3)按照一元一次方程的解法先合并同类项,再系数化为1即可.7.【答案】解:移项,得:2x+2x=12−7,合并同类项,得:4x=5,系数化为1,得:x=54.【解析】根据等式的基本性质依次移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤.8.【答案】解:去分母,得5(x+4)−2(x−3)=2,去括号,得5x+20−2x+6=2,移项,得5x−2x=2−20−6,合并同类项,得3x=−24,系数化为1,得x=−8.【解析】本题考查的是一元一次方程的解法,首先对该方程去分母,然后去括号,移项,合并同类项,最后系数化为1即可.9.【答案】解:(1)去分母得:3(3y+1)=24−4(2y−1),去括号得:9y+3=24−8y+4,移项、合并同类项可得:17y=25,;系数化为1,得:y=2517(2)去分母,得:3(x−1)+2x+1−2(x−1)=12,去括号得:3x−3+2x+1−2x+2=12,移项、合并同类项得:3x=12,系数化为1,得:x=4.【解析】(1)依次去分母、去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程的能力,熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,是解题的关键.10.【答案】解:(1)2x−(x+10)=5x+2(x−1)去括号,得2x−x−10=5x+2x−2,移项,得2x−x−5x−2x=−2+10,合并同类项,得−6x=8,.系数化为1,得x=−43(2)3x−7(x−1)=3−2(x+3)去括号,得3x−7x+7=3−2x−6,移项,得3x−7x+2x=3−6−7,合并同类项,得−2x=−10,系数化为1,得x=5.【解析】本题考查的是解一元一次方程,熟练掌握解一元一次方程的一般步骤是解答此题的关键.(1)先去括号,然后移项,再合并同类项,把x的系数化为1即可;(2)先去括号,再移项,合并同类项,把x的系数化为1即可.11.【答案】解:x−x−22=1+2x−13去分母,得:6x−3(x−2)=6+2(2x−1)去括号,得:6x−3x+6=6+4x−2移项,得:6x−3x−4x=6−6−2合并同类项,得:−x=−2系数化为1,得:x=2【解析】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解答本题的关键.根据解一元一次方程的步骤解答即可.12.【答案】解:(1)去括号得:2x−8=5x−6,移项得:2x−5x=−6+8,合并得:−3x=2,解得:x=−23;(2)去分母得:3(x+3)−4(2x−4)=24,去括号得:3x+9−8x+16=24,移项得:3x−8x=24−9−16,合并得:−5x=−1,解得:x=15.【解析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1.13.【答案】解:(1)去括号得:4−24+3x=5x−10,移项合并同类项得:−2x=10,化系数为1得:x=−5;(2)去分母得:3(y+2)−2(2y−1)=1×12,去括号得:3y+6−4y+2=12移项合并同类项得:−y=4,化系数为1得:y=−4.【解析】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.(1)根据一元一次方程的解法,去括号、移项、合并同类项、系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项、化系数为1,从而得到方程的解.14.【答案】解:(1)4x−3(20−x)=3去括号得,4x−60+3x=3,移项得,4x+3x=3+60,合并同类项得,7x=63,系数化成1得,x=9;(2)3x−14−1=5x−76去分母得,3(3x−1)−12=2(5x−7),去括号得,9x−3−12=10x−14,移项得,9x−10x=−14+3+12,合并同类项得,−x=1,系数化成1得,x=−1.【解析】本题主要考查了一元一次方程的解法,关键是熟练掌握一元一次方程的解法步骤.(1)先去括号,然后移项,合并同类项,最后系数化成1可得结果;(2)先去分母,然后去括号,移项,合并同类项,最后系数化成1可得结果.15.【答案】解:1−3(8+x)=x−2(15−2x)去括号,得1−24−3x=x−30+4x,移项,得−3x−x−4x=−30−1+24,合并同类项,得−8x=−7,.系数化为1,得x=78【解析】本题主要考查一元一次方程的解法.解一元一次方程的步骤为去分母、去括号、移项、合并同类项、系数化为1.按照解一元一次方程的步骤解答即可.16.【答案】解:(1)移项,得5x−3x=−18−2,合并同类项,得2x=−20,系数化为1,得x=−10;(2)去分母,得3(2x+1)−2(x−1)=6,去括号,得6x+3−2x+2=6,移项,得6x−2x=6−2−3,合并同类项,得4x=1,.系数化为1,得x=14【解析】本题考查一元一次方程的解法,掌握解一元一次方程的基本步骤是解答本题的关键.(1)移项,合并同类项,系数化为1即可;(2)方程去分母,去括号,移项,合并同类项,系数化为1即可.17.【答案】解:(1)方程两边加5,得x=11.检验:将x=11代入方程x−5=6的左边,得11−5=6.方程的左右两边相等,所以x=11是方程的解.(2)方程两边除以0.3,得x =150.检验:将x =150代入方程0.3x =45的左边,得0.3×150=45. 方程的左右两边相等,所以x =150是方程的解. (3)方程两边减4,得5x =−4. 两边除以5,得x =−45.检验:将x =−45代入方程5x +4=0的左边, 得5×(−45)+4=0.方程的左右两边相等,所以x =−45是方程的解. (4)方程两边减2,得−14x =1. 两边除以−14,得x =−4.检验:将x =−4代入方程2−14x =3的左边,得2−14×(−4)=3. 方程的左右两边相等,所以x =−4是方程的解.【解析】见答案18.【答案】解:(1)方程两边同时减去4得−2x =−2, 两边同时除以−2,得x =1,当x =1时,左边=−2×1+4=2,右边=2, 左边=右边,故x =1是方程的解. (2)方程两边同时减去(2x +2)得3x =3, 两边同时除以3得x =1,当x =1时,左边=5×1+2=7,右边=2×1+5=7, 左边=右边,故x =1是方程的解.【解析】见答案.19.【答案】解:(1)去括号得:3x −5x +10=2,移项合并得:−2x =−8, 解得:x =4;(2)去分母得:8x +4−3x +6=12,移项合并得:5x=2,解得:x=25.【解析】(1)方程去括号,移项合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.【答案】解:(1)3x+7=27−2x,移项,得3x+2x=27−7,合并同类项,得5x=20,系数化1,得x=4;(2)1−x3−x−26=1,去分母,得2(1−x)−(x−2)=6,去括号,得2−2x−x+2=6,移项,得−2x−x=6−2−2,合并同类项,得−3x=2,系数化1,得x=−23.【解析】本题考查了解一元一次方程,解一元一次方程的步骤是:去分母(含有分母的一元一次方程),去括号,移项,合并同类项,系数化1.(1)方程移项,合并同类项,系数化1即可;(2)方程去分母,去括号,移项,合并同类项,系数化1即可.21.【答案】解:(1)4(2x−1)−3(x−2)=12,去括号得:8x−4−3x+6=12,移项得:8x−3x=12−6+4,合并同类项得:5x=10,化系数得:x=2;(2)3x+12−2x−23=2x−1,去分母得:3(3x+1)−2(2x−2)=6(2x−1),去括号得:9x+3−4x+4=12x−6,移项得:9x−4x−12x=−6−3−4,合并同类项得:−7x=−13,化系数得:x=13.7【解析】(1)根据一元一次方程的解法步骤:去括号、移项、合并同类项、系数化为1,即可求解;(2)根据一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、系数化为1,即可求解.本题考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.22.【答案】解:(1)−3(x+3)=24,去括号得:−3x−9=24,移项,合并同类项得:−3x=33,系数化1得:x=−11.(2)4x−3=2(x−1),去括号得:4x−3=2x−2,移项,合并同类项得:2x=1,.系数化1得:x=12(3)5−(2x−1)=x,去括号得:5−2x+1=x,移项,合并同类项得:−3x=−6,系数化1得:x=2.(4)5(x−6)=−4x−3,去括号得:5x−30=−4x−3,移项,合并同类项得,9x=27,系数化1得:x=3.【解析】见答案23.【答案】解:去分母得,5(3x+1)−20=(3x−2)−2(2x+3),去括号得,15x+5−20=3x−2−4x−6,移项得,15x−3x+4x=−2−6−5+20,合并同类项得,16x=7,系数化为1得,x=716.【解析】本题主要考查了解一元一次方程.先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.24.【答案】解:去分母,得2(x−7)−3(1+x)=6,去括号,得2x−14−3−3x=6,移项,得2x−3x=6+14+3,合并同类项,得−x=23,系数化为1,得x=−23.【解析】方程去分母、去括号、移项、合并同类项、把x系数化为1,即可求出方程的解.此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.25.【答案】解:(1)2x−19=7x+62x−7x=6+19−5x=25x=−5;(2)x−2=13x+43x−13x=2+4323x=10 3x=5;(3)2.5m+10m−15=6m−21.5 2.5m+10m−6m=15−21.5 6.5m=−6.5m=−1;(4)43+112y=3+8y112y−8y=3−4 3−52y=53y=−23.【解析】本题考查的是一元一次方程的解法.(1)(2)(3)(4)按照一元一次方程的解法先移项,再合并同类项,系数化为1即可.26.【答案】解:(1)−3x+x+4x=1−32x=−2x=−1(2)5x−3x+3x=1−75x=−6x=−65(3)−4x−5x=−3−6 −9x=−9x=1(4)−2x−7x−3x+x=−6−5−11x=−11 x=1【解析】见答案27.【答案】解:(1)3(x+3)=5x−1,去括号得:3x+9=5x−1,移项得:2x=10,系数化为1得:x=5;(2)1−x3=2−x+25去分母得:5×(1−x)=2×15−3×(x+2),去括号得:5−5x=30−3x−6,移项合并同类项得:2x=−19,.系数化为1得:x=−192【解析】本题主要考查了解一元一次方程,其步骤为:去分母,去括号,移项合并同类项,将未知数系数化为1,即可求出解.28.【答案】解:去分母得:2(x+1)+6=6x−3(x−1),去括号得:2x+2+6=6x−3x+3,移项合并得:−x=−5,解得:x=5.【解析】方程去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意两边都乘各分母的最小公倍数.29.【答案】解:(1)去括号,得:x+10x−5=3+2x+10,移项,得:x+10x−2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)−20=−2(2x−2),去括号,得:5x+15−20=−4x+4,移项,得:5x+4x=4−15+20,合并同类项,得:9x=9,系数化为1,得:x=1.【解析】(1)根据解一元一次方程的步骤依次:去括号、移项、合并同类项、系数化为1即可得;(2)根据解一元一次方程的步骤依次:去分母、去括号、移项、合并同类项、系数化为1即可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.30.