离散型随机变量的期望与方差
- 格式:doc
- 大小:221.50 KB
- 文档页数:6
期望与方差公式离散型随机变量连续型随机变量概述:在概率论和数理统计中,期望和方差是两个重要的统计量。
它们用于描述随机变量的集中程度和离散程度。
本文将介绍期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。
一、离散型随机变量的期望和方差公式:离散型随机变量是指在有限或可数的样本空间内取值的随机变量。
对于一个离散型随机变量X,其期望和方差的公式如下:1. 期望公式:期望是用来衡量随机变量取值的中心位置,常表示为E(X)。
对于离散型随机变量X,其期望的计算公式为:E(X) = ∑[x * P(X = x)]其中,x表示随机变量X取到的每个可能值,P(X = x)表示相应取值的概率。
2. 方差公式:方差是用来衡量随机变量取值的离散程度,常表示为Var(X)或σ²。
方差的计算公式为:Var(X) = ∑[(x - E(X))² * P(X = x)]其中,x表示随机变量X的每个可能值,P(X = x)表示相应取值的概率,E(X)表示X的期望。
二、连续型随机变量的期望和方差公式:连续型随机变量是指取值在某一连续区间内的随机变量。
对于一个连续型随机变量X,其期望和方差的公式如下:1. 期望公式:连续型随机变量的期望的计算公式为:E(X) = ∫[x * f(x)] dx其中,f(x)表示随机变量X的概率密度函数。
2. 方差公式:连续型随机变量的方差的计算公式为:Var(X) = ∫[(x - E(X))² * f(x)] dx其中,f(x)表示随机变量X的概率密度函数,E(X)表示X的期望。
总结:本文介绍了期望和方差的定义及其计算公式,并分别讨论了离散型和连续型随机变量的情况。
对于离散型随机变量,期望的计算公式为E(X) = ∑[x * P(X = x)],方差的计算公式为Var(X) = ∑[(x - E(X))² * P(X = x)]。
对于连续型随机变量,期望的计算公式为E(X) = ∫[x * f(x)] dx,方差的计算公式为Var(X) = ∫[(x - E(X))² * f(x)] dx。
岚山一中导学学案学习改写人生,反思启迪智慧离散型随机变量的期望和方差【怎么考】1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题.【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题. 【知识梳理】1、离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值称E (X )= 为随机变量X 的均值或 ,它反映了离散型随机变量取值的 . (2)方差称D (X )= i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 的 ,其 为随机变量X 的标准差. 2、三种分布(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p );(2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p );(3)若X 服从超几何分布,则E (X )=n MN. 3、六条性质(1)E (C )=C (C 为常数)(2)E (aX +b )=aE (X )+b (a 、b 为常数)(3)E (X 1+X 2)=EX 1+EX 2(4)D (aX +b )=a 2·D (X ) 【基础自测】1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .2 2、已知X 的分布列为设Y =2X +3,则E (Y )的值为( ).A.73 B .4 C .-1 D .13、(2010·湖北)某射手射击所得环数ξ的分布列如下: 已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.94.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 【考向透析】【例1】(2012济南一模)将编号为1,2,3,4的四张同样材质的卡片,随机放入编码分别为1,2,3,4的四个小盒中,每盒仅放一张卡片,若第k 号卡片恰好落入第k 号小盒中,则称其为一个匹对,用ξ表示匹对的个数. (1)求第2号卡片恰好落入第2号小盒内的概率; (2)求匹对数ξ的分布列和数学期望ξE .【例2】(2012日照一模)某校高二年级甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名乒乓球选手,学校计划从甲、乙两班各选2名选手参加体育交流活动。
离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。
期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。
在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。
期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。
离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。
方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。
运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。
可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。
总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。
以上就是关于离散型随机变量期望和方差的主要内容。
离散随机变量的期望与方差离散随机变量是概率论中的一个重要概念,它在描述随机现象中的离散取值时起到了关键作用。
离散随机变量的期望与方差是两个重要的统计量,对于揭示随机变量的特征及其分布有着重要意义。
