图与网络数学建模
- 格式:ppt
- 大小:1.54 MB
- 文档页数:25
数学建模优化问题的求解方法
数学建模优化问题的求解方法有很多。
下面列举几种常见的方法:
1. 数学规划方法:包括线性规划、整数规划、非线性规划、动态规划等。
这些方法通过数学模型和约束条件来描述问题,并通过寻找最优解来优化问题。
2. 图论方法:将问题抽象成图或网络,并利用图论算法来求解最优解。
常见的算法有最短路径算法、最小生成树算法、最大流算法等。
3. 近似算法:对于复杂的优化问题,往往很难找到精确的最优解。
近似算法通过寻找接近最优解的解来近似优化问题。
常见的近似算法有贪心算法、近邻算法、模拟退火算法等。
4. 遗传算法:模拟生物进化的过程,通过选择、交叉和变异等操作来搜索问题的解空间,并逐步优化解。
遗传算法适用于复杂问题和无法直接求解的问题。
5. 物理方法:将优化问题转化为物理模型,利用物理规律求解。
比如蚁群算法模拟蚂蚁找食物的行为,粒子群算法模拟鸟群觅食的行为等。
以上只是数学建模优化问题求解方法的几种常见方法,实际问题求解时要根据问题的特点选择适合的方法,并结合领域知识和实际情况进行调整和优化。
数学建模中的图论方法一、引言我们知道,数学建模竞赛中有问题A和问题B。
一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。
由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。
因此很多人有这样的感觉,A题入手快,而B题不好下手。
另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。
但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。
命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。
这样增加了建立数学模型的难度。
但是这也并不是说无法求解。
一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。
图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。
应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。
图论方法已经成为数学模型中的重要方法。
许多难题由于归结为图论问题被巧妙地解决。
而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如:AMCM90B-扫雪问题;AMCM91B-寻找最优Steiner树;AMCM92B-紧急修复系统的研制(最小生成树)AMCM94B-计算机传输数据的最小时间(边染色问题)CMCM93B-足球队排名(特征向量法)CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性)CMCM98B-灾情巡视路线(最优回路)等等。
这里面都直接或是间接用到图论方面的知识。
要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。
建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数学建模中的图论算法及其应用研究引言:数学建模是指利用数学方法和技巧对实际问题进行分析、抽象、描述、求解和预测的一种研究方法。
图论作为数学建模中的重要工具之一,被广泛应用于各个领域,如网络分析、交通规划、社交网络等。
本文将介绍数学建模中常用的图论算法,并探讨它们在实际问题中的应用。
一、图论基础知识1.1 图的概念图是由一些点和连接这些点的边组成的集合。
点表示图中的实体或对象,边表示实体之间的关系。
图包含了很多重要的信息,例如节点的度、连通性等。
1.2 图的表示方法图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维矩阵,其中的元素表示节点之间是否相连。
邻接表是一个由链表构成的数组,数组的每个元素表示一个节点,每个节点的链表存储了与该节点相连的节点列表。
二、图的遍历算法2.1 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法。
从一个节点出发,递归地访问它的相邻节点,直到所有可达的节点都被访问过为止。
DFS可以用于寻找连通分量、路径搜索等问题。
2.2 广度优先搜索(BFS)广度优先搜索是另一种图的遍历算法。
从一个节点出发,依次访问它的相邻节点,然后再依次访问相邻节点的相邻节点。
BFS可以用于寻找最短路径、网络分析等问题。
