地铁隧道结构变形监测数据管理系统的设计与实现
- 格式:doc
- 大小:33.00 KB
- 文档页数:14
地铁施工变形监测专项施工方案一、背景简介随着城市交通的发展,地铁工程建设日益增多,然而地铁施工过程中可能会引起地面建筑物的变形,因此对地铁施工变形进行监测显得尤为重要。
二、监测对象地铁施工变形监测的对象主要包括地面建筑物以及地下管线等。
三、监测手段1.地表测量:通过对地表标志物进行定点测量,如测角、测距等方法,了解地表的变形情况。
2.遥感监测:利用航空摄影和遥感技术,对地铁工程周边的地形进行全方位监测。
3.地下管线探测:采用地下雷达等技术,对地下管线的情况进行探测,及时排除隐患。
四、监测频率1.实时监测:在地铁施工过程中,对地面建筑物变形进行实时监测,保证施工过程的安全。
2.定期监测:除实时监测外,还需定期对地铁施工周边区域进行监测,及时发现潜在问题。
五、监测报告1.监测数据分析:对监测数据进行系统分析,了解地面建筑物的变形情况。
2.问题排查:如发现地面变形异常,需及时进行问题排查,找出原因并提出解决方案。
3.监测报告撰写:根据监测数据和问题排查结果,编制监测报告,向相关部门汇报情况。
六、应急预案1.事故处理:如发生地面建筑物坍塌等紧急情况,需立即启动应急预案,保障施工现场人员的安全。
2.紧急通知:在出现紧急情况时,需第一时间向相关部门通报,并配合开展应急处理工作。
七、总结与展望地铁施工变形监测是保障地下工程施工安全的重要环节,只有加强监测工作,提高预警能力,才能确保地铁施工的顺利进行。
未来,随着监测技术的不断创新,地铁施工变形监测工作将更加精准、高效。
以上是关于地铁施工变形监测专项施工方案的介绍,希望通过不懈的努力,确保地铁施工的顺利进行,保障城市交通的高效便捷。
上海轨道交通14号线隧道工程变形监测与分析摘要:为探讨隧道工程变形监测要点,文章以上海轨道交通14号线隧道工程为例,从建立地面及地下高程系统、布设监测点位,到获取监测数据,有效实现了对隧道变化情况的监测,监测结果可靠,能够为实际工作提供指导。
这对于促进隧道工程行业的发展也具有一定现实意义,希望能够为有关单位提供帮助。
关键词:轨道交通;隧道工程;变形监测地铁轨道工程的使用运行过程中,隧道沉降现象较为常见,但沉降量较大时,往往会造成车辆运行过程的平顺问题,带来较大的安全隐患。
与此同时,还存在治理难度大、周期长的特点。
对此,给予有效的监测方式,及时发现变形问题,尽早给予处理,才利于切实维护轨道工程的稳定应用,减少事故、问题的发生。
1 工程概况项目为上海轨道交通14号线沉降与收敛工程,测量范围为:昌邑路站(不含)~桂桥路站(含)段正线里程自K26+176.901~K38+557.755,包含工作范围内的折返线、与6号线云山路站换乘通道,桂桥路出入场线,地下车站9座。
实际的工作中,重难点为线路长,跨幅大,参与人员多,仪器设备投入多等,且存在时间紧、任务重的特点。
最终通过科学合理的规划,快速建立了地面高程系统、获取了线路测量数据、并对数据进行了有效处理,完成了监测任务,取得各方一致的好评。
2 工程地质条件从轨道工程所在地域情况来看,为水系较为发达的区域,包括地上河流与地下暗河。
地质情况为浜土、粘土、基岩石等,基岩面被厚约250~350m的第四系覆盖。
由于基岩出露面积较少,工程地质条件主要涉及100m以浅的主要由软土、粉土和黏性土组成的第四系松散土体,其中与地铁隧道工程建设密切相关的主要为浅部砂、粉土层和软土层。
由于地质情况较差,虽然施工过程中给予了有效的固化技术,但还可能出现工程的沉降变形问题,因此给予全面的变形监测具有必要性[1]。
3 隧道变形监测3.1 隧道监测内容(1)对隧道位移变形监测。
隧道工程在长期使用过程中,很可能出现地表下沉位移或周边位移现象。
