SS304半管夹套焊接部位残余应力三维有限元模拟
- 格式:pdf
- 大小:490.45 KB
- 文档页数:5
双平板封头结构的焊接残余应力有限元模拟徐君臣;王泽武;银建中【摘要】The key problem of double -layer flat head structure is the leakage induced by the crack in the welding position between the panel and the nozzle .Welding residual stress is one of the main influential factors.In this work,numerical simulation on welding temperature field and thermal stress of double -lay-er flat head structure was carried out based on APDL of ANSYS software ,element birth and death technol-ogy and thermal -mechanical coupling method , and the distribution law of welding residual stress was found out .The simulation results indicate that the hoop stress is much larger at the welding zone , which easily induces the cracking and leakage sometimes .The compressive stress is very high near the welding zone ,and it is mainly caused by the expansion of heating welding material .The analysis from calculation results provides some theory references for evaluating and controlling the welding residual stress .It is of great significance for increasing the reliability and safety of double -layer flat head structure .%双平板封头结构最常见的问题是面板与工艺接管焊接部位开裂引起泄漏,而焊接残余应力是重要的影响因素之一。
焊接过程模拟与焊接变形、焊接Ansys应力有限元分析1.1 焊接变形与焊接应力焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以及结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。
在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的残余应力分布。
残余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面残余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以及结构疲劳强度。
对构件进行焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。
焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接残余应力。
并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的内应力场。
1.2 Ansys有限元焊接分析为通过对焊接过程的三维有限元模拟分析以及焊接后构件变形及残余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与残余应力进行了分析。
ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。
间接耦合法的处理思路为先进行温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接残余应力与变形。
即:(1)使用热分析的手段进行热分析,根据需要可采用瞬态分析与稳态分析模型,此处为瞬态分析。
(2)重新进入前处理中,将热分析单元转换为相应的结构分析单元,设置结构分析中材料属性,如弹性模量、泊松比、热膨胀系数等。
设 计 计 算304不锈钢半管夹套焊接部位残余应力有限元模拟蒋文春,巩建鸣,陈 虎,涂善东(南京工业大学机械与动力工程学院,江苏南京 210009)摘 要:半圆管夹套设备最常见的问题是夹套焊接部位开裂引起泄漏。
焊接残余应力是重要的影响因素之一。
本文利用有限元软件AB AQUS,开发了一个顺次耦合的焊接热应力计算程序,讨论坡口形式、线能量、半管间距等参数的变化对焊接残余应力的影响,得到了半管结构残余应力分布特征,找到了最大焊接残余应力的位置及大小,为半管夹套的安全评定提供参考。
