理论力学习题汇总第六章分析力学学生版
- 格式:pdf
- 大小:278.59 KB
- 文档页数:6
第六章 刚体的平面运动 习题解答6-1 椭圆规尺AB 由曲柄OC 带动,曲柄以角速度Oω绕O 轴匀速转动,如图所示。
如r AC BC OC ===,并取C 为基点,求椭圆规尺AB 的平面运动方程。
解:AB 杆作平面运动,设0=t 时,0=ϕ,则t 0ωϕ=。
选AB 杆上的C 点位基点,建立平移坐标系y x C ''-,在图示坐标系中,AB 杆在固定坐标系xy O -的位置由坐标),,(ϑC C y x 确定,所以AB 杆的平面运动方程为:t r x C 0cos ω=,t r y C 0sin ω=,t 0ωϕθ==.6-2 杆AB 的A 端沿水平线以等速v 运动,在运动时杆恒与一半圆周相切,半圆周半径为R ,如图所示。
如杆与水平线的夹角为θ,试以角θ表示杆的角速度。
解: 解法一:杆AB 作平面运动。
选取A 为基点,由速度基点法CA A C v v v +=, 作图示几何关系,图中v v A =,解得θθsin sin v v v A CA ==,A B 杆的角速度为 θθωcos sin 2R v AC v CA ==(逆时针).解法二:在直角三角形△ACO 中, xR =ϑsin 上式对时间求导,得x xR 2cos -=ϑϑ 其中,ϑ,R x v x== ,解得A B 杆的角速度为 Rv ϑϑϑcos sin 2-= ,(负号表示角速度转向与ϑ角增大的方向相反,即逆时针)6-3 半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮转动,如图所示。
如曲柄OA 以等角加速度α绕O 轴转动,当运动开始时,角速度0=O ω,转角0=ϕ。
求动齿轮以中心A 为基点的平面运动方程。
解:动齿轮作平面运动。
建立与曲柄OA 固结的转动坐标系题6-1图题 6-2图题6-3图ξη-O ,和在动齿轮的A 点建立平移坐标系y x A ''-,如图所示,从图中可见,因动齿轮和固定齿轮间没有滑动,所以存在关系ϑϕr R =小轮半径AM 相对平移坐标系y x A ''-,也即固定坐标系得转角为)1(r R A +=+=ϕϑϕϕ, 而 221t αϕ=,可得小轮平面运动方程为)21cos()(2t r R x A α+=, )21sin()(2t r R y A α+=.6-4 图示机构中,已知10.OA =m ,10.BD =m ,10.DE =m ,310.EF =m ;4=OA ωrad/s 。
第六章 分析力学滔滔长江东逝水,浪花淘尽英雄。
达朗贝尔,拉格朗日,哈密顿等许多前贤相聚于此“力学论剑”,其“冲击波”使非线性问题也不攻自破。
长江后浪推前浪,你或许在此能够加倍“忘乎因此‘。
微分方程将叱咤风云。
[要点分析与总结]1虚功原理:(平稳时)理想条件下,力学系的平稳条件是各质 点上的主动力所作的虚功之和为零:10ni i i W F r δδ==•=∑用广义坐标来表述:310n ii i x W F q q ααδδ=∂==∂∑ 2达朗贝尔原理(动力学下的虚功原理): 1()0ni i i i i W F m r r δδ==-•=∑〈析〉r δ,W δ均是在时刻未转变(0dt =)时所假想的量,而广义坐标a q 能够是角度,长度或其它的独立的坐标变量。
3拉格朗日方程()d T TQ dt q q ααα∂∂-=∂∂ (1,2,3,,)a s =在保守力下,取拉氏数 L T V =-方程为:()0d L L dt q q αα∂∂-=∂∂ 假设拉氏数中L 不显含广义坐标q β,那么:0Lq β∂=∂ 即 循环积分: Lp const q ββ∂==∂ 4微振动非线性系统在小角度近似下,对拉氏方程的应用 5哈密顿函数与正那么方程 (1) 哈密顿函数1(,,)sH p q t L p q ααα==-+∑式中T Lp q q ααα∂∂==∂∂为广义坐标动量 (2) 正那么方程Hq P Hp q H Lt tαααα∂=∂∂=-∂∂∂=-∂∂ (1,2,3,,)a s =假设哈氏函数H 中不显含广义坐标q β,那么:0Hp q ββ∂=-=∂ 即:循环积分 Tp const q ββ∂==∂ 在稳固条件下(H 中不显含t ),12sp q T ααα==∑那么有能量积分:H T V =+6泊松括号1[,]()sG H G HG H q p p q ααααα=∂∂∂∂=-∂∂∂∂∑ 7哈密顿原理与正那么变换 (1)哈密顿原理保守力系下:210t t Ldt δ=⎰概念:21t t S Ldt =⎰为主函数(3) 正那么变换通过某种变数的变换,找到新的函数*H ,使正那么方程的形式不变(相当于坐标变换)。