【答案】解:(1)方程两边同时乘以4得2x+2−4=8+2−x,移项,合并同类项得3x=12,解得x=4;(2)方程两边同时乘以6得18x+3x−3=18−4x+2,移项,合并同类项得25x=23,解得x=2325.【解析】本题主要考查的是一元一次方程的解法的有关知识.(1)先去分母,然后移项,合并同类项,最后将系数化为1求解即可;(2)先去分母,然后移项,合并同类项,最后将系数化为1求解即可.31.【答案】解:(1)去分母得:2(x+3)=25(x−3)去括号得:2x+6=25x−75,移项、合并同类项得:−23x=−81,系数化为1,得:x=8123;(2)去分母得:3(3y−1)−12=2(5y−7),去括号得:9y−3−12=10y−14,移项、合并同类项,得−y=1,系数化为1,得:y=−1.【解析】本题主要考查了一元一次方程的求解,去分母、去括号、移项、合并同类项、化系数为1是常用的解方程方法.(1)先去分母,再去括号,移项、合并同列项,系数化为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,系数化为1,从而得到方程的解.32.【答案】解:(1)y+24−1=2y−16,3(y+2)−12=2(2y−1),3y+6−12=4y−2,3y−4y=−2−6+12,−y=4,y=−4;(2)x+74−x−13=x+1,3(x+7)−4(x−1)=12x+12,3x+21−4x+4=12x+12,3x−4x−12x=12−21−4,−13x=−13,x=1.【解析】本题主要考查一元一次方程的解法.(1)先去分母,再去括号,移项,合并同类项,系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,系数化为1即可.33.【答案】解:(1)3(2x+1)=5−4(x−2)6x+3=5−4x+810x=10x=1(2)2(2−x)−5(2−x)=94−2x−10+5x=93x=15x=5【解析】本题主要考查一元一次方程的解法.(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.34.【答案】(1)解:4−2(x+4)=2(x−1)去括号得:4−2x−8=2x−2,移项得:−2x−2x=−2−4+8,合并得:−4x=2,解得x=−0.5;(2)解:13(x+7)=25−12(x−5)去分母得:10(x+7)=12−15(x−5),去括号得:10x+70=12−15x+75,移项得:10x+15x=12+75−70,合并得:25x=17,解得x=1725;(3)解:0.3x−0.40.2+2=0.5x−0.20.3整理得3x−42+2=5x−23去分母得:3(3x−4)+12=2(5x−2),去括号得:9x−12+12=10x−4,移项得:9x−10x=−4+12−12,合并得:−x=−4,解得x=4.【解析】见答案35.【答案】解:(1)2x+13−5x−16=1,2(2x+1)−(5x−1)=6,4x+2−5x+1=6,−x+3=6,x=−3.(2)1−x+23=x−12,6−2(x+2)=3(x−1),6−2x−4=3x−3,−2x+2=3x−3,−5x=−5,x=1.【解析】【分析】本题考查一元一次方程的解法,解题的关键是熟练掌握解方程的方法和步骤.(1)根据一元一次方程的解法即可求出答案.(2)根据一元一次方程的解法即可求出答案.36.【答案】解:3x+5=30−2x,3x+2x=30−5,5x=25,解得:x=5.【解析】此题主要考查了解一元一次方程,掌握解方程的方法和步骤是解题关键.直接移项、合并同类项、系数化为1解方程得出答案.37.【答案】解:(1)移项,得6x−4x=−5+7.合并同类项,得2x=2.系数化为1,得x=1.(2)移项,得12x−34x=6,合并同类项.得−14x=6.系数化为1,得x=−24.【解析】见答案38.【答案】解:x−12=2+3x42(x−1)=8+3x 2x−2=8+3x 2x−3x=8+2−x=10x=−10.【解析】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.按照解一元一次方程的步骤进行计算即可.39.【答案】解:(1)去括号,得4y−60+3y=6y−77+7y,移项,得4y+3y−6y−7y=−77+60,合并同类项,得−6y=−17,.系数化为1,得y=176(2)去分母,得4(x+1)=5(x+1)−6,去括号,得4x+4=5x+5−6,移项,得4x−5x=5−6−4,合并同类项,得−x=−5,系数化为1,得x=5.【解析】见答案.40.【答案】解:(1)移项,3x−5x=−6+2,合并同类项,可得:−2x=−4,系数化为1,可得:x=2.(2)去分母,可得:3(3x+2)−2(x−5)=6,去括号,可得:9x+6−2x+10=6,移项,合并同类项,可得:7x=−10,.系数化为1,可得:x=−107【解析】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.(1)移项、合并同类项、系数化为1,即可求出方程的解.(2)去分母、去括号、移项、合并同类项、系数化为1,即可求出方程的解.41.【答案】解:(1)去括号得:2−3x=1−x,8移项得:3x−x=2−1,8合并得:2x=15,8解得:x=15;4(2)去分母得:3(x+2)−12=2(3−2x),去括号得:3x+6−12=6−4x,移项得:3x+4x=12,合并得:7x=12,.解得:x=127【解析】见答案.42.【答案】解:移项,得x+1x=−4+3.2合并同类项,得3x=−1.2.系数化为1,得x=−23【解析】此题考查了解一元一次方程,掌握解方程的步骤是解题的关键.方程移项,合并同类项,将x系数化为1,即可求出解.43.【答案】解:(1)去括号得6x−30=−24移项得6x=−24+30合并同类项得6x=6系数化成1得x=1;(2)去括号得−2x+9=3x−6移项得−2x−3x=−6−9合并同类项得−5x=−15系数化成1得x=3;(3)去括号得7y+3y−5=y−14+6y移项得7y+3y−y−6y=5−14合并同类项得3y=−9系数化成1得y=−3,(4)去括号得3x−2x+2=2−15+6x移项得3x−2x−6x=2−15−2合并同类项得−5x=−15系数化成1得x=3【解析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去括号,移项合并,将x系数化为1,即可求出解;(3)方程去括号,移项合并,将x系数化为1,即可求出解;(4)方程去括号,移项合并,将x系数化为1,即可求出解.44.【答案】解:(1)3x+3−x=13−2x+13x−x+2x=13+1−34x=11x=11 4(2)2(y+1)−4=8+2−y2y+2−4=8+2−y2y+y=8+2−2+43y=12y=4.【解析】见答案.45.【答案】解:移项得:1.3x+0.5x=0.7+6.5,整理得:1.8x=7.2,解得:x=4.【解析】此题考查了一元一次方程的解法.此题比较简单,解题的关键是掌握解一元一次方程的步骤:去分母,去括号、移项、合并同类项以及系数化为1等.根据解一元一次方程的步骤:移项合并同类项,再把系数化为1,即可求得答案;46.【答案】解:(1)4−2x=3(2−x)去括号,得4−2x=6−3x,移项,得3x−2x=6−4,合并同类项,得x=2;(2)4x+3(2−x)=12−(x−4)去括号,得4x+6−3x=12−x+4,移项,得4x−3x+x=12−6+4,合并同类项,得2x=10,系数化为1,得x=5;(3)(y−2)+1=5−2(2y−1)去括号,得y−2+1=5−4y+2,移项,得y+4y=5+2+2−1,合并同类项,得5y=8,.系数化为1,得y=85【解析】本题主要考查了一元一次方程的解法,根据等式的基本性质和解一元一次方程的步骤求解即可.(1)可先去括号,然后移项,合并同类项即可求解;(2)可先去括号,然后移项,合并同类项,系数化为1即可求解;(3)可先去括号,然后移项,合并同类项,系数化为1即可求解.47.【答案】解:(1)去分母得:4(2x−1)=3(x−3),去括号得:8x−4=3x−9,移项得:8x−3x=−9+4,合并同类项得:5x=−5,系数化为1得:x=−1;(2)去分母得:6+3(x−1)=x+2,去括号得:6+3x−3=x+2,移项得:3x−x=2−6+3,合并同类项得:2x=−1,系数化为1得:x=−0.5;(3)去分母得:10y−5(y+1)=20−2(y+2),去括号得:10y−5y−5=20−2y−4,移项得:10y−5y+2y=20−4+5,合并同类项得:7y=21,系数化为1得:y=3;(4)去分母得:18x+3(x−1)=12−2(2x−1),去括号得:18x+3x−3=12−4x+2,移项得:18x+3x+4x=12+2+3,合并同类项得:25x=17,系数化为1得:x=17;25(5)去分母得:3(3x−1)−2(5x−7)=12,去括号得:9x−3−10x+14=12,移项得:9x−10x=12−14+3,合并同类项得:−x=1,系数化为1得:x=−1;(6)去分母得:2(1−0.1x)−(x−0.1)=2.4,去括号得:2−0.2x−x+0.1=2.4,移项得:−0.2x−x=2.4−2−0.1,合并同类项得:−1.2x=0.3,系数化为1得:x=−1.4【解析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(5)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.48.【答案】解:(1)移项,得2x+3x=20合并同类项,得5x=20系数化成1,得x=4;(2)移项,得2x+2.5x+1.5x=−6合并同类项,得6x=−6系数化成1,得x=−1;(3)移项,得2x+3x=15+5合并同类项,得5x=20系数化成1,得x=4;(4)移项,得y−1.2y=−5+3合并同类项,得−0.2y=−2,系数化成1,得y=10.【解析】本题主要考查一元一次方程的解法.其步骤为:去分母,去括号,移项,合并同类项,系数化成1,可得解.(1)方程移项,合并同类项,最后把未知数的系数化成1即可得解;(2)方程移项,合并同类项,最后把未知数的系数化成1即可得解;(3)方程移项,合并同类项,最后把未知数的系数化成1即可得解;(4)方程移项,合并同类项,最后把未知数的系数化成1即可得解.49.【答案】解:原方程可化为12[(x−1)+1−12(x−1)]=23(x−1),去中括号,得12(x−1)+12−14(x−1)=23(x−1),解得x=115.【解析】本题考查解一元一次方程,将原方程可化为12[(x−1)+1−12(x−1)]=23(x−1),再去中括号、移项、合并同类项即可求解.50.【答案】解:去括号得:2x−2=3x+3,移项得:2x−3x=3+2合并得−x=5系数化1得:x=−5.【解析】此题考查了解一元一次方程有关知识.方程去括号,移项,合并同类项,把x系数化为1,即可求出解.51.【答案】解:去分母得:10(3x+2)−20=5(2x−1)−4(2x+1),去括号得:30x+20−20=10x−5−8x−4移项得:30x−10x+8x=−5−4,合并同类项得:28x=−9,系数化1得:x=−928.【解析】此题考查解一元一次方程的解法,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.52.【答案】解:(1)去分母(方程两边乘100),得19x=21(x−2).去括号,得19x=21x−42.移项,得19x−21x=−42.合并同类项,得−2x=−42.系数化为1,得x=21.(2)去分母(方程两边乘4),得2(x+1)−8=x.去括号,得2x+2−8=x.移项,得2x−x=8−2.合并同类项,得x=6.(3)去分母,得3(5x−1)=6(3x+1)−4(2−x).去括号,得15x−3=18x+6−8+4x.