焊接过程模拟与焊接变形、焊接Ansys应力有限元分析(试题学习)
- 格式:doc
- 大小:1.68 MB
- 文档页数:41
基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。
然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。
为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。
本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。
随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。
在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。
对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。
本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。
二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。
焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。
因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。
焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。
熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。
焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。
为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。
焊缝焊接收缩量的ANSYS仿真分析作者:张利来源:《城市建设理论研究》2013年第10期摘要:现代焊接技术趋于完善,对焊接变形的数值已有很多经验公式计算,但是都是实测数据,环境不一样,焊接收缩就不一样。
本文运用ANSYS的热分析功能对焊接的收缩进行仿真。
该仿真存在的难点是热结构耦合、单元生死、材料的弹塑性、APDL参数化设计。
关键词:焊缝焊接收缩量ANSYS中图分类号: P755.1文献标识码: A 文章编号:第一步:输入材料特性,建立模型,设定焊接速度,计算热源值。
输入材料特性;本计算模型采用Q345qD钢材的材料特性,设初始温度为室温25℃,且材料密度不变化。
材料密度设为7.85×103 Kg/m3,热膨胀系数为1.75×10-5,初始弹性模量为E=2.0×1011Mpa,泊松比0.25,初始导热系数为18.6W/m·℃,比热容设为502J/(Kg·℃),初始热焓值6.13×109,这些材料特性随温度变化而变化,如下表1、2、3所示:表1:钢材弹模与温度的关系表2:钢材导热系数、比热与温度的关系表3:钢材热焓值与温度的关系由于材料会进入塑性变形区,采用多线性随动强化和双线性随动强化两种方式定义材料在温度变化情况下的特性。
随着温度的升高,钢材的应力-应变曲线越来越平缓,即钢材的强度变低。
建立模型;钢板对接和T接的模型建立比较简单,鉴于需要分析的钢板板厚较多,所以采用参数化设计,方便修改模型。
定义的变量仅有板厚。
对接模型采用单边V形坡口,钝边固定为2mm,坡口角度60°。
单元类型先采用SOLID70进行热分析。
设定焊接速度;按照焊接经验,焊接速度取5mm/s,即热源移动速度为5mm/s。
计算热源值;本模型假设热源与时间成反比例,即热源hetg=a/△t,其中a与焓值、密度、温度相关。
考虑到实际施焊时,焊完一道有足够时间让母材冷却,本模型假设冷却30分钟,母材温度降至室温。
1.有限元软件在焊接数值模拟中的应用
2.基于有限元法分析T形焊接接头力学性能
3.铝合金薄板焊接三维有限元模拟
4.铝合金电阻点焊过程的有限元模拟
5.薄板TIG对接焊有限元模拟
6.有限元法在激光焊接模拟中的应用
7.焊接变形有限元数值模拟分析
8.ANSYS在激光焊接温度场数值模拟中的应用
9.基于有限元分析的车架焊接变形研究
10.厚钢板对接焊接三维有限元数值模拟与分析
11.基于有限元分析大型起重机金属结构安全
12.ANSYS在焊接残余应力有限元分析中的应用
13.铝合金自行车架TIG焊接的有限元分析
14.基于有限元法分析细长板件焊接残余应力场影响因素
15.焊接参数对其温度场影响的有限元分析。