第6章 刚体的平面运动分析6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。
曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0ϕ= 0。
试求动齿轮以圆心A 为基点的平面运动方程。
解:ϕcos )(r R x A += (1) ϕsin )(r R y A +=(2)α为常数,当t = 0时,0ω=0ϕ= 0 221t αϕ=(3)起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过θϕϕ+=A因动齿轮纯滚,故有⋂⋂=CP CP 0,即 θϕr R = ϕθr R =, ϕϕrr R A += (4)将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A αϕαα6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。
试以杆与铅垂线的夹角θ 表示杆的角速度。
解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。
作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。
则角速度杆AB 为6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。
试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。
解:RvR v A A ==ωR v R v B B 22==ωB A ωω2=6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。
设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30︒,ϕ=60︒,BC =270mm 。
试求该瞬时杆BC 的角速度和点C 的速度。
hv AC v AP v ABθθω2000cos cos ===习题6-1图ABCv 0hθ习题6-2图PωABv CABCv ohθ习题6-2解图习题6-3解图习题6-3图v A = vv B = v ωAωB习题6-6图习题6-6解图解:杆BC 的瞬心在点P ,滚子O 的瞬心在点D BDv B ⋅=ωBPBD BP v B BC ⋅==ωω ︒︒⨯=30sin 27030cos 36012 rad/s 8=PC v BC C ⋅=ωm/s 87.130cos 27.08=︒⨯=6-5 在下列机构中,那些构件做平面运动,画出它们图示位置的速度瞬心。
《理论力学》第六章作业答案如果不做书中所附的习题,就等于处宝山而空返。
——华罗庚。
1 [习题6-2]半圆形凸轮以匀速s mm v /10=沿水平方向向左运动,活塞杆AB 长l 沿铅直方向运动。
当运动开始时,活塞杆A 端在凸轮的最高点上。
如凸轮的半径mm R 80=,求,求活塞活塞B 的运动方程和速度方程.解:活塞杆AB 作竖向平动。
以凸轮圆心为坐标原点,铅垂向上方向为x 轴的正向,则由图中的几何关系可知,任一时刻,B 点的坐标,即活塞B 的运动方程为:)(64)()(cos 22222cm t l vt R l Rvt R R l R l x B -+=-+=-⋅+=+=ϕ活塞B 的速度方程为:)/(646422122s cm t t t t dt dx v B B --=--==[习题6-4]点M 以匀速率u 在直管OA 内运动,直管OA 又按t ωϕ=规律绕O 转动。
当0=t 时,M 在O 点,求其在任一瞬时的速度及加速度的大小。
解: ut r =,t ωϕ=。