三、最短路径算法3.1 Dijkstra算法Dijkstra算法用于寻找图中两个节点之间的最短路径。
它基于贪心策略,从起点开始逐步扩展最短路径,直到到达终点或无法扩展为止。
Dijkstra算法在交通网络规划、电力网络优化等领域有广泛应用。
3.2 Floyd-Warshall算法Floyd-Warshall算法用于寻找图中所有节点之间的最短路径。
它通过动态规划的思想,逐步更新每对节点之间的最短路径。
Floyd-Warshall算法在地理信息系统、通信网络等领域有重要应用。
四、最小生成树算法4.1 Prim算法Prim算法用于寻找连通图的最小生成树。
它从一个起始节点开始,逐步选择与当前生成树距离最近的节点,并将其加入最小生成树中。
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP 问题是VRP 问题的特例。
● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
《数学建模》课程教案一、教学内容本节课的教学内容选自《数学建模》教材的第五章,主要内容包括线性规划模型的建立、图与网络模型的建立、整数规划模型的建立以及非线性规划模型的建立。
通过本节课的学习,使学生掌握数学建模的基本方法和技巧,培养学生解决实际问题的能力。
二、教学目标1. 让学生掌握线性规划、图与网络、整数规划和非线性规划模型的建立方法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生的团队协作能力和创新意识。
三、教学难点与重点1. 教学难点:线性规划、图与网络、整数规划和非线性规划模型的建立及求解。
2. 教学重点:线性规划模型的建立和求解。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:以一个工厂生产安排的问题为例,引入线性规划模型的建立和求解。
2. 知识点讲解:(1)线性规划模型的建立:讲解目标函数的设定、约束条件的确定以及线性规划模型的标准形式。
(2)图与网络模型的建立:讲解图的概念、图的表示方法以及网络模型的建立。
(3)整数规划模型的建立:讲解整数规划的概念和建立方法。
(4)非线性规划模型的建立:讲解非线性规划的概念和建立方法。
3. 例题讲解:选取具有代表性的例题,讲解模型建立和求解的过程。
4. 随堂练习:让学生分组讨论并解决实际问题,巩固所学知识。
六、板书设计板书设计如下:1. 线性规划模型:目标函数约束条件标准形式2. 图与网络模型:图的概念图的表示方法网络模型的建立3. 整数规划模型:整数规划的概念整数规划的建立方法4. 非线性规划模型:非线性规划的概念非线性规划的建立方法七、作业设计1. 作业题目:(1)根据给定的条件,建立线性规划模型,并求解。
(2)根据给定的条件,建立图与网络模型,并求解。
(3)根据给定的条件,建立整数规划模型,并求解。
(4)根据给定的条件,建立非线性规划模型,并求解。
2. 答案:(1)线性规划模型的目标函数为:Z = 2x + 3y,约束条件为:x + y ≤ 6,2x + y ≤ 8,x ≥ 0,y ≥ 0。
欢迎共阅第五章 图与网络模型及方法§1 概论图论起源于18世纪。
第一篇图论论文是瑞士数学家欧拉于1736 年发表的“哥尼斯堡的七座桥”。
1847年,克希霍夫为了给出电网络方程而引进了“树”的概念。
1857年,凯莱在计数烷22 n n H C 的同分异构物时,也发现了“树”。
哈密尔顿于1859年提出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈,近几十年来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和方法已经渗透到物理、化学、通讯科学、建筑学、生物遗传学、心理学、经济学、社会学等学科中。
图论中所谓的“图”是指某类具体事物和这些事物之间的联系。
如果我们用点表示这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到了描述这个“图”的几何形象。
图论为任何一个包含了一种二元关系的离散系统提供了一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。
哥尼斯堡七桥问题就是一个典型的例子。
在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结起来问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。
当然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。