基于ANSYS Workbench的钢管柔性连接有限元分析杨佩东【摘要】针对钢管对接环焊时,焊接工序复杂、焊缝可能会产生裂纹等缺点,设计了一种新型钢管柔性对接方式.采用solidwoks三维绘图软件建立实体模型,并应用ANSYS Workbench有限元分析软件对钢管实际工况进行仿真,对O型密封圈采用二参数Mooney-Rivlin超弹性材料模型并应用第四强度理论进行计算,得出钢管所承受的最大等效应力为55 MPa、最大径向应力为10.4 MPa、最大轴向应力为13.9 MPa,最大等效应变为2.96×10-4 mm.分析结果表明,钢管采用柔性对接时,钢管所承受的应力和应变均在许用范围之内,满足强度要求,不会出现泄露现象.说明该柔性连接方式安全可靠.【期刊名称】《焊管》【年(卷),期】2019(042)003【总页数】4页(P38-41)【关键词】钢管;柔性连接;有限元分析;ANSYSWorkbench【作者】杨佩东【作者单位】山西工程职业技术学院,太原030009【正文语种】中文【中图分类】TG495随着我国西气东输、南水北调工程的实施,管道已经在我们生活当中扮演着越来越重要的角色,目前我国输水管线用管有球墨铸铁管、玻璃钢管、PCCP 管等。
这些管材中,钢管具有突出的性能。
通常钢管之间采用焊接对接方式。
由于焊接对接钢管的连接方式存在成本较高、现场焊接时难以保证焊接质量、遇到土层沉降时易产生焊缝开裂等缺点,目前发达国家已采用钢管柔性连接的方式进行钢管对接。
钢管的柔性连接不仅制造成本低,且具有良好的工作性能,已在国外得到了广泛的应用[1-2]。
本研究设计了一种以O 型密封圈为柔性接口的连接方式,通过solidworks 三维绘图软件建立实体模型,然后导入ANSYS Workbench 有限元分析软件对其进行应力、应变分析。
1 建立几何模型本次研究模型以DN500 钢管为例,其壁厚选择为 5 mm,采用Φ610 mm×65 mm 的 O 型密封圈进行密封。
1. ANSYS交互界面环境包含交互界面主窗口和信息输出窗口。
2. 通用后处理器提供的图形显示方式有变形图、等值线图、矢量图、粒子轨迹图以及破裂和压碎图。
3. ANSYS软件是融结构、流体、电场、磁场、声场和耦合场分析于一体的有限元分析软件。
4. 启动ANSYS0.0的程序,进入ANSY交互界面环境,包含主窗口和输出窗口。
5. ANSYS?序主菜单包含有前处理、求解器、通用后处理、时间历程后处理器等主要处理器, 另外还有拓扑优化设计、设计优化、概率设计等专用处理器。
6. 可以图形窗口中的模型进行缩放、移动和视角切换的对话框是图形变换对话框。
7. ANSYS软件默认的视图方位是主视图方向。
8. 在ANSYS^如果不指定工作文件名,则所有文件的文件名均为file 。
9. ANSYS的工作文件名可以是长度不超过64 个字符的字符串,必须以字母开头,可以包含字母、数字、下划线、横线等。
10. ANSYS^用的坐标系有总体坐标系、局部坐标系、工作平面、显示坐标系、节点坐标系、单兀坐标系和结果坐标系。
11. ANSYSi序提供了4个总体坐标系,分别是:总体直角坐标系,固定内部编号为0;』体柱坐标系,固定内部编号为; 总体球坐标系,固定内部编号为2;总体柱坐标系,固定内部编号为5。
12. 局部坐标系的类型分为直角坐标系、柱坐标系、球坐标系和环坐标系。
13. 局部坐标系的编号必须是大于或等于_!1—的整数。
14. 选择菜单路径Utility Menu f WorkPlane—Display Working Plane ,将在图形窗口显示工作平面。
15. 启动ANSYSS入ANSY咬互界面环境,最初的默认激活坐标系(当前坐标系)总是总体直角坐标系。
16. ANSYSS体建模的思路(方法)有两种,分别是自底向上的实体建模和自顶向下的实际建模。
17. 定义单元属性的操作主要包括定义单元类型、定义实常数和定义材料属性等。
∙基于ANSYS焊接残余应力有限元分析技术研究∙以岭澳核电站控制棒驱动机构耐压壳Ω环焊接修复为例,应用ANSYS有限元生死单元技术模拟焊接流程,计算出焊接后残余应力的分布,绘制出残余应力分布曲线,并与美国WSI公司的计算结果进行对比分析。
结果表明,本课题的计算结果与美国焊接公司<WSI公司)一致。
因此,焊接残余应力有限元分析技术可以用于反应堆耐压壳焊接修复评价。
1 前言焊接在工业中的应用是不言而喻的,但同时焊接过程中产生的残余应力往往又会导致焊接失效。
因此,在工业中一般都要对残余应力进行消除,但这种消应力处理往往在实际结构或环境中难以实现,就必须进行破坏性分析。
随着我国核反应堆的建设及运行,核级设备及管道会出现较多的缺陷,有的缺陷必须进行打磨后焊接修复,同时要进行力学分析评价,此时,力学分析就必须考虑由焊接而产生的残余应力。
对于焊接后结构中的残余应力大小及分布,会因结构形式、焊接方式及材料特性的不同而不同。
某核电站控制棒驱动机构(CRDM >耐压壳上部Ω环连续两年都出现了泄漏,并在检修期间进行焊接修复。
焊接公司委托美国公司对修复后的结构进行了力学分析和评定。
焊接残余应力的有限元计算是关键技术之一,也是难点。