设任一瞬时,M 点的坐标为),(y x M ,则点M 的运动方程为:t ut r x ωϕcos cos ==, tut r y ωϕsin sin ==速度方程为:速度方程为:t t u t u t ut t u t ut dt ddt dxv x ωωωωωωωsin cos )sin (cos )cos (-=⋅-+===t t t u t t u t u v x ωωωωωωcos sin 2sin )(cos 222222⋅-+=t t u t u t ut t u t ut dt ddt dyv y ωωωωωωωcos sin cos sin )sin (+=⋅⋅+===t t t u t t u t u v y ωωωωωωcos sin 2cos )(sin 222222⋅++=2222)(t u u v v y x ω+=+任一瞬时,速度的大小为:22222)(1)(t u t u u v v v y x ωω+=+=+=加速度方程为:)sin cos (t t u t u dt ddt dv a xx ωωω-==]cos sin [)sin (ωωωωωωω⋅⋅+⋅-⋅-⋅=t t u t u t ut t u t u ωωωωcos sin 22--=t t t u t t u t u a x ωωωωωωωcos sin 4cos )(sin 4322222222⋅++=)cos sin (t t u t u dtd dt dv a yy ωωω+==ωωωωωωω⋅-⋅+⋅+⋅⋅=)sin (cos [cos t t u t u t ut t u t u ωωωωsin cos 22⋅-=t t t u t t u t u a y ωωωωωωωcos sin 4sin )(cos 4322222222⋅-+=222222)(4t u u a a y x ωω+=+任一瞬时,速度的大小为:2222222)(4)(4t u t u u a a a y x ωωωω+=+=+=[习题6-14] 电动绞车由带轮Ⅰ和Ⅱ及鼓轮Ⅲ组成如图电动绞车由带轮Ⅰ和Ⅱ及鼓轮Ⅲ组成如图6-426-426-42所示,鼓轮Ⅲ和带轮所示,鼓轮Ⅲ和带轮Ⅱ刚连在同一轴上。
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。
第6章运动学基础、是非题(正确的在括号内打“/、错误的打“X”)1 •动点速度的大小等于其弧坐标对时间的一阶导数,方向一定沿轨迹的切线。
(V )2.动点加速度的大小等于其速度大小对时间的一阶导数,方向沿轨迹的切线。
(X)3.在实际问题中,只存在加速度为零而速度不为零的情况,不存在加速度不为零而速度为零的情况。
(X )4.两个刚体做平动,某瞬时它们具有相同的加速度,则它们的运动轨迹和速度也一定相同。
(X )5.定轴转动刚体的角加速度为正值时,刚体一定越转越快。
(X )6.两个半径不等的摩擦轮外接触传动,如果不出现打滑现象,两接触点此瞬时的速度相等,切向加速度也相等。
(V )二、填空题1.描述点的运动的三种基本方法是矢径法、直角坐标法和自然坐标法。
2•点做圆周运动,加速度由切向加速度和法向加速度组成,其中切向加速度反映了速度大小随时间的变化率,方向是沿圆周的切线;法向加速度反映了速度的方向随时间的变化率, 方向是沿圆周的法线。
3.质点运动时,如果dS和同号,则质点做加速运动,反之则做减速运动。
dt dt4.刚体运动的两种基本形式为平动和定轴转动。
5.刚体平动的运动特征是刚体在运动的过程中其内的任一直线始终和原来的位置平行。
6.定轴转动刚体上点的速度可以用矢积表示,它的表达式为v = 3 r ;刚体上点的加速度可以用矢积表示,它的表达式为 a = e r - w v。
7.冈U体绕定轴转动时,在任一瞬时各点具有相同的角速度和角加速度,且各点轨迹均为圆周。
8.定轴转动刚体内点的速度分布规律为任何一条通过轴心的直径上各点的速度,若将速度矢的端点连成直线,此直线通过轴心。
9.半径均为R的圆盘绕垂直于盘面的0轴做定轴转动,其边缘上一点M的加速度如图6.23所示,试问两种情况下圆盘的角速度和角加速度的大小分别为:图(a): =_0;= 旦。
图(b)=J旦;z = 0 。
R '■ R三、选择题21 一点做曲线运动,开始时速度 V =12m/s ,某瞬时切向加速度 a [;=4m/s ,则t =2s 时该点的速度大小为(D )。
理论力学习题册答案班级________姓名________学号________第1章 受力分析概述1-3 试画出图示各物体的受力图。