关键词:半管夹套;焊接残余应力;顺次耦合;有限元;AB AQUS中图分类号:TG404;TH49 文献标识码:A 文章编号:1001-4837(2006)05-0025-04Finite Element Analysis of Welding Residual Stressof Stainless S teel304Half-pipe JacketJIANG Wen-chun,GONG Jian-ming,C HEN Hu,TU Shan-tung(C ollege of Mechanical and Power Engineering,Nanjing University of Technology,Nanjing210009,China)Abstract:The general proble m of half-pipe jacket is the leakage of the welding line induced by crack.Weld ing residual stress is one of the main affect ing the finite element analysis software AB AQUS,a se quentially coupled welding thermal-stress procedure is developed to calculate the stress distribution of half-pipe and discuss the effec t of bevel form and heat input as well as the half-pipe separation.The characteristic of welding residual stress distribution was obtained.The position and value of maximum stress was found which provide a reference for safety access.Key words:half-pipe jacke t;welding residual stress;sequentially c oupling;FEA;ABAQUS半管设备作为一种加热冷却设备,与普通夹套容器相比,具有筒体受力好、传热效率高、节能及节约钢材用量等优点,被广泛运用在化工、医药等行业[1]。
304不锈钢薄壁管件纵缝焊接接头残余应力数值模拟研究陈勇;徐育烺;杨海波;赵先锐;张涛;王业方【期刊名称】《精密成形工程》【年(卷),期】2023(15)3【摘要】目的采用数值模拟方法代替传统测量方法,以准确模拟不锈钢薄壁管件焊接接头残余应力分布规律及预热温度对焊接残余应力的影响规律。
方法采用TIG 焊接方法对304不锈钢进行圆管纵缝焊接试验,以最优焊接工艺参数为基础,基于ABAQUS有限元仿真软件,采用热力完全耦合模型,在DFLUX子程序中运用Fortran语言对模型进行汇编以完成ABAQUS的二次开发,模拟薄壁管件纵缝焊接热力耦合过程,并在模拟结果上添加预热温度为150℃的预热工艺。
结果304不锈钢薄壁管件焊接过程中会产生较大的残余应力,局部区域接近管材的屈服应力。
纵向残余应力趋于焊缝中心方向由压应力转化为拉应力,焊缝中心横向应力承受压应力,并且随着向焊缝两侧移动,横向残余应力值逐渐趋近于0。
焊缝厚度方向上的径向应力值变化幅度较小。
预热可以有效降低不同方向上的焊接残余应力,其中对纵向残余应力的改善最为明显。
结论数值模拟方法能够准确计算出不锈钢薄壁管件焊接接头残余应力分布,预热处理能够有效降低接头残余应力。
【总页数】9页(P155-163)【作者】陈勇;徐育烺;杨海波;赵先锐;张涛;王业方【作者单位】南京工业职业技术大学机械工程学院;江苏科技大学材料科学与工程学院;江苏海事职业技术学院船舶与海洋工程学院【正文语种】中文【中图分类】TG404【相关文献】1.铝合金薄壁圆筒纵直缝焊接残余应力数值模拟2.汽轮机焊接转子接头残余应力研究一:25Cr2Ni2MoV钢核电转子模拟件热处理前后残余应力的对比3.汽轮机焊接转子接头残余应力研究二:带有弹性槽的30Cr2Ni4MoV模拟件热处理前后残余应力变化4.预变形对X80直缝埋弧焊管焊接接头残余应力及疲劳性能影响的模拟研究因版权原因,仅展示原文概要,查看原文内容请购买。
建筑钢结构焊接残余应力的有限元预测与控制3篇建筑钢结构焊接残余应力的有限元预测与控制1建筑钢结构焊接残余应力的有限元预测与控制建筑钢结构作为施工中常用的一种结构材料,在工程中扮演着至关重要的角色。
随着工程结构的不断复杂化和精度的提高,建筑钢结构在建设中所遭受的挑战也越来越多。
其中,建筑钢结构焊接残余应力的问题已经成为制约其使用的重要性问题之一。
焊接残余应力会导致结构失去平衡、刚度降低、易发生疲劳断裂和变形,甚至引发塑性坍塌等重大事故,因此建筑钢结构焊接残余应力的预测与控制显得十分必要。
有限元方法是当下理论分析的一种重要方法,它将一个复杂的结构分割成有限个单元,用数学模型对每一个单元进行分析。