移项,得15x−18x−4x=6−8+3.合并同类项,得−7x=1..系数化为1,得x=−17(4)去分母,得10(3x+2)−20=5(2x−1)−4(2x+1).去括号,得30x+20−20=10x−5−8x−4.移项,得30x−10x+8x=−5−4−20+20.合并同类项,得28x=−9..系数化为1,得x=−928【解析】见答案53.【答案】解:(1)去分母,得8−48x=18−33x.移项,得−48x+33x=18−8.合并同类项,得−15x=10..系数化为1,得x=−23(2)移项,得0.5x+1.3x=6.5+0.7.合并同类项,得1.8x=7.2.系数化为1,得x=4.(3)去括号,得12x−1=25x−3.移项,得12x−25x=−3+1.合并同类项,得110x=−2.系数化为1,得x=−20.(4)去分母,得7(1−2x)=3(3x+1)−63.去括号,得7−14x=9x+3−63.移项、合并同类项,得−23x=−67.系数化为1,得x=6723.【解析】见答案54.【答案】解:(1)去分母,得3(3x+5)=2(2x−1).去括号,得9x+15=4x−2.移项,得9x−4x=−2−15.合并同类项,得5x=−17.系数化为1,得x=−175.(2)去分母,得−3(x−3)=3x+4.去括号,得−3x+9=3x+4.移项、合并同类项,得−6x=−5.系数化为1,得x=56.(3)去分母,得3(3y−1)−12=2(5y−7).去括号,得9y−3−12=10y−14.移项、合并同类项,得−y=1.系数化为1,得y=−1.(4)去分母,得4(5y+4)+3(y−1)=24−(5y−5).去括号,得20y+16+3y−3=24−5y+5.移项、合并同类项,得28y =16. 系数化为1,得y =47.【解析】见答案55.【答案】解:(1)−4;(2)10;(3)−6;(4)7;(5)−11;(6)5.【解析】见答案56.【答案】解:(1)1;(2)37;(3)235;(4)−23;(5)13;(6)35;(7)−94;(8)−425.【解析】见答案57.【答案】解:(1)−12;(2)0;(3)10,(4)0;(5)−7;(6)3;(7)−20;(8)78;(9)−14.8;(10)−1. 【解析】见答案58.【答案】解:(1)−11;(2)−1.【解析】见答案59.【答案】解:(1)|−12|−(−18)+(−7)+6=12+18+(−7)+6 =30+(−7)+6 =23+6=29;(2)−12−(−32)×(34−212+158) =−1+32×(34−52+138) =−1+32×34−32×52+32×138=−1+24−80+52=−5;(3)16×[1−(−3)2]÷(−13)=16×(1−9)×(−3)=16×(−8)×(−3)=4.【解析】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.(1)根据有理数的加减运算法则即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法的运算法则可以解答本题.60.【答案】解:(1)−2;(2)13;(3)6;(4)9;(5)−15;(6)4.8.【解析】见答案61.【答案】解:(1)23;(2)−10.【解析】见答案62.【答案】解:(1)(−79+56−34)×(−36)原式=−79×(−36)+56×(−36)−34×(−36)=28+(−30)+27=25;(2)−14−(1−0.5)×13×|1−(−5)2|原式=−1−12×13×|1−25|=−1−12×13×24=−1−4=−5.【解析】(1)根据乘法分配律计算即可;(2)先算乘方和括号内的式子、再算乘法、最后算减法即可.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.63.【答案】解:(1)−20;(2)0;(3)24;(4)0;(5)−8;(6)9;(7)−30;(8)100;(9)−17.6;(10)3.【解析】见答案64.【答案】解:(1)0;(2)3;(3)1.2;(4)−114.【解析】见答案65.【答案】解:(1)原式=−1−14×(2−9)=−1−14×(−7)=−1+7 4=34;(2)原式=14×12+16×12−12×12+(−8)÷(−4)=3+2−6+2=1.【解析】(1)先算乘方,再算乘法,最后算减法;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算,注意运用乘法分配律简便计算.本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.66.【答案】解:(1)−0.5;(2)0;(3)−6;(4)712.【解析】见答案67.【答案】解:(1)0;(2)0;(3)3;(4)−13.【解析】见答案68.【答案】解:(1)−10;(2)−30;(3)−0.6;(4)−16.【解析】见答案69.【答案】解:(1)−5+(−6)−(−9)=−5−6+9=−2;(2)(−83)×(−58)÷19=(−83)×(−58)×9=15;(3)−32−(−2)3÷3 2=−9−(−8)×2 3=−9+16 3=−113;(4)(−43+56−78)×(−24)=−43×(−24)+56×(−24)−78×(−24)=32−20+21=33.【解析】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(1)先将减法转化为加法,再根据有理数加法法则计算即可;(2)先将除法转化为乘法,再根据有理数乘法法则计算即可;(3)先算乘方,再算除法,最后算减法即可;(4)利用乘法分配律计算即可.70.【答案】解:(1)1;(2)−13;(3)−112;(4)−712;(5)−15;(6)35;(7)−167;(8)−3.【解析】见答案71.【答案】解:(1)0;(2)−10;(3)−30;(4)6;(5)−4;(6)−2.2;(7)−83;(8)−4.【解析】见答案72.【答案】解:(1)−2;(2)−1;(3)−10;(4)0;(5)−3;(6)−17;(7)35;(8)−4310.【解析】见答案73.【答案】(1)−3.5;(2)0;(3)−11;(4)−2.【解析】见答案74.【答案】解:(1)原式=2×(−27)+12+15=−54+12+15=−27;(2)原式=−8+(−3)×(16+2)−9÷(−2)=−8+(−3)×18+4.5 =−8−54+4.5=−57.5.【解析】本题考查的是有理数的混合运算,掌握有理数混合运算的顺序是解题关键. (1)根据有理数的运算顺序:首先计算乘方,再算乘除,最后算加减进行计算即可; (2)先算乘方,再算乘除,最后算加减,有括号先算括号里面的即可.75.【答案】解:(1)原式=−85(2)原式=−(40462022)×16×10112023=−16(3)原式=(79−38)×36=28−272=292(4)原式=713×(−23)+73×713=713×(−23+73)=3539【解析】见答案.76.【答案】解:(1)2184(2)−4080(3)625(4)20(5)−54(6)1532(7)0(8)−352【解析】见答案.77.【答案】解:(1)原式=−41(2)原式=−272(3)原式=1283【解析】见答案.78.【答案】解:(1)−3x2y+5xy2−6xy2+4−7x2y−9=−3x2y−7x2y+5xy2−6xy2+4−9=(−3−7)x2y+(5−6)xy2+(4−9)=−10x2y−xy2−5(2)a3−a2b+ab2+a2b−ab2+b3=a3−a2b+a2b+ab2−ab2+b3=a3+(−a2b+a2b)+(ab2−ab2)+b3 =a3+b3【解析】先判断同类项,再根据合并法则进行合并即可.79.【答案】解:(1)原式=−2y2+4xy.(2)原式=x2−3xy+2y2.【解析】见答案。
初二数学30道计算题及答案(1)“5.12”汶川地震发生后,威海某厂决定为灾区无偿生产活动板房。
已知某种大型号铁皮,每张可生产12个房身或18个房底。
现该厂库存49张这种铁皮,问怎样安排生产房身与房底的铁皮张数,能使生产的房身与房底配套(一张铁皮只能生产一种产品,一个房身配上两个房底)?解:设应用X长做房身,Y张做房底合理。
X+Y=49; 18Y=2*12X;解方程 X=21 Y=28 答:用21张铁皮生产房身,用28张铁皮生产房底。
(2)小明每天早晨在同一时刻从家里骑车去学校,如果以9km/时的速度,可提前20分钟到校.;如果以6千米/时的速度行驶,则迟到20分钟到达学校。
求小明家到学校的距离.设小明的家到学校的距离为X千米X/9+20/60=X/6-20/60 X/9-X/6=2/3 X/18=2/3X=12小明的家到学校的距离为12米(3)重量相同的两种商品,分别价值900元和1500元,已知第一种商品每千克的价值比第二种少300元,分别求这两种商品每千克的价值。
解:设第一种商品的单价为x元,则第二种商品的单价为(x+300)元。
由题意,得900/x =1500/(x+300)解得 x =450所以x+300=450+300=750答:第一种商品的单价为450元,第二种商品的单价为750元.(4)汽车往返于A、B两地,途径高地C(A至C是上坡,C至B是下坡),汽车上坡时的速度为25千米/小时。
下坡时的速度为50千米/时,汽车从A至B需3、5小时,从B 到A需4小时。
求A、C间及C、B间的距离。
设A、C间距离为X千米,C、B间距离为Y千米∵汽车上坡时的速度为25千米/小时,下坡时的速度为50千米/时。
汽车从A至B需3、5小时,从B到A需4小时。
∴X/25+Y/50=3.5X/50+Y/25=4∴X=50,Y=75故A、C间距离为50千米,C、B间距离为75千米。
(5)某同学将500元积蓄存入储蓄所,分活期与一年期两种方式存入,活期储蓄年利率为0、99%,一年期年利率为2、25%,一年后共得利息8、73元,求该同学两种储蓄的钱款。
初三计算题大全及答案以下是一些初三计算题的大全及答案,供同学们练习:一、四则运算1. 12 ÷ 3 × 4 + 6 = 222. (8 + 3)×(15 - 7) ÷ 4 = 333. 102 - 64 ÷ 8 + 2 × 3 = 834. 5 ÷(10 - 8) + 1= 25. 88 - 76 × 2 ÷ 4 + 10 = 346. (18+20)÷2×3-16+8 = 227. 12 ÷ (5 +1) × 8 - 4 = 128. (13 - 5)×2 ÷ 3 + 1 = 39. 24 ÷(2+4)×6-10= 2210. (4 + 5)×6 + 9 ÷ 3 = 51二、百分数1. 20% ÷ 0.2 = 1002. 90% × 0.6 = 543. 500 ÷ 80% = 6254. 3 ÷ 0.15 = 205. 40 × 125% = 506. 24 ÷ 80% = 307. 0.8 × 25% = 0.28. 1200 ÷ 75% = 16009. 150% × 0.75 = 112.510. 56.25 ÷ 75% = 75三、长度、面积和体积1. 长方形的长是15cm,宽是9cm,它的面积是多少?答案:135cm²2. 一个正方形的边长是7cm,它的周长是多少?答案:28cm3. 一个立方体的边长是3cm,它的表面积是多少?答案:54cm²4. 一个正方体的表面积是96cm²,它的边长是多少?答案:4cm5. 一个圆的直径是12cm,它的周长是多少?(π≈3.14)答案:37.68cm6. 一个正立方体的体积是64cm³,它的边长是多少?答案:4cm7. 一个长方体的长是5cm,宽是3cm,高是4cm,它的体积是多少?答案:60cm³8. 一个圆的半径是6cm,它的面积是多少?答案:113.04cm²9. 一个正六面体的表面积是150cm²,它的体积是多少?答案:125cm³10. 一个长方形的长是24cm,宽是18cm,如果它的周长增加了8cm,它的面积会变成多少?答案:720cm²以上就是初三计算题的大全及答案,同学们可以利用这些题目来提高自己的计算能力。