通过本课题的研究,掌握有限元模拟焊接过程及残余应力计算,能够提高我国焊接修复工程缺陷的分析能力,优化不符合项的处理程序,达到既节约时间和资金又满足工作性能和安全性能的目的。
因此,进行焊接残余应力有限元分析技术的研究是非常有必要的。
2 焊接实例本文以某核电站CRDM 耐压壳Ω焊接为研究对象,分析研究焊接后的残余应力分布。
CRDM 耐压壳包括上段是驱动杆行程套管和下段的密封壳。
驱动杆行程套管与密封壳采用螺纹连接,Ω焊接密封的结构进行连接和密封。
驱动杆行程套管的上端采用端塞,通过螺纹连接,Ω焊接密封的结构进行密封。
CRDM 耐压壳采用的这种密封结构形式是一种便于拆装的焊接密封结构,由于其内力的整体平衡主要由连接螺纹承担,Ω焊缝功能上主要起密封作用。
焊接模拟ansys实例!下面的命令流进行的是一个简单的二维焊接分析, 利用ANSYS单元生死和热-结构耦合分析功能进!行焊接过程仿真, 计算焊接过程中的温度分布和应力分布以及冷却后的焊缝残余应力。
finish/clear/filnam,1-2D element birth and death/title,Weld Analysis by "Element Birth and Death"/prep7/unit,si !采用国际单位制!******************************************************et,1,13,4 !13号二维耦合单元, 同时具有温度和位移自由度et,2,13,4!1号材料是钢!2号材料是铝!3号材料是铜!铝是本次分析中的焊料, 它将钢结构部分和铜结构部分焊接起来!下面是在几个温度点下, 各材料的弹性模量mptemp,1,20,500,1000,1500,2000mpdata,ex,1,1,1.93e11,1.50e11,0.70e11,0.10e11,0.01e11mpdata,ex,2,1,1.02e11,0.50e11,0.08e11,0.001e11,0.0001e11mpdata,ex,3,1,1.17e11,0.90e11,0.30e11,0.05e11,0.005e11!假设各材料都是双线性随动硬化弹塑性本构关系!下面是各材料在各温度点下的屈服应力和屈服后的弹性模量tb,bkin,1,5tbtemp,20,1tbdata,1,1200e6,0.193e11tbtemp,500,2tbdata,1, 933e6,0.150e11tbtemp,1000,3tbdata,1, 435e6,0.070e11tbtemp,1500,4tbdata,1, 70e6,0.010e11tbtemp,2000,5tbdata,1, 7e6,0.001e11!tb,bkin,2,5tbtemp,20,1tbdata,1,800e6,0.102e11tbtemp,500,2tbdata,1,400e6,0.050e11tbtemp,1000,3tbdata,1, 70e6,0.008e11tbdata,1, 1e6,0.0001e11tbtemp,2000,5tbdata,1,0.1e6,0.00001e11!tb,bkin,3,5tbtemp,20,1tbdata,1,900e6,0.117e11tbtemp,500,2tbdata,1,700e6,0.090e11tbtemp,1000,3tbdata,1,230e6,0.030e11tbtemp,1500,4tbdata,1, 40e6,0.005e11tbtemp,2000,5tbdata,1, 4e6,0.0005e11!!材料密度(假设为常值)mp,dens,1,8030mp,dens,2,4850mp,dens,3,8900! 热膨胀系数(假设为常值)mp,alpx,1,1.78e-5mp,alpx,2,9.36e-6mp,alpx,3,1.66e-5!泊松比(假设为常值)mp,nuxy,1,0.29mp,nuxy,2,0.30mp,nuxy,3,0.30!热传导系数(假设为常值)mp,kxx,1,16.3mp,kxx,2,7.44mp,kxx,3,393!比热(假设为常值)mp,c,1,502mp,c,2,544mp,c,3,385!热膨胀系数(假设为常值)!由于该13号单元还有磁自由度, 此处假设一磁特性, 但并不影响我们所关心的结果mp,murx,1,1mp,murx,2,1mp,murx,3,1!假设焊料(铝)焊上去后的初始温度是1500℃mp,reft,2,1500mp,reft,3,20!******************************************************!下面建立几何模型csys,0k,1,0,0,0k,2,0.5,0,0k,3,1,0,0 !长1米k,4,0,0.3,0 !厚度0.3米(二维中叫做宽度)k,5,0.35,0.3,0k,6,0.65,0.3,0k,7,1,0.3,0a,1,2,5,4a,2,6,5a,2,3,7,6!!!!!!!!!!!!!!!!!!!!!!!!!!划分网格!!!!!!!!!!!!!!!!!esize,0.025type,2mat,2amesh,2!esize,0.05 !