数学(人教版-2003)
- 格式:doc
- 大小:122.00 KB
- 文档页数:6
对数函数及其性质(1)一、教材分析本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。
二、学生学习情况分析刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。
教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。
三、设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。
五、教学重点与难点重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.六、教学过程设计教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结(一)熟悉背景、引入课题1.让学生看材料:材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。
一元二次不等式的解法(一)说课稿
常德市六中颜春
一. 教材分析
1.教学内容:
本节课是人教版高一数学第一册(上)(2003年审查通过)第一章第5节<<一元二次不等式的解法>>第1课时.
2.教材所处的地位:
本节教材是在学生学完了集合的有关概念、集合的表示及集合同集合之间的关系之后,考虑到集合知识的运用与巩固,又考虑到下一章讨论函数的定义域与值域的需要,从而安排的一元二次不等式的解法。
教学大纲要求学生掌握一元二次不等式的解法。
3.教学目的:
认知目的:根据学生的现有知识水平和认知特点,本节课主要通过学生利用几何画板动手实验,观察,猜想主动地发现一元二次方程、一元二次不等式与二次函数的关系,从而掌握图象法解一元二次不等式的方法;
能力目的:通过上述学生的动手实验培养学生数形结合的能力、抽象思维和形象思维能力以及分类讨论的思想方法;
情感目的:激发学习数学的热情,培养勇于自主探索的精神和合作学习的精神以及勇于创新精神,同时体会事物之间普遍联系的辩证思想。
4.教学重点和难点:
重点:图象法解一元二次不等式。
难点:字母系数的讨论;一元二次方程、一元二次不等式与二次函数的关系。
二.教法分析
让学生利用现代信息技术和数学智能平台《几何画板》主动参与教学过程,通过动手实验、自主探索、合作学习完成学习过程,让学生从动态中去观察、探索、归纳知识,而老师只是学生学习的组织者。
三.教学过程分析。
2002——2003学年上期小学数学二年级课堂练习题(一)〖100以内数的加减法、厘米和米的认识〗学校班级姓名学号等级一、填空题1、在括号里填上“厘米”或“米”①小林的食指宽大约1()②一栋楼房高72()③语文书长22()④一支粉笔长8()⑤教室黑板长3()⑥游泳池长60()2①)-))②)-)+(3、计算下面各题。
15厘米-7厘米=()厘米 60米+9米=()米5厘米+60厘米=()厘米39米-6米=()米二、判断题(对的画“√”,错的画“×”)1、大人一步长60米。
()2、自动铅笔长约9厘米。
()3、1米和100厘米同样长。
()4、一个加数是20,另一个加数也是20,和是0。
()三、计算题1、口算题30+5-10= 42-12+20= 35+(47-17)=26+24+40= 80-30-25= 78-(26-8)=23-7+9= 26+34-30= 50-(32+18)= 2、竖式计算70-(24+42)= 26+64-21= 60-36-18=37+28+12= 57+23-42= 38+(47-29)=四、操作题1、量出下面图形各边的长度。
2、画一画。
画一条长5厘米的线段。
画一条比4厘米少1厘米的线段五、应用题1、巴南广场已经有雪松40棵,有棕树15棵,雪松和棕树共有多少棵?今年植树节大家又种了26棵柳树。
现在共有雪松、棕树和柳树多少棵?口答:雪松和棕树共有棵,现在共有雪松、棕树和柳树棵。
2、小民有故事书19本,又买来20本,小民共有故事书多少本?给希望工程捐物,他捐了15本,还剩下多少本?口答:小民共有故事书本。
给希望工程捐书后还剩下本。
3、小明的妈妈买回来一根16米长的绳子,截去一些做跳绳,还剩6米,做跳绳用去多少米?4、二年级的男同学有35人,女同学有37人,一共有多少人?其中有50人参加了今年暑假的“红色之旅”活动,有多少人没有参加“红色之旅”活动?5、停车场上有65辆小汽车,开走了31辆,还剩下多少辆?又开来6辆。