本文将详细介绍离散随机变量的期望与方差的计算方法及其应用。
一、离散随机变量的期望离散随机变量的期望指的是随机变量取各个值时的加权平均值,也可以理解为该变量的平均值。
假设离散随机变量X的取值为{x1, x2, x3, ..., xn},相应的概率为{p1, p2, p3, ..., pn},则离散随机变量的期望可用以下公式表示:E(X) = x1*p1 + x2*p2 + x3*p3 + ... + xn*pn其中,E(X)表示离散随机变量X的期望值。
举个例子来说明,假设X表示一枚均匀骰子的点数,它可以取1、2、3、4、5、6这六个值,并且每个值的概率都是1/6。
那么X的期望为:E(X) = 1*(1/6) + 2*(1/6) + 3*(1/6) + 4*(1/6) + 5*(1/6) + 6*(1/6) = 3.5这意味着,如果我们不断地进行均匀骰子的试验,并记录每次试验的点数,那么这些点数的平均值会接近于3.5。
二、离散随机变量的方差离散随机变量的方差是用来衡量随机变量的取值对其期望的偏离程度。
方差的计算方法如下:Var(X) = E((X-E(X))^2) = (x1-E(X))^2*p1 + (x2-E(X))^2*p2 + ... + (xn-E(X))^2*pn其中,Var(X)表示离散随机变量X的方差。
继续以均匀骰子的点数为例,我们计算其方差:Var(X) = (1-3.5)^2*(1/6) + (2-3.5)^2*(1/6) + (3-3.5)^2*(1/6) + (4-3.5)^2*(1/6) + (5-3.5)^2*(1/6) + (6-3.5)^2*(1/6) ≈ 2.92方差的平方根被称为标准差,它度量了离散随机变量的取值波动程度。
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。
离散型随机变量的期望与方差离散型随机变量的期望与方差(2)教学目的:1了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差.2.了解方差公式"D(aξ+b)=a2Dξ",以及"若ξ~Β(n,p),则Dξ=np(1-p)",并会应用上述公式计算有关随机变量的方差教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题内容分析:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.回顾一组数据的方差的概念:设在一组数据,,...,中,各数据与它们的平均值得差的平方分别是,,...,,那么++...+叫做这组数据的方差教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5. 分布列:ξx1x2...xi...PP1P2...Pi...6. 分布列的两个性质:⑴Pi≥0,i=1,2,...;⑵P1+P2+ (1)7.二项分布:ξ~B(n,p),并记=b(k;n,p).ξ01...k...nP......8.几何分布: g(k,p)= ,其中k=0,1,2,...,.ξ123...k...P......9.数学期望: 一般地,若离散型随机变量ξ的概率分布为ξx1x2...xn...Pp1p2...pn...则称 ...... 为ξ的数学期望,简称期望.10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令...,则有...,...,所以ξ的数学期望又称为平均数、均值12. 期望的一个性质:13.若ξB(n,p),则Eξ=np二、讲解新课:1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是,,...,,...,且取这些值的概率分别是,,...,,...,那么,=++...++...称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.2. 标准差:的算术平方根叫做随机变量ξ的标准差,记作.3.方差的性质:(1);(2);(3)若ξ~B(n,p),则np(1-p)4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛三、讲解范例:例1.设随机变量ξ的分布列为ξ12...nP...求Dξ解:(略)例2.已知离散型随机变量的概率分布为1234567P离散型随机变量的概率分布为3.73.83.944.14.24.3P 求这两个随机变量期望、均方差与标准差解:;;;=0.04, .点评:本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中.,,,方差比较清楚地指出了比取值更集中.=2,=0.02,可以看出这两个随机变量取值与其期望值的偏差例3. 甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:+(10-9);同理有由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同.=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况例4.A、B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A机床B机床次品数ξ10123次品数ξ10123概率P0.70.20.060.04概率P0.80.060.040.10次品数ξ10123次品数ξ10123问哪一台机床加工质量较好解: Eξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,Eξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差Dξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2 ×0.06+(3-0.44)2×0.04=0.6064,Dξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2 ×0.04+(3-0.44)2×0.10=0.9264.