地铁变形控制标准
地铁变形控制标准主要涉及到地铁施工过程中,对新旧隧道、地下结构、地面建筑物及周围环境变形的控制要求。
为了确保地铁工程的顺利进行和周边环境的安全,以下几个方面可以作为变形控制标准:
1. 隧道变形:新建隧道在施工过程中,其变形应控制在一定范围内。
一般来说,隧道的径向变形控制标准为±10mm,纵向变形控制标准为±5mm。
对于近距离穿越既有隧道的
施工,新建隧道变形控制标准应更为严格,以确保既有隧道的正常使用。
2. 地下结构变形:地铁施工过程中,地下结构的变形应控制在设计范围内,以确保地下结构的安全稳定。
地下结构变形控制标准主要包括地下连续墙、桩基、地道等结构的变形限制。
3. 地面建筑物变形:地铁施工对地面建筑物的影响应控制在一定范围内,以保证建筑物的安全使用。
地面建筑物变形控制标准主要包括建筑物倾斜、沉降、裂缝等方面的限制。
4. 周围环境变形:地铁施工过程中,应密切关注周围环境的变化,包括地下管线、道路、绿化等方面的变形。
周围环境变形控制标准主要根据实际情况和相关规范来确定。
5. 施工安全:地铁施工过程中,应确保施工安全,防止事故发生。
施工安全控制标准包括施工现场的管理、施工工艺的规范、监测系统的建立等方面。
6. 变形监测:地铁施工过程中,应建立完善的变形监测系统,对隧道、地下结构、地面建筑物及周围环境的变形进行实时监测,以确保施工安全。
需要注意的是,地铁变形控制标准并非固定不变,而是根据工程实际情况、地质条件、周边环境、设计要求等多方面因素来综合确定的。
在实际施工过程中,还需根据监测数据及时调整施工方案,以实现变形控制目标。
地铁隧道施工安全信息化管理综合系统地铁作为现代城市交通的重要组成部分,其隧道施工安全至关重要。
随着科技的不断发展,信息化管理综合系统在地铁隧道施工安全保障方面发挥着越来越重要的作用。
地铁隧道施工是一个复杂且充满风险的过程。
在地下施工环境中,面临着地质条件复杂、地下水位变化、周边建筑物影响等诸多挑战。
这些因素不仅增加了施工的难度,也给施工安全带来了巨大的威胁。
因此,建立一套高效、全面的安全信息化管理综合系统成为了确保地铁隧道施工安全的关键。
地铁隧道施工安全信息化管理综合系统是一个集成了多种技术和功能的综合性平台。
它通过对施工现场的实时监测、数据分析、预警预报以及信息共享等手段,实现对施工过程的全方位安全管理。
在这个系统中,实时监测是基础。
通过在施工现场布置各种传感器,如位移传感器、应力传感器、水位传感器等,对隧道结构的变形、围岩压力、地下水位等关键参数进行实时采集。
这些传感器将数据传输到中央控制系统,确保管理人员能够及时了解施工现场的实际情况。
数据分析是系统的核心功能之一。
采集到的大量数据需要经过专业的分析处理,才能提取出有价值的信息。
系统运用先进的数据分析算法和模型,对监测数据进行深入挖掘,识别出潜在的安全隐患和风险趋势。
例如,通过对比不同时间段的数据变化,发现隧道结构变形的异常情况,及时采取相应的措施进行防范。
预警预报功能则是系统保障施工安全的重要手段。
当数据分析结果显示某些参数超过了设定的安全阈值,系统会立即发出预警信号。
预警信息可以通过多种方式传达给相关人员,如短信、电子邮件、手机应用程序等,确保施工人员能够在第一时间采取应急措施,避免事故的发生。
信息共享也是系统的一个重要特点。
施工过程中涉及到多个部门和单位,包括设计单位、施工单位、监理单位等。
通过信息化管理综合系统,各方可以实时共享施工安全信息,实现协同工作。
这样不仅提高了工作效率,还能够避免信息不对称导致的安全管理漏洞。
为了确保系统的有效运行,还需要建立完善的管理制度和技术保障措施。
地铁工程变形监测方案一、项目概述地铁工程建设是城市交通发展的重要组成部分,也是大型公共基础设施建设的关键项目。