网格划分出现问题type,1mat,1amesh,1!mat,3amesh,3eplot!/soluantype,4 ! 瞬态分析trnopt,full!!!!!!!!!!!!!!!!!!!!!!!!在模型的左边界加位移约束!!!!!!!!!!!!!!!!!!!!!!!!!!!nsel,all*get,minx,node,,mnloc,xnsel,s,loc,x,minxd,all,ux,0*get,miny,node,,mnloc,ynsel,r,loc,y,minyd,all,uy,0!*****假设模型的左右边界处温度始终保持在20摄氏度左右*****!其他边界条件如对流和辐射等均可施加,此处因为只是示意而已,故只施加恒温边界条件nsel,all*get,minx,node,,mnloc,xnsel,s,loc,x,minxd,all,temp,20nsel,all*get,maxx,node,,mxloc,xnsel,s,loc,x,maxxd,all,temp,20!!!!!!!!!!!!!!!由于第2个面是焊接所在区域,因此首先将该区域的单元“杀死”!!!!!!!!!!!!!!!!nna=2esel,all*get,emax,elem,,num,maxasel,s,area,,nnaesla*get,nse,elem,,count*dim,ne,,nse*dim,nex,,nse*dim,ney,,nse*dim,neorder,,nsemine=0!**********************************************!下面的do循环用于将焊料区的单元按其形心y坐标排序!以便后面模拟焊料由下向上逐步“生长”过程*do,i1,1,nseesel,u,elem,,mine*get,nse1,elem,,countii=0*do,i,1,emax*if,esel(i),eq,1,thenii=ii+1ne(ii)=i*endif*enddo*do,i,1,nse1*get,ney(i),elem,ne(i),cent,y*get,nex(i),elem,ne(i),cent,x*enddominy=1e20minx=1e20*do,i,1,nse1*if,ney(i),lt,miny,thenminy=ney(i)minx=nex(i)mine=ne(i)*else*if,ney(i),eq,miny,then*if,nex(i),lt,minx,thenminy=ney(i)minx=nex(i)mine=ne(i)*endif*endif*endif*enddoneorder(i1)=mine*enddo!************************************************************** max_tem=1500 !按照前面假设,焊料的初始温度为1500℃dt1=1e-3 !用于建立初始条件的一个很小的时间段dt=5 !焊接一个单元所需的时间t=0 !起始时间esel,alleplot/auto,1/replot*do,i,1,nseekill,neorder(i)esel,s,liveeplot*enddoallsel,alloutres,all,allic,all,temp,20kbc,1timint,0,structtimint,1,thermtimint,0,magtintp,0.005,,,1,0.5,0.2!nsub1=2nsub2=40!**************************************************do,i,1,nseealive,neorder(i)esel,s,liveeplotesel,all!******下面的求解用于建立温度的初始条件******t=t+dt1time,tnsubst,1*do,j,1,4d,nelem(neorder(i),j),temp,max_tem*enddosolve!****下面的求解用于保证初始的升温速度为零****t=t+dt1time,tsolve!*********下面的步骤用于求解温度分布***********do,j,1,4ddele,nelem(neorder(i),j),temp*enddot=t+dt-2*dt1time,tnsubst,nsub1solve*enddot=t+50000 !*********下面的步骤用于冷却过程求解***** time,tnsubst,nsub2solvesavefinish!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!后处理过程!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!/post1!