∴Dξ 1 Dξ 2 故A机床加工较稳定、质量较好.四、课堂练习:1 .已知,则的值分别是()A.;B.;C.;D.答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3当ξ=0时,即第一次取得正品,试验停止,则P(ξ=0)=当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P(ξ=1)=当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则P(ξ=2)=当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P(ξ=3)=所以,Eξ=3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求Eξ,Dξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB(200,1%),从而可用公式:Eξ=np,Dξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB(200,1%)因为Eξ=np,Dξ=npq,这里n=200,p=1%,q=99%,所以,Eξ=200×1%=2,Dξ=200×1%×99%=1.984. 设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差Dξ=P(1-P)后,我们知道Dξ是关于P(P≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P(ξ=0)=1-p,P(ξ=1)=p,所以,Eξ=0×(1-p)+1×p=p则 Dξ=(0-p)2×(1-p)+(1-p) 2×p=p(1-p)5. 有A、B两种钢筋,从中取等量样品检查它们的抗拉强度,指标如下:ξA110120125130135ξB100115125130145P0.10.20.40.10.2P0.10.20.40.10.2其中ξA、ξB分别表示A、B两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A、B两种钢筋哪一种质量较好分析:两个随机变量ξA和ξB都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA取较为集中的数值110,120,125,130,135;ξB取较为分散的数值100,115,125,130,145.直观上看,猜想A种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA与ξB的期望值,因为EξA=110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=12 5,EξB=100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为DξA=(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50,DξB=(100-125)2×0.1+(110-125) 2 ×0.2+(130-125)2×0.1+(145-125) 2×0.2=165.所以,Dξ A Dξ B.因此,A种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的"不考虑获利"的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题意,可得ξ的分布列为ξ0525100P答:一张彩票的合理价格是0.2元.五、小结:⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ;④根据方差、标准差的定义求出、.若ξ~B(n,p),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要六、课后作业:同步练习X01022。
离散型随机变量期望与方差引言离散型随机变量是概率论与统计学中的重要概念之一。
在处理离散型随机变量时,我们经常需要计算其期望与方差,以帮助我们了解变量的分布特征。
本文将详细介绍离散型随机变量的期望与方差的定义及其计算方法。
期望的定义与计算离散型随机变量的期望表示了该随机变量可能取值的加权平均。
如果离散型随机变量X的取值为x1, x2, …, xn,对应的概率为p1, p2, …, pn,那么随机变量X的期望可以通过以下公式计算:E(X) = x1 * p1 + x2 * p2 + … + xn * pn其中E(X)表示变量X的期望。
下面以一个简单的例子来说明期望的计算过程。
假设某班级有10个学生,他们的考试成绩(以百分制计)分别为60、70、80、90、90、80、70、80、90、60,对应的概率分别为0.1、0.2、0.1、0.2、0.1、0.05、0.1、0.1、0.05、0.1。
现在我们来计算这些考试成绩的期望。
60 * 0.1 + 70 * 0.2 + 80 * 0.1 + 90 * 0.2 + 90 * 0.1 + 80 * 0.05 + 70 * 0.1 + 80 * 0.1 + 90 * 0.05 + 60 * 0.1 = 79所以,这些考试成绩的期望为79。
方差的定义与计算离散型随机变量的方差反映了该变量的取值相对于其期望的离散程度。
方差的计算公式如下所示:Var(X) = E((X - E(X))²) = (x1 - E(X))² * p1 + (x2 - E(X))² * p2 + … + (xn - E(X))² * pn其中Var(X)表示变量X的方差。
方差的计算比较繁琐,但仍然是可行的。
我们可以利用先前计算得到的X的期望,将其带入方差计算公式中,即可求得方差的值。
继续以前面的例子进行说明,我们已经计算得到班级考试成绩的期望为79。
离散型随机变量的期望和方差的计算与分析随机变量是概率论中的重要概念,它描述了一个随机试验的结果。
离散型随机变量是指取有限个或可数个数值的随机变量。