在地铁建设和运营过程中,地铁隧道、车站和地下结构的变形监测是一项十分重要的工作。
通过对地铁工程的变形进行定期监测和分析,可以及时发现和处理潜在的安全隐患,保障地铁工程运营的安全和稳定。
本文将就地铁工程变形监测的方案进行详细介绍,包括监测的对象、监测的内容、监测的方法和技术手段等方面,旨在为地铁工程建设和运营提供科学、可靠的变形监测方案。
二、监测对象地铁工程的变形监测对象主要包括地铁隧道、车站和地下结构。
地铁隧道是地铁线路的主要组成部分,其稳定性直接关系到地铁运行的安全和顺畅。
地铁车站是地铁线路的重要节点,其安全稳定性对地铁的客流量和运营效率有着重要的影响。
地下结构主要包括隧道周边的地基土体和基础设施,其变形状态直接关系到地铁工程的整体安全。
三、监测内容地铁工程的变形监测内容主要包括地表沉降、隧道变形、地下水位变化、地铁结构振动等多个方面。
其中,地表沉降是地铁工程建设过程中常见的问题,其变形监测能够及时发现并处理地表沉降造成的安全隐患。
隧道变形是地铁工程变形监测的重点内容,主要包括隧道的收敛变形、开挖变形、压裂变形等多种形式。
地下水位变化是地铁工程变形监测的重要内容之一,其变形监测能够及时发现并处理地下水位引发的地铁工程漏水等安全隐患。
地铁结构振动是地铁运营期间的变形监测内容,主要包括地铁列车行驶和乘客运营等因素引发的地铁结构振动。
四、监测方法地铁工程变形监测的方法主要包括传统监测方法和新兴监测技术两种。
传统监测方法主要包括地表测点监测、隧道地表沉降观测、地下水位监测等。
新兴监测技术主要包括遥感监测、激光测量、地面雷达等技术手段,这些技术手段能够较好地实现地铁工程变形的实时监测和分析。
五、监测技术手段地铁工程变形监测的技术手段主要包括监测系统、传感器设备、数据处理软件等多个方面。
监测系统是地铁工程变形监测的基础设施,其能够通过监测点布设和数据采集实现对不同变形内容的监测。
地铁隧道变形监测系统数据库设计与开发
赵炯;鲁丹军;潘舒眉;胡玉俊;熊肖磊
【期刊名称】《机电一体化》
【年(卷),期】2011()11
【摘要】研究地铁隧道变形监测系统数据库的设计方案。
数据库系统作为监测系统数据采集和处理的存储介质,同时也为上位Web发布提供数据基础。
简述了基于图像处理的隧道变形监测系统的工作原理及形成隧道变形海量信息数据库的设计方案。
通过系统需求分析和数据库逻辑设计,构建隧道变形监测系统的数据库系统。
【总页数】5页(P84-88)
【关键词】隧道变形;SQL;sever;数据库;Web发布
【作者】赵炯;鲁丹军;潘舒眉;胡玉俊;熊肖磊
【作者单位】同济大学机械工程学院机械电子研究所
【正文语种】中文
【中图分类】TP311.13
【相关文献】
1.自动监测系统在地铁隧道变形监测中的应用 [J], 吴华明
2.地铁隧道结构变形监测信息管理系统的开发 [J], 黄维华;岳荣花;张学华;于安柱
3.自动变形监测系统在运营地铁隧道监测中的应用 [J], 廖海山;李盈洲
4.自动变形监测系统在运营地铁隧道监测中的应用 [J], 王浩克
5.地铁隧道沉降变形监测系统数据库设计 [J], 周奇才;韩梦丹;范思遐;熊肖磊;张慧群
因版权原因,仅展示原文概要,查看原文内容请购买。
地铁隧道结构变形监测方案一、工程概况珠江新城海心沙绿化改造及地下空间(三区)基础工程位于珠江新城海心沙区域的西部,正在运营的地铁三号线“珠江新城〜赤岗塔”区间盾构隧道在该工程的地下由西北向东南通过。
该工程位于地铁隧道上方的地基基础主要为直径 1.6和2.2米的钻(冲)孔灌注桩基础,桩底高程约为-23.35〜-20.7米(广州城建高程),并设置横、纵向转换梁支撑跨越地铁隧道的上部主体结构,最大的转换梁梁底高程约 2.70米。