初二数学练习题计算题1. 小明去超市购买水果,他买了5个苹果和3个橙子,每个苹果的价格为3元,每个橙子的价格为4元。
请计算小明购买水果的总花费。
解答:苹果的总价 = 5元/个 × 3个 = 15元橙子的总价 = 4元/个 × 3个 = 12元小明购买水果的总花费 = 苹果的总价 + 橙子的总价 = 15元 + 12元= 27元2. 北京到上海的高铁票价为每张票400元,某天高铁上有1000人乘坐,票价全都是学生票,学生票价为正常票价的75%。
请计算该天高铁的总票价收入。
解答:学生票价 = 400元 × 75% = 300元全车乘客数 = 1000人总票价收入 = 学生票价 ×全车乘客数 = 300元 × 1000人 = 300,000元3. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后停下来加油。
加满油后,汽车以每小时75公里的速度继续行驶。
请计算这辆汽车行驶的总里程。
解答:第一段行驶的距离 = 60公里/小时 × 4小时 = 240公里第二段行驶的距离 = 75公里/小时 × 4小时 = 300公里汽车行驶的总里程 = 第一段行驶的距离 + 第二段行驶的距离 = 240公里 + 300公里 = 540公里4. 小李在银行存入10000元,年利率是5%,计划存款5年后取出。
请计算小李5年后能取出的总金额。
解答:年利率 = 5%本金 = 10000元存款年限 = 5年计算每年的利息:第一年利息 = 本金 ×年利率 = 10000元 × 5% = 500元第二年利息 = (本金 + 第一年利息) ×年利率 = (10000元 + 500元) ×5% = 525元第三年利息 = (本金 + 第二年利息) ×年利率 = (10000元 + 525元) ×5% = 551.25元第四年利息 = (本金 + 第三年利息) ×年利率 = (10000元 + 551.25元) × 5% = 578.81元第五年利息 = (本金 + 第四年利息) ×年利率 = (10000元 + 578.81元) × 5% = 607.75元小李5年后能取出的总金额 = 本金 + 第一年利息 + 第二年利息 + 第三年利息 + 第四年利息 + 第五年利息 = 10000元 + 500元 + 525元 + 551.25元 + 578.81元 + 607.75元 = 13262.81元通过上述计算,我们得知小李5年后能从银行取出的总金额为13262.81元。
初中数学精选计算题练习大全1.计算:.计算: (1);(2).2.(1)计算:(2)化简:3.(1)解不等式组:(2)化简:(﹣2)•.4.先化简,再求值:,其中.5.先化简,再求值.(其中x=1x=1,,y=2y=2))6.计算:.7.计算:.计算: (1)32﹣﹣|﹣2|×2﹣1(2)(a+1a+1))2+2+2((1﹣a )8.某同学化简a (a+2b a+2b)﹣()﹣()﹣(a+b a+b a+b))(a ﹣b )出现了错误,解答过程如下:)出现了错误,解答过程如下: 原式原式=a =a 2+2ab +2ab﹣(﹣(﹣(a a 2﹣b 2) (第一步)(第一步) =a 2+2ab +2ab﹣﹣a 2﹣b 2(第二步)(第二步) =2ab =2ab﹣﹣b 2(第三步)(第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;)该同学解答过程从第几步开始出错,错误原因是什么; (2)写出此题正确的解答过程.)写出此题正确的解答过程.9.先化简,再求值:,其中.10.计算:.11.先化简,再求值:;其中,.12.计算:(﹣1)2﹣2sin45°2sin45°++(π﹣2018)0+||.13.计算:.14.计算:15.(1)计算:;(2)分解因式:6(a-b)2+3(a-b).16.计算:.17.计算:2﹣1sin60°+|1|.sin60°+|118.已知T.(1)化简T;的值.(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.19.化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a 的值代入求值.的值代入求值.20.2﹣1+|1﹣|+(﹣2)00﹣cos60°21.计算:.22.先化简,再求值:,其中23.计算化简(本小题满分10分)分)(1)(2)24.(2011?舟山)计算:.25.先化简,再求值:,其中a2﹣4=0.26..27.(本小题满分5分)分)先化简,再求值:(1-)÷,其中=sin60°=sin60°. . 28.计算:.29.先化简,再求值:,其中x=2x=2..30.计算:31.已知a2=19=19,求,求的值.的值.32.计算:|2﹣|+2sin45°﹣()0.33.先化简,再求值:,其中m=+1.34.计算:35.先化简,再求值:.先化简,再求值:36.计算:37.先化简,再求值:,其中a是方程a2+a﹣6=0的解.的解.38.化简:39.计算:(-3-3))2+2017- ×sin45°.×sin45°.40.化简:.41.计算:.42.化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)43.(1)计算:︱-)计算:︱-22︱+( + 1)0-()-1+tan60°+tan60°(2)解分式方程:+ 1)解分式方程: =+ 144.(题文)先化简,再求值:(a﹣)÷,其中a=,b=1.45.计算:46.先化简,再求值:,其中x=2,y=3.47.Ⅰ.解不等式组,并把解集在数轴上表示出来.,并把解集在数轴上表示出来.Ⅱ.计算:(π﹣3)0+﹣2sin45°﹣()﹣1.48.(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?都成立?中选取合适的整数代入求值. (2)化简:()÷,并从0≤x≤4中选取合适的整数代入求值.49.先化简,再求值:,其中.50.算:51.先化简,再求值:,其中.52.计算:53.先化简,再求值:,其中x=﹣.54.计算:+(﹣)﹣1+|1﹣|﹣4sin45°.55.化简:56.计算:57.先化简,再求值:,其中a=+1.58.(1)计算:2﹣11+(2018﹣π)00﹣sin30°;(2)化简:(a+1)22﹣a(a+1)﹣1.59.计算:.计算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).60.已知=2,请先化简÷,再求该式子的值.,再求该式子的值.61.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.62.计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣163.解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.从上述整数解中选择一个合适的数,求此代数式的值.64.计算:﹣25÷23+|﹣1|×1|×55﹣(π﹣3.14)065.计算:.计算:);(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷66.先化简,再求值:(1﹣x+)÷,其中x=tan45°x=tan45°++()﹣1.67.(1)求不等式组的整数解;的整数解;(2)先化简,后求值(1﹣)÷,其中a=+1.68.计算:(﹣1)2018+|﹣|﹣(﹣π)0﹣2sin60°.69.(1)计算:()﹣2+﹣2cos45°;(2)先化简,再求值:÷(1+),其中a=2.70.计算.计算 (1)计算:)计算:22﹣2+(3)÷﹣3sin45°;(2)解方程:+1=. 71.化简:72.计算:|﹣|﹣2﹣1+73.先化简,再求值:(﹣)÷,其中a=3﹣1+2sin30°.74.计算:(+2)22﹣+2﹣275.先化简,再求值:(2m+1)(2m ﹣1)﹣(m ﹣1)2+(2m )3÷(﹣8m ),其中m 是方程x 2+x ﹣2=0的根的根76.计算:4cos45°4cos45°++(π﹣2018)0﹣77.计算:2tan45°﹣|﹣3|+()﹣2﹣(4﹣π)0.78.先化简,再求值:(1﹣)÷,其中a=2+.79.先化简,再求值:÷(a ﹣1﹣),并从﹣1,0,1,2四个数中,选一个合适的数代入求值数代入求值80.计算:()﹣2+|﹣2|﹣+6cos30°+6cos30°++(π﹣3.14)0.81.先化简(1﹣)÷,然后从不等式2x﹣6<0的非负整数解中选取一个合适的解代入求值.的解代入求值.82.计算:﹣|4﹣|﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2.2cos45°++()﹣1﹣(π﹣1)083.计算:﹣2cos45°84.(1)计算:+|﹣2|;(2)化简:(a+3)(a﹣2)﹣a(a﹣1).85.先化简,再求值:(﹣1)÷,其中x=+1.86.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长的小正方形纸板后,将剩下的三块拼成新的矩形.为n的小正方形纸板后,将剩下的三块拼成新的矩形.的代数式表示拼成矩形的周长;(1)用含m或n的代数式表示拼成矩形的周长;,求拼成矩形的面积.(2)m=7,n=4,求拼成矩形的面积.87.先化简,再求值:÷(﹣a),其中a=﹣1,b=1.88.先化简,再求值:(1﹣)÷,其中a=sin30°.89.(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.90.(题文)已知:x2﹣y2=12,x+y=3,求2x2﹣2xy的值.的值.91.求值:(﹣1)2018+|1﹣|﹣92.先化简再求值:(a﹣)÷,其中a=1+,b=1﹣.93.计算:|2﹣|+(π﹣1)0+﹣()﹣1194.(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.95.计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣196.先化简,再求值:(﹣)÷,其中a=.97.先化简,再求值:,其中x=﹣1.98.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣.99.计算:(﹣1)2018﹣+(π﹣3)0+4cos45°100.计算:+(π﹣2018)0﹣2tan45°101.计算|1﹣|﹣2sin45°2sin45°+2+2﹣1﹣(﹣1)2018.102.(1)计算:|2﹣|+(+1)0﹣3tan30°3tan30°++(﹣1)2018﹣()﹣1; (2)解不等式组:并判断﹣1,这两个数是否为该不等式组的解.103.先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.104.先化简,再求代数式(1﹣)÷的值,其中a=4cos30°a=4cos30°+3tan45°+3tan45°. 105.计算:|﹣4|+3tan60°﹣﹣()﹣1106.计算:|﹣2|+(﹣1)×(﹣3)107.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.,且任意相邻四个台阶上数的和都相等. 尝试尝试 (1)求前4个台阶上数的和是多少?个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?是多少? 应用应用 求从下到上前31个台阶上数的和.个台阶上数的和.发现发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.所在的台阶数.108.嘉淇准备完成题目:化简:,发现系数“”印刷不清楚.清楚.(1)他把“”猜成3,请你化简:(3x 2+6x +8)–(6x +5x 2+2););(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?