在概率论和统计学中,我们经常需要计算和分析离散型随机变量的期望和方差,以便更好地理解和描述概率分布的特征。
一、离散型随机变量的期望离散型随机变量的期望是对随机变量取值的加权平均值。
设X是一个离散型随机变量,其可能取值为x1, x2, ..., xn,对应的概率为p1, p2, ..., pn。
那么X的期望E(X)可以通过以下公式计算:E(X) = x1 * p1 + x2 * p2 + ... + xn * pn期望可以理解为随机变量的平均取值,它能够反映出随机变量的集中趋势。
例如,假设有一个骰子,其可能的结果为1、2、3、4、5、6,每个结果出现的概率均为1/6。
那么骰子的期望为:E(X) = 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6 = 3.5这意味着在大量的骰子投掷中,我们可以预期的结果接近于3.5。
二、离散型随机变量的方差方差是对随机变量取值的离散程度的度量。
离散型随机变量X的方差Var(X)可以通过以下公式计算:Var(X) = E[(X - E(X))^2] = (x1 - E(X))^2 * p1 + (x2 - E(X))^2 * p2 + ... + (xn -E(X))^2 * pn方差的计算过程可以简单理解为,对随机变量的每个取值与期望的差异进行平方,并乘以对应的概率,最后将所有结果相加。
方差可以帮助我们判断随机变量的分布形态。
如果方差较小,说明随机变量的取值相对集中,分布形态较为陡峭;如果方差较大,说明随机变量的取值相对分散,分布形态较为平坦。
以骰子为例,骰子的方差为:Var(X) = (1 - 3.5)^2 * 1/6 + (2 - 3.5)^2 * 1/6 + (3 - 3.5)^2 * 1/6 + (4 - 3.5)^2 * 1/6 + (5 - 3.5)^2 * 1/6 + (6 - 3.5)^2 * 1/6 = 2.9167这意味着骰子的取值相对分散,分布形态较为平坦。
离散型随机变量的期望与方差知识集结知识元离散型随机变量的期望与方差知识讲解1.离散型随机变量的期望与方差【知识点的知识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…x n…P p1p2…p n…则称Eξ=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=p n,则有p1=p2=…=p n=,Eξ=(x1+x2+…+x n)×,所以ξ的数学期望又称为平均数、均值.期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,x n,…,且取这些值的概率分别是p1,p2,…,p n…,那么,称为随机变量ξ的均方差,简称为方差,式中的Eξ是随机变量ξ的期望.标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.例题精讲离散型随机变量的期望与方差例1.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5例2.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15例3.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9当堂练习单选题练习1.随机变量ξ的分布列如表,且E(ξ)=1.1,则D(ξ)=()A.0.36B.0.52C.0.49D.0.68练习2.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5练习3.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15练习4.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9解答题练习1.'为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?'练习2.'某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?'练习3.'中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为x,求随机变量x的分布列及数学期望.'练习4.'已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.(1)将甲每天生产的次品数记为x(单位:件),日利润记为y(单位:元),写出y与x的函数关系式;(2)如果将统计的100天中产生次品量的频率作为概率,记X表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量X的分布列和数学期望.'练习5.'“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).'。
离散型随机变量的期望和方差公式
离散型随机变量是指其概率分布中的取值非连续,比较容易准确衡量的一种变量。
它的期望(Expectation)和方差(Variance)很容易求取,分别表示离散型
随机变量的平均值与离差的大小。
其具体的期望和方差的计算公式分别为:
期望:E(X)=∑(X×P(X))
方差:Var(X)=E(X^2)-[E(X)]^2
其中,E(X)是离散型随机变量X的期望,P(X)是该随机变量X出现各种取值的
概率,Var(X)是X的方差。
从数学角度看,衡量离散型随机变量不同取值组合对系统产生的影响大小,首
先要做的就是求取这些函数的期望和方差。
以上公式可以很好地满足这一要求,只要知道每种取值的概率分布,按照公式便可轻松求得它的期望和方差。
计算期望和方差更重要的意义在于,它可以作为评价随机变量取值组合优劣的
标准。
期望和方差能够对随机对象的平均水平和变异程度有一个明确而准确的量化,是经济学研究中不可或缺的一项重要工具。
因此,熟练掌握离散型随机变量的期望和方差计算公式,可以有效的指导系统
优化、风险分析等管理与计算中的实际应用。