或(a-2)(a-1)(b-1)(c-1)或(b-2) (d-1)(e-1)(e-2)(f-1)(e-3)(f-2)(f-3)F AF BF A(b-3)(a-3)(a-2)(b-2)(b-1)(a-1)1-4* 图a 所示为三角架结构。
荷载F 1作用在铰B 上。
杆AB 不计自重,杆BC 自重为W 。
试画出b 、c 、d 所示的隔离体的受力图,并加以讨论。
习题1-4图1-7 画出下列每个标注字符的物体的受力图,各题的整体受力图未画重力的物体的自重均不计,所有接触面均为光滑面接触。
abe(d-2)(c-1)(b-1)(b-2) (b-3)(c-2)(d-1)i gj第2章 力系的等效与简化2-3 图示正方体的边长a =,其上作用的力F =100N ,求力F 对O 点的矩及对x 轴的力矩。
解:)(2)()(j i k i Fr F M +-⨯+=⨯=Fa A O m kN )(36.35)(2⋅+--=+--=k j i k j i Fam kN 36.35)(⋅-=F x M2-9 图示平面任意力系中F 1 = 402N ,F 2 = 80N ,F 3 = 40N ,F 4 = 110M ,M = 2000 N ·mm 。
各力作用位置如图所示,图中尺寸的单位为mm 。
求力系向O 点简化的结果。
FFFF (0,30)(20,20)(20,-30)(-50,0)45yxRF 'ooM yxoRF (0,-6)解:N 15045cos 421R -=--︒=∑=F F F F F x x 045sin 31R =-︒=∑=F F F F y yN 150)()(22'R =∑+∑=y x F F Fm m N 900305030)(432⋅-=--+=∑=M F F F M M O O F向O 点简化结果如图(b );合力如图(c ),其大小与方向为N 150'R R i F F -==Ar A(a)(b)(c)(d)第3章静力学平衡问题3-2图示为一绳索拔桩装置。
6-1在图示四连杆机构中,已知:匀角速度O ω,OA =B O 1=r 。
试求在°=45ϕ且AB ⊥B O 1的图示瞬时,连杆AB 的角速度AB ω及B 点的速度。
解:连杆AB 作平面运动,由基点法得BA A B v v v +=由速度合成的矢量关系,知φcos v A BA =v杆AB 的角速度)(/AB /O BA AB 2122+==ωωv (逆时针)B 点的速度2245/r cos v O A B ω=°=v (方向沿AB )6-2. 在图示四连杆机构中,已知:3.021===L B O OA m ,匀角速度2=ωrad/s 。
在图示瞬时,11==L OB m ,且杆OA 铅直、B O 1水平。
试求该瞬时杆B O 1的角速度和角加速度。
解:一.求1ω60230..OA v A =×=⋅=ω m/s取A 为基点,则有BA A B v v v += 得 23.0/6.0ctg v v A B ===ϕ m/sm09.2)3.01()3.0/6.0(sin /v v 2/122A BA =+×==ϕ杆B O 1的角速度67630211../BO /v B ===ω rad/s 顺时针 二.求1ε取点A 为基点,则有n BA A a a a a a ++=+ττBA nB B将上式向X 轴投影21222857s /m .B O /ctg v )sin AB /v (OA ctg a )sin /a (a a a sin a cos a sin a BBA n B n BA A B nBA A n B B +=⋅+⋅+⋅−=++−=−=+−ϕϕωϕϕϕϕϕττ杆B O 1的角加速度7.1923.0/8.57/11===B O a B τεrad/s 2逆时针6-3.图示机构中,已知:OA =0.1m , DE =0.1m ,m 31.0=EF ,D 距OB 线为h=0.1m ;rad 4=OA ω。
《理论力学》第六章作业答案:篇一:理论力学第六章习题6-1 用图示三脚架ABCD和绞车E从矿井中吊起重30kN的30的重物,△ABC为等边三角形,三脚架的三只脚及绳索DE均与水平面成60o角,不记架重;求当重物被匀速吊起时各叫所受的力。
解:铰链D为研究对象,坐标系如图示,受力分析为一空间汇交力系,O为D在水平面上的投影。