是几? 109.已知x=+1,求x 2﹣2x ﹣3的值.的值.110.计算:(﹣1)2008+π0﹣()﹣1+.111.先化简,再求值:,其中.112.先化简,再求值:(x+2+)÷,其中x=2.113.计算.114.化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.合适的整数值代入,求出代数式的值.115.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=.116.计算:(﹣1)2+(π﹣3.14)0﹣|﹣2| 117.先化简,再求值:,其中x 为整数且满足不等式组.118.先化简,再求值:(1+)÷,其中x 满足x 2﹣2x ﹣5=0.119.计算:(1)(﹣2)2×|﹣3|﹣()00;(2)(x+1)22﹣(x 22﹣x )120.先化简,再求值:a (a +2b )﹣(a +1)2+2a ,其中.121.先化简,再求值:(1﹣)÷,其中a=﹣3.122.(1)计算:|﹣2|﹣2cos60°2cos60°++()﹣1﹣(2018﹣)0(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.中选取一个适当的数代入求值.123.计算:.124.(1)化简÷(x ﹣).(2)解方程:=3.125.先化简,再求值:.其中x=sin60°.126.计算:()﹣2+(π2﹣π)0+cos60°+cos60°+|+|﹣2|127.先化简,再求值:,其中,其中.128.计算:129.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中x=2+,y=2﹣.130.计算:﹣|﹣|+(﹣2)2﹣(π﹣3.14)0×()﹣2.131.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:解决问题:(1)填空:,如果,如果,则的取值范围为的取值范围为 ;; (2)如果,求的值;的值; (3)如果,求的值的值..132.计算:133.阅读下列题目的解题过程:.阅读下列题目的解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.的形状. 解:∵a 2c 2﹣b 2c 2=a 4﹣b 4 (A )∴c 2(a 2﹣b 2)=(a 2+b 2)(a 2﹣b 2) (B ) ∴c 2=a 2+b 2 (C ) ∴△∴△ABC ABC 是直角三角形是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ; (2)错误的原因为:)错误的原因为: ; (3)本题正确的结论为:)本题正确的结论为: .134.先化简,再求值:,其中x=2﹣1.135.先化简,再求值:x (x+1)+(2+x )(2﹣x ),其中x=﹣4.136.+-+137.先化简,再求值:(+1)÷,其中x 是方程x 2+3x=0的根.的根.138.计算:﹣2sin45°2sin45°++()﹣1﹣|2﹣|.139.先化简,再求值:.先化简,再求值:,其中.140.先化简,再求值:,其中x 满足x 2-2x -2=0.141.计算:(π-2)°-2)°+4cos30°+4cos30°--(-)-2.142.先化简,再求值:,其中.143.计算:.144.先化简,再求值:(1+)÷.其中x =3.145.计算:|﹣5|+(﹣1)2﹣()﹣1﹣.146.先化简,再求值:,其中,.147.计算:.148.计算:(﹣6)2×(﹣).).149.(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.150.化简:151.计算:(-)×)×((-)+|-1|+(5-2π)0152.先化简,再求值:其中153.计算:154.计算:.计算:155.计算:(﹣2)2+20180﹣156.(1)计算:;(2)化简:(m+2)2 +4(2-m)157.先化简,再求值:,其中.158.计算:.159.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么等于十进制中的哪个数?二进制中的数101011等于十进制中的哪个数?160.(1).(2)化简161.先化简,再求值:,其中.162.计算:.sin30°++(2018﹣)0﹣2﹣1+|﹣4|;163.(1)计算:sin30°(2)化简:(1﹣)÷.164.(1)计算:;(2)解不等式:165.先化简,再求值:(xy2+x2y)×,其中x=π0﹣()﹣1,y=2sin45°﹣.166.对于任意实数、,定义关于“”的一种运算如下:.例如.的值;(1)求的值;(2)若,且,求的值.167.计算或化简.(1);(2).168.如图,在数轴上,点、分别表示数、(1)求的取值范围.的点应落在( )(2)数轴上表示数的点应落在(A.点的左边的右边的左边 B.线段上C.点的右边169.计算.170.先化简,再求值: ,其中171.计算: .172.(1)计算:;(2)化简并求值:,其中,.173.先化简,再求值:,其中是不等式组的整数解.174.(1)计算:.(2)解方程:.175.观察以下等式:.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:按照以上规律,解决下列问题:个等式: ;(1)写出第6个等式:个等式: (用含n的等式表示),并证明(2)写出你猜想的第n个等式:176.计算:177.先化简,再求值:,其中.178.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.请你根据方案二、方案三,写出公式的验证过程.方案二:方案二:方案三:方案三:179.计算:|﹣2|﹣+23﹣(1﹣π)0.180.(题文)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.的倍数,请说明理由; (1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.181.计算:.计算:))计算:;)计算:..=.先化简,再求值:,其中a=..计算: ()()20212017323p -æö--+---ç÷èø..先化简,再求值: 221x y x y x yæö-¸ç÷--èø,其中=32-,=112-æöç÷èø.211--=1321-- 4312--=3…再求值: 22214244a a a a a a a a +--æö+¸ç÷--+èø,=()10132p -æö-+ç÷èø.(221x x -++)÷21x x x -+ (12)191.先化简,再求值:(m+2m+2﹣﹣52m -)• 243m m --,其中m=m=﹣﹣12. 192.(1)计算:)计算:||﹣4|4|﹣(﹣﹣(﹣﹣(﹣22)2+9﹣(12)0(2)解不等式组32{ 1213x x xx -³+>-.193.计算:.计算:(1)2(1)2-1+sin30°+sin30°-|-2|-|-2|-|-2|;; (2)(2)((-1-1))0-|3-π|+()23p -.。
数学计算题100道初中数学一直是学生们学习中不可或缺的一门学科,通过大量练习和计算题目的训练,可以帮助学生提高解决问题的能力和逻辑思维。
下面将给出100道初中数学计算题,供学生们进行练习。
1.45 + 32 =2.98 - 63 =3. 6 x 7 =4.84 ÷ 4 =5. 3.5 + 2.7 =6.9.8 - 4.3 =7. 5.6 x 4.2 =8.16.8 ÷ 2.4 =9.1/4 + 2/3 =10.3/5 - 1/10 =11.(5 + 3) x 2 =12.(20 - 6) ÷ 4 =13.2^3 =14.√49 =15.2/5 of 40 =16.30% of 150 =17.3/4 + 1/2 =18.0.6 x 0.7 =19.4^2 + 3^2 =20.√81 + √16 =21.(12 - 5) x 3 =22.54 ÷ (6 + 2) =23.3/8 of 64 =24.25% of 200 =25.5/6 - 1/3 =26.0.45 x 2.5 =27.7^2 - 4^2 =28.√144 - √25 =29.(9 + 7) x (5 - 3) =30.3/4 ÷ 1/2 =31. 2 x (4 x 2) =32.36 ÷ (4 x 2) =33.1/5 of 200 =34.40% of 120 =35.1/3 + 1/6 =36.0.75 x 2.8 =37.8^2 ÷ 4 =38.√256 + √36 =39.(15 - 7) x 2 =40.3/5 ÷ 2/3 =41. 5 x (9 + 3) =42.72 ÷ (8 + 4) =43.3/10 of 80 =44.60% of 180 =45.2/3 - 1/4 =46.0.85 x 3.5 =47.9^2 - 5^2 =48.√225 - √49 =49.(20 + 10) x (8 - 5) =50.5/8 ÷ 1/4 =51. 3 x (5 x 4) =52.48 ÷ (6 x 2) =53.1/6 of 300 =54.50% of 160 =55.1/2 + 1/3 =56.0.4 x 3.2 =57.6^2 ÷ 2 =58.√400 + √64 =59.(18 - 9) x 3 =60.4/7 ÷ 2/5 =61.7 x (8 + 2) =62.80 ÷ (10 + 2) =63.1/8 of 128 =64.70% of 140 =65.3/4 - 2/5 =66.0.6 x 1.9 =67.10^2 ÷ 5 =68.√625 - √81 =69.(14 + 6) x (7 - 4) =70.6/9 ÷ 1/3 =71. 4 x (6 x 3) =72.96 ÷ (8 x 3) =73.1/7 of 210 =74.45% of 240 =75.4/5 + 1/4 =76.0.25 x 4.6 =77.5^2 - 3^2 =78.√324 + √49 =79.(24 - 12) x 4 =80.7/9 ÷ 3/5 =81.8 x (3 + 5) =82.72 ÷ (9 + 3) =83.1/9 of 180 =84.80% of 220 =85.5/6 - 1/2 =86.0.35 x 3.6 =87.11^2 ÷ 3 =88.√729 - √121 =89.(22 + 8) x (6 - 2) =90.7/10 ÷ 2/5 =91. 6 x (7 x 2) =92.54 ÷ (6 x 3) =93.1/3 of 240 =94.70% of 180 =95.2/5 + 1/3 =96.0.8 x 3.2 =97.6^2 - 2^2 =98.√361 + √25 =99.(18 - 6) x 5 =100.8/11 ÷ 4/11 =这些计算题目涵盖了加减乘除、分数、百分比、幂次方、平方根等各种类型的题目,希會对学生们的数学能力有所提升。