2003高考数学试题及答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 若函数f(x)=x^2-4x+m,且f(1)=-3,则m的值为()A. 0B. -2C. -1D. 2答案:B2. 已知等差数列{an}的首项a1=1,公差d=2,则a5的值为()A. 9B. 10C. 11D. 12答案:A3. 若复数z满足|z|=1,则z的值可以是()A. 1+iB. 1-iC. -1+iD. -1-i答案:A4. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,其中a>0,b>0,若C的渐近线方程为y=±2x,则b/a的值为()A. 1/2B. 2C. √2D. √3答案:B5. 已知函数f(x)=x^3+3x^2+3x+1,若f'(x)=0有实根,则实根的个数为()A. 0B. 1C. 2D. 3答案:C6. 若直线l的方程为y=kx+b,且l与圆x^2+y^2=1相切,则k 的取值范围为()A. -1≤k≤1B. -√2≤k≤√2C. -1<k<1D. -√2<k<√2答案:D7. 已知向量a=(1,2),b=(2,-1),则向量a+2b的坐标为()B. (5,2)C. (-3,0)D. (-3,2)答案:A8. 若函数f(x)=sin(x)+cos(x),则f(π/4)的值为()A. √2B. 1C. 2D. 0答案:A9. 已知等比数列{bn}的首项b1=2,公比q=1/2,则b4的值为()A. 1/2B. 1/4D. 1/16答案:C10. 若函数f(x)=x^2-6x+8,且f(x)=0的根为x1和x2,则|x1-x2|的值为()A. 2B. 4C. 6D. 8答案:B11. 已知抛物线C的方程为y^2=4x,若点P(1,2)在C上,则点P到C的焦点F的距离为()A. 1B. 2C. 3答案:C12. 若函数f(x)=x^3-3x^2+2,且f'(x)=0的根为x1和x2,则x1+x2的值为()A. 0B. 1C. 2D. 3答案:C二、填空题:本题共4小题,每小题5分,共20分。
三角函数(1985年——2003年高考试题集)一、选择题 1. t an x =1是x =45π的 。
(85(2)3分) A.必要条件B.充分条件C.充要条件D.既不充分也不必要条件2. 函数y =2sin2xcos2x 是 。
(86(4)3分)A.周期为2π的奇函数 B.周期为2π的偶函数C.周期为4π的奇函数D.周期为4π的偶函数3. 函数y =cosx -sin 2x -cos2x +417的最小值是 。
(86广东) A.47 B.2C.49D.417 E.4194. 函数y =cos 4x -sin 4x 的最小正周期是 。
(88(6),91(3)3分)A.πB.2πC.2πD.4π5. 要得到函数y =sin(2x -3π)的图象,只须将函数y =sin2x 的图象 。
(87(6)3分) A.向左平移3π B.向右平移3π C.向左平移6π D.向右平移6π6. 若α是第四象限的角,则π-α是 。
(89上海)A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角7. t an 70°+tan50°-3tan70°tan50°的值是 。
(90广东) A.3B.33C.-33 D.-38. 要得到函数y =cos(2x -4π)的图象,只需将函数y =sin2x 的图象 。
(89上海) A.向左平移8π个单位 B.向右平移8π个单位 C.向左平移4π个单位 D.向右平移4π个单位9. 函数y =cotx|cotx ||tanx |tanx cosx |cosx ||sinx |sinx +++的值域是 。
(90(6)3分)A.{-2,4}B.{-2,0,4}C.{-2,0,2,4}D.{-4,-2,0,4} 10. 若函数y =sin(ωx)cos(ωx)(ω>0)的最小正周期是4π,那么常数ω为 。
(92(2)3)A.4B.2C.21 D.41 注:原考题中无条件“ω>0”,则当ω取负值时也可能满足条件 11. 在直角三角形中两锐角为A 和B ,则sinAsinB 。
2003年普通高等学校招生全国统一考试(全国卷)数学(文史类)注意事项:1. . 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. . 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.答案,不能答在试题卷上.3. . 考试结束,监考人将本试卷和答题卡一并收回.考试结束,监考人将本试卷和答题卡一并收回.考试结束,监考人将本试卷和答题卡一并收回. 参考公式:参考公式:三角函数的积化和差公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式正棱台、圆台的侧面积公式正棱台、圆台的侧面积公式)]sin()[sin(21cos sin b a b a b a -++=× l c c S )(21+¢=台侧 其中其中c ¢、c 分别表示分别表示)]sin()[sin(21sin cos b a b a b a --+=× 上、下底面周长,上、下底面周长,l 表示斜高或母线长表示斜高或母线长. .)]cos()[cos(21cos cos b a b a b a -++=× 球体的体积公式:球体的体积公式:334R V p =球 ,其中R)]cos()[cos(21sin sin b a b a b a --+-=× 表示球的半径表示球的半径表示球的半径. . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.