1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i(i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差.D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,Dξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.1.(2013•广东)已知离散型随机变量X的分布列为X 1 2 3P则X的数学期望E(X)=()A.B. 2 C.D. 32.(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A. 100 B. 200 C. 300 D. 4003.(2007•四川)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是()A.150.2克B.149.8克C.149.4克D.147.8克4.(2014•浙江二模)李先生居住在城镇的A处,准备开车到单位B处上班,途中(不绕行)共要经过6个交叉路口,假设每个交叉路口发生堵车事件的概率均为,则李先生在一次上班途中会遇到堵车次数ξ的期望值Eξ是()A.B. 1 C.6×()6D. 6×()6 5.从装有颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)=()A.B.C.D.6.有10件产品,其中3件是次品,从中任取两件,若ξ表示取到次品的个数,则Eξ等于()A.B.C.D. 17.某射手射击击中目标的概率为0.8,从开始射击到击中目标所需的射击次数为ξ,则Eξ等于()A.B.C.D.58.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ_________(结果用最简分数表示).9.设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的数学期望Eξ=3,则a+b= _________.10.同时抛掷两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则Eξ=_________.11.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是_________.12.(2014•温州一模)现有三个小球全部随机放入三个盒子中,设随机变量ξ为三个盒子中含球最多的盒子里的球数,则ξ的数学期望Eξ为_________.13.从1,2,3,…,n﹣1,n这n个数中任取两个数,设这两个数之积的数学期望为Eξ,则Eξ=_________.14.(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=_________.15.某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差Dξ=_________.16.(2013•嘉兴一模)一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X的均值E(X)=_________.17.(2013•虹口区二模)从集合的所有非空子集中,等可能地取出一个,记取出的非空子集中元素个数为ξ,则ξ的数学期望Eξ=_________.18.(2012•台州一模)把2对孪生兄弟共4人随机排成一排,记随机变量ξ为这一排中孪生兄弟相邻的对数,则随机变量ξ的期望Eξ=_________.19.(2012•杭州二模)(理)设整数m是从不等式x2﹣2x﹣8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望Eξ=_________.20.(2011•温州二模)甲、乙两个同学每人有两本书,把四本书混放在一起,每人随机从中拿回两本,记甲同学拿到自己书的本数为ξ,则Eξ=_________.21.一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=_________.22.设口袋中有黑球、白球共9个球,从中任取2个球,若取到白球个数的数学期望为,则口袋中白球的个数为_________.23.(2011•嘉定区三模)某班从5名班干部(其中男生3人,女生2人)中选3人参加学校学生会的干部竞选.设所选3人中女生人数为ξ,则随机变量ξ的方差Dξ=_________.24.(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.25.(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.26.(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.27.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率p;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.28.甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ;(Ⅱ)求乙至多击中目标2次的概率;(Ⅲ)求甲恰好比乙多击中目标2次的概率.29.一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.30.(2014•淄博三模)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.(Ⅰ)求取出的3个球编号都不相同的概率;(Ⅱ)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.。
开锁次数的数学期望和方差
例 有n 把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数ξ的数学期望和方差.
分析:求)(k P =ξ时,由题知前1-k 次没打开,恰第k 次打开.不过,一般我们应从简单的地方入手,如3,2,1=ξ,发现规律后,推广到一般.
解:ξ的可能取值为1,2,3,…,n .