平衡方程为:?X?0 FBD?cos60?cos120?FAD?cos120?cos60?FED?cos60?FCD?cos60?0?Y??0 FBD?FADZ?0 ?FBD?cos30?FAD?cos30?G?0?FED?cos30?FCD?cos30?FBD?FAD??31.55kN FCD?1.55kN6-2 重物M放在光滑的斜面上,用沿斜面的绳AM与BM拉住。
已知物重W=1000N,斜面的倾角α=60o,绳与铅垂面的夹角分别为β=30o和γ=60o。
如物体尺寸忽略不记,求重物对于斜面的压力和两绳的拉力。
解:重物M为研究对象,坐标系如图示,受力分析为一空间汇交力系,平衡方程为:??X?0 TB?G?cos30?cos120?0 TA?G?cos30?cos1500000?0?0?YZ?0 N?G?cos60?0?N?500N TA?750N TB?433N6-3 起重机装在三轮小车ABC上,机身重G=100kN,重力作用线在平面LMNF之内,至机身轴线MN的距离为0.5m;已知AD=DB=1m,CD=1.5m,CM=1m;求当载重P=30kN,起重机的平面LMN平行于AB时,车轮对轨迹的压力。
解:起重机为研究对象,坐标系如图示,受力为一空间平行力系,平衡方程为:?Z?0 NxA?NCB?NC?G?P?0A?m?m?N?0 ?N?0 NA?MC?(NB?NB)?MD?0y?AD?NB?DB?G?0.5m?P?4m?0CA?8.33kN N?78.33kN N?43.34kN6-4 水平轴上装有两个凸轮,凸轮上分别作用已知P力=800N和未知力F;如轴平衡,求力F和轴承反力。
第六章思考题. 相同的两匀质杆AO 和BO 用铰链连接于固定点O , 并可在水平面内绕O 点转动. 某时刻AOB 位于同一直线上, 二杆以同样大小的角速度ω转动, 如思考题图所示. 有人认为:“以二杆为系统, 此时质心为O 点, O 点为固定点, 故此时质心速度为零.”这种说法对吗思考题图. 有时称c t c v m r ⨯为质心对O 点的角动量, 称221c t v m 为质心的动能. 这是否说明质心是一个质量为t m 、位置矢量为c r 、速度为c v 的质点 . 有一半径为R , 质量为m 的匀质圆球被旋转抛出. 某时刻球心速度为v ,球旋转角速度为ω , 求此时圆球的动量.. 将一半圆柱置于一光滑水平面上, 初始时半圆柱静止于如思考题图所示位置, 求质心C 的运动轨迹.(思考题图. 有一水平圆台, 可绕过其圆心的竖直轴z 轴转动, 轴承处有较小但不可忽略的摩擦力. 有人站在台边上, 初始时圆台与人均静止, 如思考题图所示.之后人沿台边跑一段时间后, 又停止跑动. 问人停止跑动后, 人与圆台将如何运动 在整个过程中, 以人、圆台和轴为质点系, 其对z 轴总角动量如何变化思考题图. 思考题中, 把轴包括在质点系内, 这样做有何好处. 思考题中, 如轴承是光滑的, 情况又当如何. 思考题中, 人与盘运动状态的改变是由人跑动引起的. 而质点系的角动量定理指出, 质点系角动量的变化与内力无关. 这两者之间是否发生矛盾. 试证明: 若质点系总动量为零, 则质点系对任意固定点的总角动量均相等.'. 有两个形状相同的匀质齿轮位于同一竖直面内, 可绕过各自中心的水平轴1O 和2O 转动,转动惯量同为I , 如思考题图所示. 开始时轮1绕固定轴1O 以角速度ω 转动, 轮2静止.之后可沿竖直线移动的轴2O 向下移动使二齿轮啮合. 已知齿轮啮合后转动角速度的大小均为2ω. 有人说: “以二齿轮为质点组, 所受外力对轮轴力矩均为零. 且啮合前总角动量为ω I , 啮合后总角动量仍为ωωωI I I =+⋅22, 可见啮合过程角动量守恒.”试分析该说法是否正确.思考题图. 质量相同的两小球用轻杆相连, 静止地放在光滑水平面上. 初始时给其中一小球以垂直于杆的水平初速度0v , 试证两球各自的轨道均为旋轮线.. 自行车由静到动, 其动量变化靠的是地面对后轮向前的摩擦力f F , 这个摩擦力f F 对自行车做的功是否为自行车向前移动距离)(⨯=f F W . 以一般的动坐标系z y x O ''''代替质心系, 关系式O O t O OL v m r L ''''+⨯= 和T v m T O t '+='221(O L ''和T 分别为质点系在z y x O ''''系中对O '点的角动量和动能)能否成立6.14. 一匀质细杆可绕过端点的水平轴无摩擦地转动, 初始时杆静止于竖直位置, 如思考题图所示. 