通过运用计算机模拟技术,可以对建筑钢结构焊接残余应力进行有限元模型计算,既能够确定焊接残余应力的大小和分布情况,也可通过改变焊接工艺和条件的相应参数,从而实现焊接残余应力的控制的目的。
建筑钢结构焊接残余应力的预测与控制,离不开正确的计算方法和理论支持。
首先需要标准化设计和施工操作,遵守焊接规范和标准,保证焊接工艺符合设计和建设要求。
同时还应根据工程实际情况进行参数分析和优化设计,确保结构牢固、稳定,最大程度地减少焊接残余应力对建筑钢结构的危害。
对于建筑钢结构的设计者和工人而言,掌握一定的实际技能及理论知识显得尤为重要。
他们需要对材料的物理特性和焊接工艺进行充分了解,熟练掌握相关的计算方法和理论,从而能在实践中发挥更大的作用。
在建筑钢结构施工过程中,应配备专业焊接技术人员,使用适当的材料和设备,采用有效的检测和控制措施,来降低建筑钢结构焊接残余应力的风险。
总之,建筑钢结构焊接残余应力的有限元预测和控制是现代建筑工程中一项非常重要的技术,它对于保障人民生命财产安全起到了至关重要的作用。
随着建筑行业的不断发展,有限元方法也将不断完善,我们有理由相信,通过我们的不懈努力,建筑结构焊接技术必将取得更好的发展与应用在建筑钢结构焊接工程中,焊接残余应力是一个非常重要的问题。
SUS304不锈钢管对接焊缝的残余应力及变形的数值模拟不锈钢具有优良的耐腐蚀性能,在我国的船舶建造过程中占有举足轻重的地位,特别是对于升船机上一些关键承重部位而言,不锈钢更是起到不可替代的作用[1]。
而在不锈钢材料构件的制造过程中,焊接是最常见的连接手段。
然而,构件在焊接过程中经受局部加热和快速冷却,不可避免地产生焊接残余应力和变形[2-3]。
由于船舶长时间在水上工作,腐蚀环境恶劣,在腐蚀介质和焊接残余应力的共同作用下,很容易诱发应力腐蚀现象,大大降低工件的服役寿命。
此外,焊后产生的焊接变形不仅影响产品的外观,而且会带来装配上的问题,矫正焊接变形不仅延长生产周期又增加制造成本[4-6]。
因此,在实际焊接生产中如何有效预测和控制焊接残余应力和变形具有非常重要的工程应用价值。
传统图书馆多数采用纸质图书来实现学生的阅读教育,但在互联网背景之下,纸质图书愈发不受现代学生的青睐,学生更多地愿意翻阅手机、电脑等网络信息,对于此现象,许多高校都开展了图书馆阅读推广活动但收效甚微。
在教育改革之后,人们开始意识到传统的教育方式已经不再适用于现代学生,需要将现代学生的阅读习惯与阅读教育进行结合,形成新式的教育模式才能再次发挥图书馆的教育功效,因此就诞生了“互联网+”阅读教育模式。
本研究针对SUS304 钢管对焊接头,基于ABAQUS 有限元分析软件,开发了“热-冶金-力学” 耦合有限元计算方法。
采用该方法模拟了焊接接头的温度场、残余应力和焊接变形,讨论了TIG 焊焊接接头温度场和熔池分布特征,以及角度变化对钢管内、外表面残余应力的分布和影响。
1 试验方法试验对象为SUS304 钢管对焊接头,规格为Φ48 mm×5 mm,填充材料为A308L。
焊接方法采用手工TIG 焊,直流正接,保护气为纯氩气,气流量10~15 L/min,管内通纯氩气,流量1~2 L/min,其他焊接参数见表1。
焊前将接口端部2 cm 范围内的杂物清理干净,焊接层间温度低于150 ℃,试样尺寸及焊道布置如图1 所示。
焊接过程模拟与焊接变形、焊接Ansys应力有限元分析1.1 焊接变形与焊接应力焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以及结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。
在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的残余应力分布。
残余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面残余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以及结构疲劳强度。
对构件进行焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。
焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件的应力,称为焊接残余应力。
并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的应力场。
1.2 Ansys有限元焊接分析为通过对焊接过程的三维有限元模拟分析以及焊接后构件变形及残余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与残余应力进行了分析。
ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。
间接耦合法的处理思路为先进行温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接残余应力与变形。
即:(1)使用热分析的手段进行热分析,根据需要可采用瞬态分析与稳态分析模型,此处为瞬态分析。
(2)重新进入前处理中,将热分析单元转换为相应的结构分析单元,设置结构分析中材料属性,如弹性模量、泊松比、热膨胀系数等。