经核查,位于地铁隧道两侧的钻(冲)孔桩与地铁隧道的最小水平净距约2.90米,位于地铁左、右线隧道中间的钻(冲)孔桩与地铁隧道的最小水平净距约 2.60米。
横、纵向转换梁梁底与地铁隧道结构顶面之间的最小垂直净距约为15.50米。
该工程范围内的地铁隧道结构顶面高程约-13.15米,地铁隧道结构底高程约-19.35米。
二、监测目的正在运营的地铁三号线“珠江新城〜赤岗塔”区间盾构隧道在该项目看台工程的地下由西北向东南通过,在地铁隧道结构外侧左右垂直距离15.0米范围内的看台工程桩及上部主体施工过程中,可能对地铁隧道结构产生变形、倾斜、位移、隆起或沉降等方面的影响。
受广州新中轴建设有限公司的委托对此区间的盾构隧道进行变形监测和裂缝监测。
主要目的是:1、了解各种因素对地铁盾构结构变形等的影响,为有针对性地改进施工工艺和修改施工参数提供依据;2、预测地铁隧道结构的变形趋势,根据变形发展程度,决定是否需要采取保护措施,并为确定经济合理的保护措施提供依据;3、了解上部工程施工过程中地铁隧道结构有无裂缝情况及其变化规律;4、建立预警机制,避免结构和环境安全事故造成不必要的损失;5、施工过程中,根据监测数据分析,及时反馈信息、指导施工,为地铁的安全运营提供可靠保障。
三、遵循的监测技术及方案编制依据3.1遵循的技术为TPS极坐标差分法该方法采用瑞士Leica公司的具有ATR (自动目标识别) 功能的TCA系列的全站仪(又称测量机器人),进行极坐标差分作业。
测量机器人地铁隧道结构变形监测系统设计摘要:在介绍了几种不同的变形监测数据处理方法后,结合某地铁变形监测后处理系统,对该系统工作原理进行了简要介绍,并在该系统的基础上,设计了地铁安全评估系统。
关键词:变形监测;地铁监测;安全评估1变形监测网数据处理方法对于监测网的数据处理属于变形的几何分析X畴,包括确定相对或绝对变形量的大小、几何分布和变化规律。
变形监测网一般由参考网和相对网组成,对于监测网周期观测数据处理,主要是确定稳定点,估计变形点相对于稳定点(或基准)的变形。
对于零期和一期观测,多采用秩亏自由网平差或拟稳平差法做变形分析,一旦确定存在稳定点,则仍以稳定点为基准进行约束平差为宜。
周期观测点场稳定性的统计检验与判别,通常采用平均间隙法和最大间隙法。
对于监测滑坡体的周期观测网,在获取到各期监测点的位移值后,可采用聚类分析法进行变形模式的拓朴约束识别,自动划分变形块体和估计各块体的变形模型参数。
[1] 1.1回归分析法取变形(称效应量,如各种位移值)为因变量,环境量(称影响因子,如水压、温度等)为自变量,根据数理统计理论建立多元线性回归模型,用逐步回归法可得到效应量与环境量之间的函数模型,用这种方法可做变形的物理解释和变形预报。
因为它是一种统计分析方法,需要效应量和环境量具有较长且一致性较好的观测值序列。
在回归分析法中,当环境量之间相关性较大,可采用岭回归分析;如果考虑测点上有多个效应量,如三向垂线坐标仪、双向引X线仪,二向、三向测缝计的观测值序列,则可采用偏回归模型,该模型具有多元线性回归分析、相关分析和主成份分析的功能,在某些情况下优于一般的逐步线性回归模型。
1.2时间序列分析法大坝变形观测中,在测点上的许多效应量如用垂线坐标仪、引X线仪、真空激光准直系统、液体静力水准测量所获取的观测量都组成一个离散的随机时间序列,因此,可以采用时间序列分析理论与方法,建立p阶自回归q阶滑动平均模型ARMA(p、q)。
如何进行变形监测变形监测,是指对建筑物、桥梁、地铁隧道等工程结构在使用过程中的变形和位移进行实时监测和分析的过程。
通过变形监测,我们可以及时发现结构的异常变形,提前预警潜在问题,以保证建筑物的安全稳定。
本文将介绍如何进行有效的变形监测,涵盖监测方法、监测工具和数据分析等方面。