初中数学计算题强化训练 一、有理数的加、减混和运算1.(-0.7)+(-0.4)+(-0.3)+0.5 2.( -3.2)+(-65)+(451)+(-65)3.(+15)+(-20)+(+28)+(-10)+(-5)+(-7)4.(-3.25)+3.75-41+2.5+343+(-421) 5.-2.6+[-1.4+853-(-332)]+4326.(-253)+(+341)+(-352)+(+243)+(-121)+(+131)7.(-31)-(-143)-(-132)-(+1.75) 8.243-(-821)+(-241)+0.25-1.5-2.759.(-31)-(-2)-(+35)-(-31) 10. -1-(-21)-(+23)11.-3231-[541+(-371)+(-541)+(-271)]12.2-125-1513-(-153)-(-121)-32019 13.2-125-11-{21-[31-(41+61)]}-4 14.581-3.7-(-7)-(-487)+3+3.715.|-0.25|+(-341)-(-0.75)+|-0.125|+8716.-(+0.5)-(-341)+2.75-(+721) 17.-|-31-(+32)|-|-41|-|-43|18.(-121)-(25.85)-(+143)-(-7.2)-(+25.85)-(-0.25)19.|3-4|+(-5-8)-|-1+5|-(5-20) 20.132-152+34-(-0.6)-(-353)21.1-[-1-(-73)-5+74]+|4| 22、3571()491236--+÷23、27211()9353---÷×(-4) 24、23212(10.5)3(3)3⎡⎤⎡⎤--⨯⨯÷-⎣⎦⎢⎥⎣⎦-1-25. )127(65)43(6513--+-- 26.4122)75.0()218()25.6()4317(-+---+-+二、有理数的乘、除、乘方混和运算1.(-3)2 2.-32 3.(-3)3 4.-33 5.(-32)2 6.(-32)3 7.-3×428.(-3×4)2 9.-32×23 10.(-3)2×(-2)3 11.-32412.-0.1×(-0.1)3 13.-2×(-0.1)3-(-0.2)2+(-0.8)14.-62×(-121)2-32÷(-121)3×(-3)15.(-2)2-(-52)×(-1)5-24÷(-3)×(-21)416.-2{[-3+(1-1.2×65)÷(-2)]÷2} 17.-32+(-221)2-(-2)3+|(-2)2|18.-23-[(-3)2-22×41-8.5]÷(-21)2 19.-32×23 20.(-3)2·(-2)321.-2×32 22.(-2×3)2 23.(-32)3 24.-(32)2 25.-32226.23)3(227.|-2|3 28.-0.2×(-0.1)3 29.(-2)2(-1)5-(-2)230.-43÷(-43)×(-34) 31.17-8÷(-2)+4·(-2) 32.-23-3·(-1)3-(-1)35、0.8×(-1) 8、(-)÷(-) 36、(-4)÷(-12)× 37、4×(-2)3-(-3)238、(-3)×(+2)÷(-3) 39、(-)2·(-2)3÷(-1)540、71×(-8) 14、(-2)3×(-4)×1.25 41、(-75%)×(-21)+(-125)×-75×(-0.24) 42. 323-; 17. ()524--; 43. ()()2332---; 44. -(-2)3(-0.5)4.45. 23-32-(-2)×(-7); 46. -14-61[2-(-3)2].(三)有理数加、减、乘、除、乘方混和运算1.-36032÷|-24| 2.(-121)-(-31)-(+41)3.-32×(-32)2+0.254×(-4)3+2007 4.-3-{3[)3(3--+0.4×(-121)]÷(-2)}5.(21-31+41-61+101-121)×(-60)-2216.(4x 2-7x -3)-(-5x 2-5x +5) 7.25a -{})27()]13(65[3-----+-a a a a8.-32-[(-5)3+(1-0.2×53)÷(-0.2)] 9.2-⎭⎬⎫⎩⎨⎧-⨯+-÷⨯---+)]6(65)2(2)4[()1(8210.(-2)2-(-52)×(-1)5-24÷(-3)×(-21)411.-62×(-121)2-32÷(-121)3×(-3)12.-2×(0.1)3-(-0.2)2+(-0.8) 13.-2-⎭⎬⎫⎩⎨⎧÷-÷⨯-+-2)]2()652.11(3[14.-1081÷49×91÷(-2)×(-64) 15.-85÷161-0.25×(-5)16.-121÷[121+31×(-2)] ÷41] 17.-121-1+121×[-(-31)18.(-301)÷(32-101+61-52) 19.(-3)2×(-2)320.-32+(-221)2-(-2)2+|-22| 21.-23-[(-3)2-22×41-8.5]÷(-21)222. 143°29′47″+36°30′13″ 23. 91°4″+57°27′49″24. 15°27′34″×3 25. 147°37′46″÷4(四)代数式混和运算整 式 的 乘 除 法公式:(a m )N =a mn (a ·b )N =a N b N a -9=91a1.)165(52232xyz y x -• 2.(-4x 2y )·(-x 2y 2)·(321y )3.(-2a n+1b N )2·(-3a N b )2·(-a 2c ) 4.(-21ab 2c )2·(-231abc )3·(12a 3b )5.(-ab 21)(1342322++-b ab ab ) 6.2(3x-2y )(x+5y )-6(x-y )(3x+2y )7.23×17 8.(a+b-c )(a-b+c ) 9.100.5×99.510.[2x 2-(x+y )(x -y )][(z-x )(z+x )+(y-z )(y+z )]11.(y+2x )(2x-y )-2(3x-2y )(-2y-3x )-(31x-3y )(2x-3y ) 12.(1-221)(1-231)(1-241) (1)291)(1-2101)=201113.(2a+2b+1)(2a+2b-1)=63,求a+b 14.(2+1)(22+1)(24+1)(28+1)(216+1)15.19992-1998×2002 16.20002-19992+19982-19972+……+22-1217.(a+b+c )2 18.(9951)2 19. 100·2220.(x+1)(x+2)(x+3)(x+4) 21.a 2+b 2+c 2-2a+4b-6c+14=0,求c-a+b 的值22.已知a+b =5,ab=3,求a 2+b 2与 a-b 的值23.已知x+x1=3,求x 2+21x 的值,x 4+41x 的值。
整式的加减专项练习100题1、3(a+5b)-2(b-a)14、(x2-xy+y)-3(x2+xy-2y)2、3a-(2b-a)+b 15、3x2-[7x-(4x-3)-2x2]3、2(2a2+9b)+3(-5a2-4b)16、a2b-[2(a2b-2a2c)-(2bc+a2c)]4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)17、-2y3+(3xy2-x2y)-2(xy2-y3)5、3x2-[7x-(4x-3)-2x2] 18、2(2x-3y)-(3x+2y+1)6、(2xy-y)-(-y+yx)19、-(3a2-4ab)+[a2-2(2a+2ab)]7、5(a2b-3ab2)-2(a2b-7ab)20、5m-7n-8p+5n-9m-p8、(-2ab+3a)-2(2a-b)+2ab 21、(5x2y-7xy2)-(xy2-3x2y)9、(7m2n-5mn)-(4m2n-5mn)22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a]10、(5a2+2a-1)-4(3-8a+2a2)23、3a2-9a+5-(-7a2+10a-5)11、-3x2y+3xy2+2x2y-2xy2 24、-3a2b-(2ab2-a2b)-(2a2b+4ab2)12、2(a-1)-(2a-3)+3 25、(5a-3a2+1)-(4a3-3a2)13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab] 26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ) 40、3-2xy +2yx 2+6xy -4x 2y28、(2x 2-21+3x )-4(x -x 2+21) 41、1-3(2ab +a )十[1-2(2a -3ab )].29、3x 2-[7x -(4x -3)-2x 2]. 42、 3x -[5x +(3x -2)]30、5a+(4b-3a )-(-3a+b ) 43、(3a 2b -ab 2)-(ab 2+3a 2b )31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2) 44、()[]{}y x x y x --+--3233232、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2] 45、(-x 2+5+4x 3)+(-x 3+5x -4)33、(2a 2-1+2a )-3(a-1+a 2); 46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)] 47、5(3a 2b-ab 2)-4(-ab 2+3a 2b )35、-32ab +43a 2b +ab +(-43a 2b )-1 48、4a 2+2(3ab-2a 2)-(7ab-1)36、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 49、21xy+(-41xy )-2xy 2-(-3y 2x )37、2x -(3x -2y +3)-(5y -2); 50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]38、-(3a +2b )+(4a -3b +1)-(2a -b -3) 51、5m-7n-8p+5n-9m+8p39、4x 3-(-6x 3)+(-9x 3) 52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy] 64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.5566、-[2m-3(m-n+1)-2]-1.56、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ). 67、x 2y-3xy 2+2yx 2-y 2x57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 2; 6858、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2; 69、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}59、(7y-3z )-(8y-5z ); 70、31a-( 21a-4b-6c)+3(-2c+2b) -5a n -a n -(-7a n )+(-3a n)60、-3(2x 2-xy )+4(x 2+xy-6). 71、61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2; 72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];63、3(a 2-2ab )-2(-3ab+b 2);73、化简、求值21x 2-2212- (x + y )⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3.79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a 2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2 (1)求A+B ;(2) 求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.分式方程练习题一、选择题:1.以下是方程211x x x-=-去分母的结果,其中正确的是 A .2(1)1x x --= B .2221x x --=C .2222x x x x --=- D .2222x x x x -+=-2.在下列方程中,关于x的分式方程的个数有 .①0432212=+-x x ②.4=ax③;4=xa④.;1392=+-x x ⑤;621=+x⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个3.