;12112121)111()11()3(;111111)11()2(,1)1(n
n n n n n n n n P n
n n n n n P n
P =-⋅--⋅-=-⋅--⋅-===-⋅-=-⋅-====ξξξ n
k n k n k n n n n n n n k n k n n n n k P 111212312111)211()211()111()11()(=+-⋅+-+---⋅--⋅-=+-⋅+----⋅--⋅-== ξ;所以ξ的分布列为:
2
31211=⋅++⋅+⋅+⋅=n n n n n E ξ; n n n n n k n n n n n n D 1)21(1)21(1)213(1)212(1)211(22222⋅+-++⋅+-++⋅+-+⋅+-+⋅+-
= ξ ⎥⎦
⎤⎢⎣⎡⋅+++++++-++++=n n n n n n 22222)21()321)(1()321(1 1214)1(2)1()12)(1(611222-=⎥⎦
⎤⎢⎣⎡+++-++=n n n n n n n n n 说明:复杂问题的简化处理,即从个数较小的看起,找出规律所在,进而推广到一般,方差的公式正确使用后,涉及一个数列求和问题,合理拆项,转化成熟悉的公式,是解决的关键.
次品个数的期望
例 某批数量较大的商品的次品率是5%,从中任意地连续取出10件,ξ为所含次品的个数,求ξE .
分析:数量较大,意味着每次抽取时出现次品的概率都是0.05,ξ可能取值是:0,1,2,…,10.10次抽取看成10次独立重复试验,所以抽到次品数ξ服从二项分布,由公式np E =ξ可得解.
解:由题,()05.0,10~B ξ,所以5.005.010=⨯=ξE .
说明:随机变量ξ的概率分布,是求其数学期望的关键.因此,入手时,决定ξ取哪些
值及其相应的概率,是重要的突破点.此题k k k C k P --⋅==1010)05.01()05.0()(ξ,应觉察
到这是()05.0,10~B ξ.
根据分布列求期望和方差
例 设ξ 是一个离散型随机变量,其分布列如下表,求q 值,并求ξ ξ D E 、.
分析:根据分布列的两个性质,先确定q 的值,当分布列确定时,ξ ξ D E 、只须按定义代公式即可.
解: 离散型随机变量的分布满足
(1),,3,2,1,0
=≥i P i (2).1321=+++
P P P 所以有⎪⎪⎩
⎪⎪⎨⎧≤≤-≤=+-+.1,1210,1212122q q q q 解得 .211-=q 故ξ 的分布列为
⎪⎭⎫ ⎝⎛-⨯+-⨯+⨯-=∴2231)12(021)1(ξ E .2122
321 -=-+-= ⎪⎭
⎫ ⎝⎛-⨯--+-⨯-+⨯---=223)]21(1[)12()21(21)]21(1[ 222ξ D ⎪⎭
⎫ ⎝⎛-+-+⨯-=2232)12(21)22( 32 .12223123622223 -=-+-+-+-=
小结:解题时不能忽视条件i i p k P ==)(ξ时,10≤≤i p ,⋅⋅⋅=,2,1i 否则取了1>q 的值后,辛辛苦苦计算得到的是两个毫无用处的计算.
产品中次品数分布列与期望值
例 一批产品共100件,其中有10件是次品,为了检验其质量,从中以随机的方式选取5件,求在抽取的这5件产品中次品数分布列与期望值,并说明5件中有3件以上(包括3件)为次品的概率.(精确到0.001)
分析:根据题意确定随机变量及其取值,对于次品在3件以上的概率是3,4,5三种情况的和.
解:抽取的次品数是一个随机变量,设为ξ ,显然ξ 可以取从0到5的6个整数. 抽样中,如果恰巧有k 个(5,4,3,2,1,0=k )次品,则其概率为
5
100590
10)(C C C k P k k -⋅==ξ
按照这个公式计算,并要求精确到0.001,则有
.
0)5( ,0)4( ,07.0)3( ,070.0)2( ,340.0)1( ,583.0)0(============ξ ξ ξ ξ ξ ξ P P P P P P 故ξ 的分布列为
.501.00504007.03070.02340.01583.00=⨯+⨯+⨯+⨯+⨯+⨯=ξ E
由分布列可知,
.
007.0)3( ,00007.0)3( =≥∴++=≥ξ ξ P P 这就是说,所抽取的5件品中3件以上为次品的可能性很小,只有7%.
评定两保护区的管理水平
例 甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等.而两个保护区内每个季度发现违反保护条例的事件次数的分布列分别为:
甲保护区:
乙保护区:
试评定这两个保护区的管理水平.