欧拉为了解决这个问题,采用了建立数学模型的方法。
他将每一块陆地用一个点来代替,将每一座桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。
问题成为从任一点出发一笔画出七条线再回到起点。
欧拉考察了一般一笔画的结构特点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问题,而且开创了图论研究的先河。
图与网络是运筹学(Operations Research )中的一个经典和重要的分支,所研究的问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等诸多领域。
基于图论的数学建模在社交网络分析中的应用社交网络已经成为现代社会中人们交流、信息传播和社交互动的重要平台。
对于社交网络的分析和研究对理解社会关系、预测行为以及推动创新具有重要意义。
基于图论的数学建模在社交网络分析中的应用已经成为一个热门的研究领域,为我们提供了深入了解社交网络结构和功能的有效方法。
社交网络以用户个体和他们之间的关系为基础,可以被看作一个网络图。
每个用户可以被表示为图中的一个节点,而用户之间的关系可以被表示为节点之间的边。
这种图的形式化结构使得图论成为解决社交网络问题的有力工具。
一个常见的社交网络问题是社区检测。
社区是指网络中具有紧密关联的节点群体。
社区检测的目标是将网络划分为多个社区,使得社区内的节点之间的连接紧密,而社区之间的链接相对稀疏。
基于图论的数学建模可以通过识别节点之间的连接模式和社区结构来解决社区检测问题。
常用的社区检测算法有谱聚类、模块度优化、标签传播等。
另一个重要的社交网络分析问题是节点重要性评估。
在社交网络中,有些节点比其他节点更重要,因为他们在网络中具有更多的连接或更关键的位置。
基于图论的数学建模可以通过计算节点的中心性指标来评估节点的重要性。
常见的中心性指标包括度中心性、接近中心性和介数中心性等。
这些指标可以帮助我们识别社交网络中的重要节点,从而更好地了解网络的结构和功能。
此外,图论还可以应用于网络影响力分析。
网络影响力是指一个节点对网络中其他节点的行为和态度的影响力。
基于图论的数学建模可以帮助我们确定网络中的最具影响力的节点,并预测他们对其他节点的影响程度。
这对于评估营销策略、推广活动和信息传播的效果具有重要意义。
基于图论的数学建模还可以用于社交网络的演化分析。
社交网络是动态变化的,随着时间的推移,社交网络中的节点和边会发生变化。
基于图论的数学建模可以帮助我们理解网络的演化模式和社交关系的发展规律。
通过对网络演化的分析,我们可以预测网络的未来发展趋势,为决策制定提供指导。
即首先给出一个初始流,这样的流是存在的,例如零流。
如果存在关于它的可增广轨,那么调整该轨上每条弧上的流量,就可以得到新的流。
对于新的流,如果仍存在可增广轨,则用同样的方法使流的值增大,继续这个过程,直到网络中不存在关于新得到流的可增广轨为止,则该流就是所求的最大流。
这种方法分为以下两个过程:A.标号过程:通过标号过程寻找一条可增广轨。
B.增流过程:沿着可增广轨增加网络的流量。
这两个过程的步骤分述如下。
(A )标号过程:(i )给发点标号为。
),(∞+s (ii )若顶点已经标号,则对的所有未标号的邻接顶点按以下规则标号: x x y ① 若,且时,令,A y x ∈),(xy xy u f <},min{x xy xy y f u δδ-=则给顶点标号为,若,则不给顶点标号。
y ),(y x δ+xy xy u f =y ② ,且,令,则给标号为,若A x y ∈),(0>yx f },min{x yx y f δδ=y ),(y x δ-,则不给标号。
0=yx f y (iii )不断地重复步骤(ii )直到收点被标号,或不再有顶点可以标号为止。
当t 被标号时,表明存在一条从到的可增广轨,则转向增流过程(B )。
如若点不能t s t t 被标号,且不存在其它可以标号的顶点时,表明不存在从到的可增广轨,算法结s t 束,此时所获得的流就是最大流。
(B )增流过程(i )令。
t u =(ii )若的标号为),则;若的标号为,则u t v δ,(+t vu vu f f δ+=u ),(t v δ-。
t uv uv f f δ-=(iii )若,把全部标号去掉,并回到标号过程(A )。
否则,令,并回s u =v u =到增流过程(ii )。
求网络中的最大流的算法的程序设计具体步骤如下:),,,,(U A V t s N =x 对每个节点,其标号包括两部分信息jf(j))max ),(pred (j 该节点在可能的增广路中的前一个节点,以及沿该可能的增广路到该节点为)(pred j 止可以增广的最大流量。