分式25m +的值为1时,m 的值是 . A .2 B .-2 C .-3 D .34.不解下列方程,判断下列哪个数是方程21311323x x x x =+++--的解 .A .x=1B .x=-1C .x=3D .x=-3 6.若分式x 2-12(x+1) 的值等于0,则x 的值为 .A 、1B 、±1C 、12 D 、-18.关于x 的方程2354ax a x+=-的根为x=2,则a 应取值( ). A.1B.3C.-2D.-37.赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 .A 、1421140140=-+x x B 、1421280280=++x x C 、1211010=++x x D 、1421140140=++x x8.关于x 的方程2354ax a x +=-的根为x =2,则a 应取值 .A.1B.3C.-2D.-39.在正数范围内定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则x ☆23)1(=+x 的解为 . A .32=x B .1=xC .32-=x 或1D .32=x 或1-10.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设参加游览的同学共x 人,则所列方程为 .A .32180180=+-x xB .31802180=-+xx C .32180180=--x xD .31802180=--xx11.李老师在黑板上出示了如下题目:“已知方程012=++kx x ,试添加一个条件,使方程的解是x=-1”后,小颖的回答是:“添加k=0的条件”;小亮的回答是:“添加k=2的条件”,则你认为 .A 、只有小颖的回答正确B 、小亮、小颖的回答都正确C 、只有小亮的回答正确D 、小亮、小颖的回答都不正确12.某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,可设派x人挖土,其它人运土,列方程:①723x x -=②723xx -=③372x x +=④372xx=-上述所列方程,正确的有 .A . 1个B .2个C .3个D .4个 二、填空题: 13.若分式11--x x 的值为0,则x 的值等于14.若分式方程xmx x -=--2524无解,那么m 的值应为 15.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期 天.16.阅读材料:方程1111123x x x x -=-+--的解为1x =, 方程1111134x x x x -=----的解为x=2,方程11111245x x x x -=-----的解为3x =,… 请写出能反映上述方程一般规律的方程,并直 接写出这个方程的解是 . 三、解答题:17.解方程)2)(1(311+-=--x x x x18.先化简代数式1121112-÷⎪⎭⎫ ⎝⎛+-+-+x x x x x x ,然后选取一个使你喜欢的x 的值代入求值.19.若方程122-=-+x ax 的解是正数,求a 的取值范围。
1.计算:(1)(2x﹣1)(4x2+2x+1);(2)(x﹣y)8÷(y﹣x)7•(x﹣y).2.计算:(x﹣1)(2x+1)﹣2(x﹣5)(x+2).3.已知关于x的代数式(2x+1)与(x+m)的乘积中,不含有x的一次项,求m的值.5.已知:小刚同学在计算(2x+a)(3x﹣2)时,由于他抄错了a前面的符号,把“+”写成了“﹣”,导致他在后面每一步都算对的情况下得到的结果为6x2+bx+10.(1)求a,b的值;(2)计算这道题的正确结果.6.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB 的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.7.计算:①(2x+y)(x﹣y)﹣2(y2﹣xy).②(a+3)(a﹣3)﹣(a﹣1)(a+4).8.已知(x2+ax+4)(x2﹣2x+b)的乘积中不含x2和x3项,求a﹣2b的值.10.在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.11.亮亮计算一道整式乘法的题(3x﹣m)(2x﹣5),由于亮亮在解题过程中,抄错了第一个多项式中m前面的符号,把“﹣”写成了“+”,得到的结果为6x2﹣5x﹣25.(1)求m的值;(2)计算这道整式乘法的正确结果.12.如图1,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为(4a+3b)米,宽为(2a+3b)米的长方形草坪上修建一横一竖,宽度均为b米的通道.(1)通道的面积共有多少平方米?(2)若修两横一竖,宽度均为b米的通道(如图2),已知a=2b,剩余草坪的面积是162平方米,求通道的宽度是多少米?13.计算:(1);(2)(2x+5)(2x﹣5)﹣x(4x﹣3).14.计算:(x﹣2y+3)(x+2y﹣3).15.若x2+px+q与x2﹣3x+2的乘积中不含x2,x3项,求p,q的值.16.(1)已知m﹣n=2,mn=﹣1,求(m2+2)(n2+2)的值.(2)已知a m=6,a3n=8,求a2m﹣n的值.17.若(x2+3mx﹣)(x2﹣3x+n)的积中不含有x与x3项.(1)求m2﹣mn+n2的值;(2)求代数式(﹣18m2n)2+(9mn)2+(3m)2014n2016的值.18.利用乘法公式解决下列问题:(1)若x﹣y=8,xy=40.则x2+y2=;(2)已知,若x满足(25﹣x)(x﹣10)=﹣15,求(25﹣x)2+(x﹣10)2值.19.计算(2+y)(y﹣2)+(2y﹣4)(y+3).20.计算:(3x﹣5)2﹣(2x+7)2.21.若的积中不含x项与x2项.(1)求p、q的值;(2)求代数式p2019q2020的值.22.计算:(1)已知10m=2,10n=3,求103m+2n﹣1的值;(2)已知(x+y)2=16,(x﹣y)2=4,求xy的值.23.代数与几何的联手!(1)(a+b)2与(a﹣b)2有怎样的联系,能否用一个等式来表示两者之间的关系?并尝试用图形来验证你的结论.(2)若x满足(40﹣x)(x﹣30)=﹣20,则(40﹣x)2+(x﹣30)2的值为.(3)若x满足(x﹣3)(x﹣1)=,则(x﹣3)2+(x﹣1)2的值为.(4)如图,正方形ABCD的边长为x,AE=14,CG=30,长方形EFGD的面积是200,四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形,求图中阴影部分的面积.(结果必须是一个具体的数值)24.计算:(2x﹣3)2﹣(x﹣3)(2x+1).27.计算:(x+1)(x﹣4)﹣(x﹣1)2.25.同学们,我们以前学过乘法公式,你一定熟练掌握了吧!想办法计算:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣).26.若多项式x2+mx﹣8和x2﹣3x+n的乘积中不含x2和x3的项,求m+n的值.28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张两边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)的长方形,则x+y+z=.29.用简便方法进行计算:(1)20212﹣4040×2021+20202.(2)20002﹣19992+19982﹣19972+…+22﹣12.30.解方程:(4x+1)2=(4x﹣1)(4x+3)﹣3(x+2).31.计算:(x﹣3y)(3x+2y)﹣(2x﹣y)2.32.(1)已知(a+b)2=6,(a﹣b)2=2,求a2+b2与ab的值;(2)已知a+b=8,a2b2=9,求a2+b2的值.33.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形“正方形(如图2).(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,xy=,则(x﹣y)2=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=7,求(2019﹣m)(m﹣2020)的值.35.计算:(x+5y)(x﹣y)﹣(﹣x﹣2y)2.36.已知(x+y)2=7,(x﹣y)2=5.(1)求x2+y2值;(2)求xy的值.37.(1)若5a=2,5b=3,5c=6,求52a+3b﹣c的值;(2)若(a﹣2019)2+(2020﹣a)2=5,求(a﹣2019)(a﹣2020)的值.38.乘法公式的探究及应用.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:;方法2:.(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=11,求ab的值;②已知(x﹣2019)2+(x﹣2021)2=34,求(x﹣2020)2的值.。
初中数学计算题强化训练一、有理数的加、减混和运算1.()+()+()+ 2.( )+(-65)+(451)+(-65)3.(+15)+(-20)+(+28)+(-10)+(-5)+(-7)4.+41++343+(-421) 533232534152432131314332 43(-821)+(-241)+--9.(-31)-(-2)-(+35)-(-31) 10. -1-(-21)-(+23)31-[541+(-371)+(-541)+(-271)]-125-1513-(-153)-(-121)-32019125-11-{21-[31-(41+61)]}-4 81(-7)-(-487)+3+15.||+(-341)-()+||+87(+)-(-341)+(+721) |-31-(+32)|-|-41|-|-43|18.(-121)-()-(+143)-()-(+)-()19.|3-4|+(-5-8)-|-1+5|-(5-20) 3252+34-()-(-353)[-1-(-73)-5+74]+|4| 22、3571()491236--+÷23、27211()9353---÷×(-4) 24、23212(10.5)3(3)3⎡⎤⎡⎤--⨯⨯÷-⎣⎦⎢⎥⎣⎦-1-25. )127(65)43(6513--+-- 26.4122)75.0()218()25.6()4317(-+---+-+二、有理数的乘、除、乘方混和运算1.(-3)2 2.-32 3.(-3)3 4.-33 5.(-32)2 6.(-32)3 7.-3×428.(-3×4)29.-32×2310.(-3)2×(-2)311.-32412.×()3 13.-2×()3-()2+()14.-62×(-121)2-32÷(-121)3×(-3)15.(-2)2-(-52)×(-1)5-24÷(-3)×(-21)4{[-3+(×65)÷(-2)]÷2} 17.-32+(-221)2-(-2)3+|(-2)2|18.-23-[(-3)2-22×41]÷(-21)2 19.-32×23 20.(-3)2·(-2)321.-2×3222.(-2×3)223.(-32)3 24.-(32)2 25.-322 26.23)3(2 27.|-2|3 28.×()3 29.(-2)2(-1)5-(-2)243÷(-43)×(-34) ÷(-2)+4·(-2) 32.-23-3·(-1)3-(-1)35、×(-1) 8、(-)÷(-) 36、(-4)÷(-12)× 37、4×(-2)3-(-3)238、(-3)×(+2)÷(-3) 39、40、71×(-8) 14、(-2)3×(-4)× 41、(-75%)×(-21)+(-125)×-75×(-42. 323-; 17. ()524--; 43. ()()2332---; 44. -(-2)3(-4.45. 23-32-(-2)×(-7); 46. -14-61[2-(-3)2].