之后一小球沿水平方向飞来与杆做完全弹性碰撞. 以小球和杆为质点系, 在碰撞过程中系统动量、角动量和机械能是否守恒& 思考题图 . 在光滑水平面上有一长为l 、质量为m 的匀质细杆, 绕过其中点的竖直轴以角速度0ω 转动,但其中心不固定, 如思考题图所示. 现突然将杆的A 端按住, 以杆为研究对象, 有人认为:“用手按住A 点, 系统在A 点受外力作用, 但在按住A 点的过程中A 点无位移,故该外力不做功, 所以杆的机械能守恒.”你认为这样的看法正确吗思考题图第六章习题. 椭圆规尺AB 质量为12m , 曲柄OC 质量为1m , 套管B A ,质量为2m , l CB AC OC ===, 尺和曲柄的质心均位于其中点, 曲柄以匀角速度ω 绕z 轴转动, 如题图所示. 求此机构总动量的大小和方向.`题图. 质量分别为1m 和2m 的重物以跨过滑轮A 的不可伸长的轻绳相连, 并可沿直角三棱柱的斜面滑动. 三棱柱底面放在光滑水平面上, 如题图所示. 已知三棱柱质量21164m m m ==初始时各物体均静止, 求当重物下降高度为m 1.0时, 三棱柱沿水平面的位移.题图 . 质量为0m 的人手持质量为m 的物体, 此人以与地面成α角的初速度0v 向前跳出. 当他跳到最高点时, 将物体以相对自己的速度u 水平向后抛出. 问由于物体的抛出, 跳的距离增加了多少. 两个质点A 和B 质量分别为A m 和B m , 初始时位于同一竖直线上, A 质点有水平初速度0v , B 质点静止, B 点高度为h , A 点在B 点的上方, A 和B 间距离为l . 在以下3种情况中求质点A 和B 的质心轨迹. (1) A 和B 两质点间没有相互作用;(2) 质点A 和B 以万有引力相互作用; (3) A 和B 间以轻杆相连.. 质量为m 的薄板在竖直面内, 绕过O 点的水平轴按t ωθθcos 0=规律转动, 其质心C 离O 点的距离为a , 如题图所示. 求在任一瞬时水平轴对板的约束力.<题图 . 瓦特节速器装置如题图, 二杆长l OB OA ==, A 和B 二球质量均为m . 初始时A 和B 二球被一根线连结, 装置以角速度0ω 绕竖直轴转动, 杆的张角为0θ. 自某一时刻线被烧断, 求角速度ω 与张角θ的关系. 设轴承光滑, 不受主动力矩, 杆的质量均可忽略不计. 若杆的质量不可忽略, 但各杆质量分布均匀, 结果又当如何题图6.7. 一质量为0m 、底半径为R 的匀质圆锥, 它的光滑固定对称轴沿竖直方向, 圆锥尖端向上, 在圆锥表面上有一沿母线的细槽. 初始时, 圆锥绕其对称轴以角速度0ω转动, 同时有一质量为m 的小球开始自槽的顶端沿槽自由下滑. 试求小球滑出槽口时圆锥的角速度. 若此槽不是沿母线的直线, 试问此槽曲线应满足什么条件, 才能使小球滑出槽口时圆锥角速度与槽为沿母线的直线情况相同.. 质量为1m 和2m 的二质点, 用一根长为l 的不可伸长的轻绳相连. 初始时1m 被握在手中不动, 2m 以匀速率0v 绕1m 做圆周运动. 在某瞬时将1m 放手, 试求以后二质点的运动,并证明绳内张力l m m v m m F T )(212021+=. 不考虑重力及质点间引力作用, 并已知绳一直是张紧的.. 传送机由两个相同的滑轮B 和C 和套在其上的传送带构成, 每个滑轮质量为1m 、半径为R , 均可视为匀质圆盘, 传送带质量为2m , 相对水平面倾角为α, 被传送物体质量为3m . 初始时各物体均静止, 在B 上施加一不变力矩M , 如题图所示. 设滑轮轴承处光滑, 传送带与滑轮及传送带与被传送物体间均无滑动, 传送带在EF 间为直线. 试求当被传送物体在EF 间运动时, 传送带运行速率v 与运行距离s 间的关系.:题图6.10. 一炮弹质量为21m m +, 发射时水平及竖直速度分别为Ox v 和Oy v . 当炮弹达到最高点时, 其内部炸药爆炸产生能量E , 使此炮弹分为1m 和2m 两部分, 开始时两部分均沿原方向飞行, 不计空气阻力, 试求炮弹的两部分落地时相距的距离.. 质量为0m 、半径为R 的光滑半球, 其底面放在光滑水平面上, 有一质量为m 的质点沿球面滑下. 初始时二物体均静止, 质点初位置与球心连线和竖直向上的直线间夹角为α.求质点滑到它与球心连线和竖直向上直线间夹角为θ时θ的值.. 