**************下面的一系列命令用于生成应力的动画文件******* /seg,dele/cont,1,15,0,1200e6/16,1200e6/dscale,1,1.0avprin,0,0avres,1/seg,multi,stress1,0.1esel,all*do,i,1,nseesel,u,elem,,neorder(i)*enddo*do,i,1,nseesel,a,elem,,neorder(i)set,(i-1)*3+1,1plnsol,s,eqv*do,j,1,nsub1set,(i-1)*3+3,jplnsol,s,eqv*enddo*enddo*do,i,1,nsub2set,(nse-1)*3+4,iplnsol,s,eqv*enddo/seg,off,stress1,0.1/anfile,save,stress1,avi!**********下面的一系列命令用于生成温度的动画文件************ /seg,dele/cont,1,15,0,1500/16,1500/dscale,1,1.0avprin,0,0avres,1/seg,multi,temp1,0.1esel,all*do,i,1,nseesel,u,elem,,neorder(i)*enddo*do,i,1,nseesel,a,elem,,neorder(i)set,(i-1)*3+1,1plnsol,temp*do,j,1,nsub1set,(i-1)*3+3,jplnsol,temp*enddo*enddo*do,i,1,nsub2set,(nse-1)*3+4,iplnsol,temp*enddo/seg,off,temp1,0.1/anfile,save,temp1,avifinish。
焊接过程模拟与焊接变形、焊接Ansys应力有限元分析
1.1 焊接变形与焊接应力
焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以及结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。
在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的残余应力分布。
残余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面残余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以及结构疲劳强度。
对构件进行焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。
焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接残余应力。
并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的内应力场。
1.2 Ansys有限元焊接分析
为通过对焊接过程的三维有限元模拟分析以及焊接后构件变形及残余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与残余应力进行了分析。
ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。
间接耦合法的处理思路为先进行温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接残余应力与变形。
即:
(1)使用热分析的手段进行热分析,根据需要可采用瞬态分析与稳态分析模型,此处为瞬态分析。
(2)重新进入前处理中,将热分析单元转换为相应的结构分析单元,设置结构分析中材料属性,如弹性模量、泊松比、热膨胀系数等。
(3)读入热分析的结点温度作为结构分析的荷载,设置参考温度,结构分析求解残余应力。
而直接耦合法为采用Ansys提供的可以进行复合域(热-力学分析)分析的单元类型,同时进行热分析与力学分析,从而获得焊接后的变形与残余应力。
以下分析过程分为厚板对接焊的焊接过程模拟与焊件的变形与残余应力分析、厚板的全熔透T形接头焊缝的焊接过程模拟与焊件的变形与残余应力分析、箱型截面构件的焊接变形与残余应力分析和K型节点的焊接变形与残余应力分析四个部分。
其中第一、二、三部分采用Ansys中的实体单元,以直接耦合法对焊接过程进行模拟,并分析了焊接后的变形与残余应力,第四部分则采用壳单元以间接耦合法对焊接变形与残余应力分析。
采用的计算参数说明如下。
钢材应力应变关系采用双线性随动强化非线性关系,不同温度下的应力应变曲线如图所示,其中,
1)折点位置为屈服应力,常温下取为345*E6 N/m2;
2)曲线斜率为弹性模量E,常温下取为2.06*E11 N/m2;
3)达到屈服点后的弹性模量取值较小以模拟钢材的塑性屈服。
钢材弹性模量采用随温度变化的非线性关系,如图所示。
未考虑以下参数随温度的变化,而将其取为常数:
热膨胀系数取为1.4*10-5 m/m*K
热容量取为520 J/(kg·K))。