直线2y x x =关于对称的直线方程为对称的直线方程为 ( )(A )12y x =- (B )12y x =(C )2y x =- (D )2y x =2.已知,02x p æöÎ-ç÷èø,54cos =x ,则2tg x = ( )(A )247 (B )247- (C )724 (D )724- 3.抛物线2y a x =的准线方程是2,y a =则的值为的值为 ( ) (A )18(B )18-(C )8 (D )8-4.等差数列{}n a 中,已知1251,4,33,3n a a a a n =+==则为(为( )(A )48 (B )49 (C )50 (D )51 5.双曲线虚轴的一个端点为M ,两个焦点为1212,,120F F F M F Ð=°,则双曲线的离心率为(,则双曲线的离心率为( ) (A )3 (B )62(C )63(D )336.设函数ïîïíì-=--2112)(xx f x00>£x x ,若1)(0>x f ,则0x 的取值范围是的取值范围是 ( ) (A )(1-,1) (B )(1-,¥+)(C )(¥-,2-)È(0,¥+) (D )(¥-,1-)È(1,¥+) 7.已知5()lg ,(2)f x x f ==则( ) (A )lg 2 (B )lg 32 (C )1lg32(D )1lg 258.函数sin()(0)y x R j j p j =+££=是上的偶函数,则( ) (A )0 (B )4p(C )2p(D )p9.已知(,2)(0):-30a a l x y a >+==点到直线的距离为1,则( ) (A )2(B )22- (C )21- (D )21+10.已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为(,该圆柱的全面积为( )(A )22R p (B )249R p (C )238R p (D )252R p11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB夹角为q 的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角)若40P P 与重合,则tg q = ( ) (A )31 (B )52 (C )21(D )1 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为(,四个顶点在同一球面上,则此球的表面积为( ) (A )p 3 (B )p 4 (C )p 33 (D )p 62003年普通高等学校招生全国统一考试数 学(文史类)第Ⅱ卷(非选择题共90分)分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上 13.不等式24x x x -<的解集是____________________. 14.92)21(xx -的展开式中9x 系数是系数是 ________ . 15.在平面几何里,有勾股定理:“设222,,A B C A B A C A B A C B C+= 的两边互相垂直则”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A B C D-的三个侧面A B C A C 、、两两互相垂直,则______________________________________________.” 16.如图,一个地区分为5个行政区域,个行政区域,现给地图现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种_______________________(以数字作答)(以数字作答)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)分)已知正四棱柱111111112A B C D A B C D A B A A E C C F B D -==,,,点为中点,点为点中点 (Ⅰ)证明11E F B D C C 为与的公垂线的公垂线(Ⅱ)求点1D D B DEE 到面的距离18.(本小题满分12分)分)已知复数z 的辐角为°60,且|1|-z 是||z 和|2|-z 的等比中项,求||z . 1919..(本小题满分12分)分)已知数列{}n a 满足1111,3(2).n n n n a a a n --==+³(Ⅰ)求23,a a ;(Ⅱ)证明312nn a -=20.(本小题满分12分)分)已知函数()2sin (sin cos )f x x x x =+ (Ⅰ)求函数()f x 的最小正周期和最大值;的最小正周期和最大值;()y f x =在(Ⅱ)在(Ⅱ)在给出给出的直角坐标系中,画出函数区间,22p p éù-êúëû上的图象21.(本小题满分12分)分)2 1 5 3 4 EDBACB D CAFMy O 2p2p-x 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南2(cos )10q q =方向西偏北°45方向300km 的海面P 处,并以20km/h 的速度向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭?的侵袭?22.(本小题满分14分)分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADC CDCF BCBE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由2003年普通高等学校招生全国统一考试数学试题(文)参考解答及评分标准说明:一. . 本解答指出了每题要考查的主要知识和能力,本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. . 对计算题,对计算题,对计算题,当考生的解答在某一步出现错误时,当考生的解答在某一步出现错误时,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,如果后继部分的解答未改变该题的内容和难度,如果后继部分的解答未改变该题的内容和难度,可视可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,O P A G D F E C B x y q O 北东y 线岸 O x Pr(t) P 45°海三. . 解答右端所注分数,表示考生正确做到这一步应得的累加分数.解答右端所注分数,表示考生正确做到这一步应得的累加分数.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. . 只给整数分数.选择题和填空题不给中间分.只给整数分数.选择题和填空题不给中间分.只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.C 2.D 3.B 4.C 5.B 6.D 7.D 8.C 9.C 10.B 11.C 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.]4,2( 14.221- 15.2222BCD ADB ACD ABC S S S S D D D D =++ 16.72 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(I )证明:取BD 中点M ,连结MC ,FM ,∵F 为BD 1中点,中点, ∴FM ∥D 1D 且FM=21D 1D 又EC=21CC 1,且EC ⊥MC ,∴四边形EFMC 是矩形是矩形 ∴EF ⊥CC 1又CM ⊥面DBD 1 ∴EF ⊥面DBD 1 ∵BD 1Ì面DBD 1,∴EF ⊥BD 1 故EF 为BD 1与CC 1的公垂线的公垂线 (II )解:连结ED 1,有V 由(I )知EF ⊥面DBD 1,设点D 1到面BDE 的距离为d ,则S △DBC ·d=S △DCD 1·EF . ∵AA 1=2·AB=1. 22,2====\EF ED BE BD 23)2(2321,2222121=××==××=\D D DBC DBD S S 故点D 1到平面BDE 的距离为332. 18.解:设z=2),60sin 60(cos r z i r 的实邻为则复数+2,r z z r z z ==+\由题设|2||||1|2-×=-z z z即)2)(2(||)1)(1(--=--z z z z z 42122+-=+-r rrr r12120122--=-==-+r r r r 解得(舍去)(舍去) 即|z|=12-19.(I )解∵1343,413,12321=+==+=\=a a a(II )证明:由已知故,311--=-n n n a a112211)()()(a a a aaaa a n n n nn+-++-+-=---.2)n s(22(Ⅱ)由(Ⅰ)知(Ⅱ)由(Ⅰ)知x83p -8p-8p83p85py1 21-1 21+1 ]p p )台风中心),(y x P ïíì´+´=´-´=22102722102t y t x ))y x -))--y x 22102722102´+´´-´t t的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(££===k k DADC CDCF BCBE ,由此有E (2,4ak ),F (2-4k ,4a ),G (-2,4a -4ak ). 直线OF 的方程为:0)12(2=-+y k ax , ① 直线GE 的方程为:02)12(=-+--a y x k a . ②从①,②消去参数k ,得点P (x ,y )坐标满足方程022222=-+ay y x a ,整理得1)(21222=-+aa y x . 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212¹a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长. 当212<a 时,点P 到椭圆两个焦点),21(),,21(22a a a a ---的距离之和为定值2. 当212>a 时,点P 到椭圆两个焦点)21021,0(22-+--a a a a ,),(的距离之和为定值a 2. 。