分析:一是要比较一下甲、乙两个保护区内每季度发生的违规事件的次数的均值,即数学期望;二是要看发生违规事件次数的波动情况,即方差值的大小.(当然,亦可计算其标准差,同样说明道理.)
解:甲保护区的违规次数1ξ的数学期望和方差为:
;3.12.032.023.013.001=⨯+⨯+⨯+⨯=ξE
;21.12.0)3.13(2.0)3.12(3.0)3.11(3.0)3.10(22221=⨯-+⨯-+⨯-+⨯-=ξD 乙保护区的违规次数2ξ的数学期望和方差为:
;3.14.025.011.002=⨯+⨯+⨯=ξE
41.04.0)3.12(5.0)3.11(1.0)3.10(2222=⨯-+⨯-+⨯-=ξD ;
因为2121,ξξξξD D E E >=,所以两个保护区内每季度发生的违规平均次数是相同的,但乙保护区内的违规事件次数更集中和稳定,而甲保护区的违规事件次数相对分散和波动.
(标准差64.0,1.12211≈===
ξσξξσξD D 这两个值在科学计算器上容易获得,
显然,σξσξ>1)
说明:数学期望仅体现了随机变量取值的平均大小,但有时仅知道均值大小还是不够
的,比如:两个随机变量的均值相等了(即数学期望值相等),这就还需要知道随机变量的取值如何在均值周期变化,即计算其方差(或是标准差).方差大说明随机变量取值分散性大;方差小说明取值分散性小或者说取值比较集中、稳定.
射击练习中耗用子弹数的分布列、期望及方差
例 某射手进行射击练习,每射击5发子弹算一组,一旦命中就停止射击,并进入下一组的练习,否则一直打完5发子弹后才能进入下一组练习,若该射手在某组练习中射击命中一次,并且已知他射击一次的命中率为0.8,求在这一组练习中耗用子弹数ξ 的分布列,并求出ξ 的期望ξ E 与方差ξ D (保留两位小数)
. 分析:根据随机变量不同的取值确定对应的概率,在利用期望和方差的定义求解. 解: 该组练习耗用的子弹数ξ 为随机变量,ξ 可以取值为1,2,3,4,5.
ξ =1,表示一发即中,故概率为
;8.0)1(==ξ P
ξ =2,表示第一发未中,第二发命中,故
;16.08.02.08.0)8.01()2(=⨯=⨯-==ξ P
ξ =3,表示第一、二发未中,第三发命中,故
;032.08.02.08.0)8.01()3(22=⨯=⨯-==ξ P
ξ =4,表示第一、二、三发未中,第四发命中,故
0064.08.02.08.0)8.01()4(33=⨯=⨯-==ξ P
ξ =5,表示第五发命中,故
.0016.02.01)8.01()5(44==⋅-==ξ P
因此,ξ 的分布列为
0016.050064.04032.0316.028.01⨯+⨯+⨯+⨯+⨯=ξ E
,25.1008.00256.0096.032.08.0 =++++=
0016.0)25.15(0064.0)25.14(032.0)25.13(16.0)25.12(8.0)25.11(22222⨯-+⨯-+⨯-+⨯-+⨯-=ξ D .31.00225.00484.0098.009.005.0 =++++=
说明:解决这类问题首先要确定随机变量的所有可能取值,然后再根据概率的知识求解对应的概率.
准备礼品的个数
例 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?
分析:可能来多少人,是一个随机变量ξ.而ξ显然是服从二项分布的,用数学期望来反映平均来领奖人数,即能说明是否可行.
解:设来领奖的人数)3000,,2,1,0(, ==k k ξ,所以
k k k C k P --⋅==300003000)04.01()04.0()(ξ,可见()04.0,30000~B ξ,所以,
12004.03000=⨯=ξE (人)100>(人)
. 答:不能,寻呼台至少应准备120份礼品.
说明:“能”与“不能”是实际问题转到数学中来,即用数字来说明问题.数字期望反映了随机变量取值的平均水平.用它来刻画、比较和描述取值的平均情况,在一些实际问题中有重要的价值.因此,要想到用期望来解决这一问题.。