轻杆AB 长为l ,两端固定有质量分别为1m 和2m 的质点A 和B , 杆只能在竖直平面内运动, 某瞬时A 点速度为1v , B 速度为2v , 分别与杆夹角1α和2α, 如题图所示. (1) 试求此系统在质心系中相对质心的角动量; (2) 考虑重力作用, 试求此系统在以后的运动中角速度的变化情况.题图6.13. 一质量为m , 长为a 2的细杆AB , 它的两端可沿一水平固定圆环无摩擦地滑动, 圆环半径为)(a R R >. 初始时杆静止, 同时有一质量亦为m 的质点静止地位于杆的中点C . 自某一瞬时开始, 质点以相对杆的不变速度0v 沿杆运动, 如题图所示. 试求当质点运动到杆的端点A 时, 杆相对自己的初始位置转过多少角度/题图. 质量分别为1m 和2m 的两自由质点, 它们以万有引力互相吸引. 开始时, 两质点均处于静止状态, 其间距离为a . 试求两质点相距为2a 时两质点的速度.. 参见思考题, 试证明若小球撞击在距O 点2/3杆长的A 点时, 系统沿水平方向动量守恒.. 参见思考题, 试求按住A 点后瞬时杆的角速度, 及按住A 点的过程中杆的动能损失了百分之几. 电风扇的转动部分对其固定转动轴的转动惯量为I , 所受空气阻力矩与角速度大小成正比,比例系数为k .通电时风扇以匀角速度0ω转动, 求断电以后经过多长时间其角速度的大小减为初始时的一半,在这段时间内风扇又转过了多少圈. 由薄片刚体构成的复摆可绕与其垂直的光滑水平固定轴转动, 对转动轴的回转半径为k (k 定义为m I k =,I 为刚体对转动轴的转动惯量,m 为刚体质量), 转动轴到刚体质心的距离为a . 已知复摆无初速地自偏离平衡位置0θ角处开始摆动, 求复摆在悬点处所受约束力的水平分量和垂直分量.. 有一半径为r 的小圆柱, 自半径为R 的大圆柱的最高位置无滑滚下, 同时大圆柱也沿水平面做无滑滚动,试写出两圆柱间无滑条件的数学表达式.. 质量为m , 半径为R 的匀质细圆环被限定在竖直平面内运动, 开始时将其放在粗糙水平面上,用手按其后侧边缘, 使圆环质心获得向前的初速度0v , 同时圆环有向后转动的初角速度0ω , 如题图所示.设圆环与水平面间摩擦因数为μ,试求圆环的运动规律.。
均质杆AB ,长l ,重P ,用铰A 与均质圆盘中心连接。
圆盘半径为r ,重Q ,可在水平面内作无滑动滚动。
当30ϕ=︒时,杆AB 的B 端沿铅垂方向下滑的速度为B v ,求此刚体系统在图示瞬时的动量。
解:AB 杆的瞬心D 如图所示,故其质心C 的速度为() 223 32 322B C B B A B C AB v lv v l v l v v l P Qg g vP Q P g=⋅==⋅=∴=+⎡⎤=+-⎣⎦p v v i jA vB v CDCxyo往复式水泵的固定外壳部分D 和基础E 的质量为1m ,均质曲柄OA 长为r ,质量为2m 。
导杆B 和活塞C 作往复运动,其质量为3m 。
曲柄OA 以匀角速度ω绕O 轴转动。
求水泵基础给地面的压力。
解:建立坐标系,x 轴水平向右为正方向,y 轴竖直向上为正方向。
系统中外壳D 和基础E 固定,曲柄OA 作匀速转动,并带动导杆和活塞平动。
系统的总动量为:()j j i p t r m t t rm ωωωωωsin sin cos 232++=由y 方向的动量定理得:d d y y p F t=∑()()()tr m m g m m m N g m m m N t r m t rm ωωωωωωcos 221cos cos 22323213212322++++=++-=+图示凸轮机构中,凸轮半径为r 、偏心距为e 。
凸轮绕A 轴以匀角速ω转动,带动滑杆D 在套筒E 中沿水平方向作往复运动。
已知凸轮质量为m 1,滑杆质量为m 2。
试求在任意瞬时机座螺栓所受的动反力。
解:取凸轮、滑杆和机座组成的系统为研究对象。
由于只求动反力,故不考虑重力,受力图如图示。
凸轮质心的加速度为:t e a x C ωωcos 21-=t e a y C ωωsin 21-=滑杆质心的加速度为:t e a x C ωωcos 22-= 02=y C a由质系动量定理得:F t e m t e m =--ωωωωcos cos 2221N t e m =-ωωsin 21所以:t e m m F ωωcos )(221+-=t e m N ωωsin 21-=图示小球P 沿大半圆柱体表面由顶点滑下,小球质量为2m ,大半圆柱体质量为1m ,半径为R ,放在光滑水平面上。