(三)有理数加、减、乘、除、乘方混和运算1.-36032÷|-24| 2.(-121)-(-31)-(+41)3.-32×(-32)2+×(-4)3+2007 4.-3-{3[)3(3--+×(-121)]÷(-2)}5.(21-31+41-61+101-121)×(-60)-2216.(4x 2-7x -3)-(-5x 2-5x +5) 7.25a -{})27()]13(65[3-----+-a a a a8.-32-[(-5)3+(×53)÷()] 9.2-⎭⎬⎫⎩⎨⎧-⨯+-÷⨯---+)]6(65)2(2)4[()1(8210.(-2)2-(-52)×(-1)5-24÷(-3)×(-21)411.-62×(-121)2-32÷(-121)3×(-3)12.-2×()3-(-)2+() 13.-2-⎭⎬⎫⎩⎨⎧÷-÷⨯-+-2)]2()652.11(3[14.-1081÷49×91÷(-2)×(-64) 15.-85÷161×(-5)16.-121÷[121+31×(-2)] ÷41] 17.-121-1+121×[-(-31) 18.(-301)÷(32-101+61-52) 19.(-3)2×(-2)3+(-221)2-(-2)2+|-22| 21.-23-[(-3)2-22×41]÷(-21)222. 143°29′47″+36°30′13″ 23. 91°4″+57°27′49″24. 15°27′34″×3 25. 147°37′46″÷4(四)代数式混和运算整 式 的 乘 除 法公式:(a m )N =a mn (a ·b )N =a N b N a -9=91a1.)165(52232xyz y x -• 2.(-4x 2y )·(-x 2y 2)·(321y )3.(-2a n+1b N )2·(-3a N b )2·(-a 2c ) 4.(-21ab 2c )2·(-231abc )3·(12a 3b )5.(-ab 21)(1342322++-b ab ab ) 6.2(3x-2y )(x+5y )-6(x-y )(3x+2y )7.23×17 8.(a+b-c )(a-b+c ) 9.×10.[2x 2-(x+y )(x -y )][(z-x )(z+x )+(y-z )(y+z )]11.(y+2x )(2x-y )-2(3x-2y )(-2y-3x )-(31x-3y )(2x-3y ) 12.(1-221)(1-231)(1-241)……(1-291)(1-2101)=201113.(2a+2b+1)(2a+2b-1)=63,求a+b 14.(2+1)(22+1)(24+1)(28+1)(216+1)15.19992-1998×2002 16.20002-19992+19982-19972+……+22-1217.(a+b+c )2 18.(9951)2 19. 100·2220.(x+1)(x+2)(x+3)(x+4) 21.a 2+b 2+c 2-2a+4b-6c+14=0,求c-a+b 的值22.已知a+b =5,ab=3,求a 2+b 2与 a-b 的值23.已知x+x1=3,求x 2+21x 的值,x 4+41x的值。
24.(a+b )2(a-b )2 25.已知a-b =5,ab =-3,求(a+b )226.9x 2-mxy +16y 2,求m 27.已知(a+b )2=1,(a-b )2=25,求a 2+b 2+ab 的值。
有理数混和运算(四)整式的加减、 化简、求值。
1.6a+7a 2-5a-6a 2(其中a=-3) 2.5x 2-3x 3-x-4+3x 3+2x-x 2-9(其中x=121)3.(3a 3-2a 2+a-1)-(4a 3-2a 2-3a+2)(其中a=-1)4.21x-2(x-231y )+(231y -23x ) (x=-2,y=32)5.3xy 2-[xy-2(2x-23x 2y+2xy 2)]+3x 2y (m 3-2n 2)-2[m 3-2(2m 2-1)] (x=3,y=-31) (m=11-=n)7.7ab-{4a-3[6ab+5(ab+a-b )-7a]-2}(a=1,b=1)8.(2x 2y-2xy 2)-[(-3x 2y 2+3x 2y )+(3x 2y 2-3xy 2)(x=-1,y=2)9.xy+2y 2+(x 2-3xy-2y 2)-(x 2-xy )(x=-52,25=y )10.(2x-3y-2xy ))-(x-4y+xy )(x+y=5,xy=-3)11.2(2a+b )2-3(2a+b )+8(2a+b )2-6(2a+b )(a=23,41-=b )12.2(3a-1)-3(2-5a+3a 2)(a=-31)13.3x 2-8x+x 2-12x 2-3x 2+1(x=2) 14.4x 2+2xy+9y 2-2x 2-3xy+y 2(x=2,y=1)15.若(x+1)2+|y+2|=0,求5xy-23x 3y 2-4xy+21x 3y 2-21xy-3x 3y 2-x 3y 2的值16.21x-(2x-232y )+(-23x+31y 2)(x=-2,y=-21)17.81(3y-3)-[41(y-1)-83(1-y )](y=1)18.已知:代数式3-2x 2+3x+3x 2-5x-x 2-7求①当x=-21时,求这个多项式的值; ②当x 为何值时,这个多项式的值为2。
解一元一次方程1.815622+--x x =1 2.6110312+-+x x =13.y-23-y =2136+y 4.2.08.055.05.14---x x =1.02.1x- 5.5.032.04--+x x = 6.23-x +36x -=)4211(32x++7.|x-1|=5 8.2[)]2132(34--x x =x 439.3x-2(x-1)=-1-5x 10.2x-)1(61)1(87-++x x =8 11.33223+-+x x =613+x 12.x x -+232=1359++x13.-25(x-1)=1-x 43- 14.|x-5|=3 15.423163x x --=+16.3(2y+1)=2(1+y ) 17.3823---x x =1 18.621x -+31+x =1-412+x 19.2(y-3)-6(2y-1)=-3(2-5y )20.-(x-5)+22-x =5433+-+x x 21.x-)]21(21[21--x x =2 22.103.002.0+x =235.112.018.018.0x x --+- 23.3.027.17.0xx --=1 24.83243x x --+=x -21 25.x x x =-+-)]53(2121[21二元一次方程组1.⎩⎨⎧=+=043x y y x 2.⎩⎨⎧=+=-2.252553x y x y 3.⎩⎨⎧=+=-521y x y x4.⎩⎨⎧=+=17235y x y x 5.⎩⎨⎧=-=-22534y x y x 6.⎩⎨⎧=+-=-672953y x y x7.⎩⎨⎧=-=+422822y x y x 8.⎩⎨⎧=-=+1827173y x y x 9.⎪⎩⎪⎨⎧=+=+8.23.02.0232n m nm 10.⎩⎨⎧-=+=-176853y x y x 11.⎩⎨⎧=+=+4.01.04.025.02.0y x y x 12.⎩⎨⎧=-=+32823y x y x13.⎩⎨⎧-=-=-+)2(3)9(4103)(2y x y y x 14.⎩⎨⎧=-=13253q p q p 15.⎩⎨⎧=-=1325y x x16.⎩⎨⎧=+=-8242y x y x 17.⎩⎨⎧=-=-23451523y x y x 18.⎩⎨⎧=-=-723332y x y x19.⎩⎨⎧=-=+763132y x y x 20.⎩⎨⎧-=+=-154653y x y x 21.⎩⎨⎧=--=--023256017154y x y x22.⎩⎨⎧=-=-723532y x y x 23.⎩⎨⎧=+--+=+5)53(4)52(3)2(51y x y x 24.⎪⎩⎪⎨⎧=--+=-++28)(2)(3623y x y x yx y x25.⎪⎪⎩⎪⎪⎨⎧+=+=-21376565y x y x 26.⎪⎪⎩⎪⎪⎨⎧=---=-++04235132423512y x y x 27.⎪⎩⎪⎨⎧=--+=-++2)(5)(4632y x y x y x y x28.⎪⎩⎪⎨⎧=+=-123222n m n m 29.⎩⎨⎧+=++=+711)23(22523x y x x y x 30.⎩⎨⎧=+=+673317831735y x y x31.⎪⎩⎪⎨⎧=--+=-++2)(5)(4632y x y x y x y x 32.⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x yx y x33.⎪⎪⎩⎪⎪⎨⎧=-+-+=--634151)2(3.01y x y x y 34.⎩⎨⎧=-++=--+15)(3)(43)(3)(2y x y x y x y x35.⎪⎪⎩⎪⎪⎨⎧+=-=--)18(3)2(256113x y x y y x 36.⎪⎩⎪⎨⎧=---=+43)1(3)43(2023y x y x37.⎪⎩⎪⎨⎧=+=+8.23.02.0232n m nm 38.⎩⎨⎧=+=+4.01.04.02.05.02.0y x y x39.⎩⎨⎧-=-=-+)2(3)9(473)(2y x y y x 40.⎪⎩⎪⎨⎧=-++=--+1624)(4)(3yx y x y x y x41.⎩⎨⎧⨯=+=+%922800%64%962800y x y x 42.⎪⎪⎩⎪⎪⎨⎧=+=+23846055912y x y x43.⎪⎪⎩⎪⎪⎨⎧=+=-400)(6040400)(313y x y x 44.⎪⎩⎪⎨⎧=+=+15166140yx y x45.⎩⎨⎧=+=+90002600150050y x y x 46.⎪⎩⎪⎨⎧=+=--+950500%101%151y x y x47.⎩⎨⎧=+--+=+5)43(4)52(3)2(51y x y x 48.⎪⎪⎩⎪⎪⎨⎧=+=+2123232y x yx49.⎪⎩⎪⎨⎧=+--=--2322)1(3)1(4y x y y x 50.⎩⎨⎧=++-=++-14)3()8(8)2()4(x y y x x y y x51.⎪⎪⎩⎪⎪⎨⎧-=++=+1)(233218)(59y x x y x 52.⎩⎨⎧=-+--=-5)1()2(2)1(22y x y x53.⎪⎪⎩⎪⎪⎨⎧=----=++-646373222y x y x yx y x 54.⎩⎨⎧=+=+20815142211715y x y x55.⎪⎪⎩⎪⎪⎨⎧=+=-232143y x y x 56.⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x yx y x57.⎪⎪⎩⎪⎪⎨⎧=+=+113319331x y y x 58.⎪⎪⎩⎪⎪⎨⎧=-=-1537452y x y x.59.⎩⎨⎧=-+=+92.43%)201%)(1000%2000(%24.3%%y x y x 60. ⎩⎨⎧⨯=+=+50%20%15%3050y x y x61.⎩⎨⎧=-++=--+85)5()1(136)3()4(x y y x x y y x 62.⎪⎩⎪⎨⎧++-+=+--=++1))((310)4(222y y x Y x x y x yx x x63.⎪⎪⎩⎪⎪⎨⎧-=--+=-++11063106y x y x yx y x 64.⎩⎨⎧=-+=--082043y x z y x 求zx yz xy z y x 222++++的值65.⎪⎪⎩⎪⎪⎨⎧=-++=-++2-213222132y x y x 66. 810766734462+--=--=++y x y x y x67.⎪⎩⎪⎨⎧-=+---=+--1)2(4)2(512232y x y x yx y x 68.⎩⎨⎧⨯=+=+%20100%30%15100y x y x一元一次不等式的解法与应用1.把不等式的解 x <3,x ≥27表示在数轴表示2.求不等式x ≤5的非负整数解。