一、变形监测的方法1. 传统测量方法传统测量方法是指人工进行的监测方法,通常利用经纬仪、水准仪、全站仪等仪器设备进行直接测量。
这种方法的优势在于测量精度较高,数据可靠性比较高。
但是,由于工程规模大、监测点多,传统方法不能满足大规模和实时监测的需求。
2. 无人机测量方法随着科技的进步,无人机测量方法逐渐被应用于工程结构的变形监测中。
无人机可搭载高精度相机、雷达、激光扫描仪等设备,能够对工程结构进行全面、快速的测量。
通过无人机测量,我们可以获取大范围、高分辨率的监测数据,实现对工程结构的三维建模和变形分析。
3. 激光扫描仪监测方法激光扫描仪是一种高精度的变形监测工具,通过激光束测量物体表面的距离,可以获取物体的空间形态信息。
激光扫描仪监测方法具有高精度、非接触、高效率等特点,能够满足复杂场景下的变形监测需求。
但是,由于设备成本较高,该方法在实际应用中还存在一定的限制。
二、变形监测的工具1. 数据采集设备数据采集设备是进行变形监测的关键工具之一。
它可以记录监测点的位移、振动、变形等数据,并将其传输到监测中心进行分析。
常用的数据采集设备有挠度计、位移传感器、加速度计等。
这些设备具有高精度、高灵敏度的特点,能够准确地监测结构的变形情况。
2. 数据处理软件数据处理软件用于对采集到的监测数据进行分析和处理。
它能够将原始数据转化为可视化的图表和图像,以便工程师进行进一步分析。
常用的数据处理软件有MATLAB、Python等,它们提供了各种数据处理和统计分析的功能,方便工程师进行数据挖掘和模型建立。
三、数据分析方法1. 统计分析统计分析是变形监测中常用的分析方法之一。
地铁线路结构变形监测摘要:本文主要介绍了地铁线路结构变形监测实施的一套成熟、完善的技术方案,明确了地铁线路结构变形监测的评定标准,可作为今后地铁线路结构变形监测的重要借鉴。
关键词:变形监测;基准点;实施方案;评定标准1、概述地铁线路结构变形监测是为了掌握运营后车辆荷载、运行和地铁沿线因物业开发或其它工程施工对车站和区间隧道结构及轨道线路的影响,确保地铁结构安全和正常运营,建立全线的变形监测体系,为后续地铁设计、施工提供资料。
广东省重工建筑设计院有限公司承担了长沙地铁2号线变形监测工程,对长沙地铁2号线危害性变形及时提出了预报,达到了监测的目的;并且分别建立了全线的变形监测体系,为下阶段的监测工作提供了依据;为地铁轨道检修及维护使用、保证地铁的正常运行和设施安全提供安全信息。
2、变形监测实施技术方案2.1变形监测基准点的选择基准点是变形监测的基础,因此基准点选择原则应遵循:基准点位于变形区域外,地质情况良好,不易发生变形的地段。
长沙地铁2号线变形监测在铺轨控制基标的基础上测设,隧道及车站内的铺轨控制基标是在一级导线的基础上测设的,而平面变形监测的导线精度要求为三等导线,后者作业精度要求远高于前者,这就造成低精度的基础导线点作为高精度测量的平差依据。
虽然位移沉降监测重在于对两次测量成果进行比较,在保证作业路线、作业仪器、作业人员乃至作业精度不变的情况下,对导线两端控制点的精度依赖不大,但两次测量的闭合差及其在误差分配方面的不一致,在一定程度上损害了三等变形监测成果的精度;而且,因变形监测的基准点为车站内的控制基标,个别车站的控制基标点数满足不了监测方案的要求,而在靠近车站的区间内选择了控制基标作为基准点,这些基准点本身是否受到变形区的影响而变形的情况,若存在变形也将影响监测的精度。
实践表明:选择铺轨控制基标作为变形监测的基准点不可取。
综合总结上述情况,经综合比较分析,长沙地铁2号线变形监测选择将基准点布设在车站内。
地铁隧道结构变形自动监测地铁隧道结构变形自动监测随着城市的发展和交通压力的不断增加,地铁成为了现代城市中不可或缺的一部分。
而地铁隧道作为地铁系统的基础设施之一,其安全性和稳定性对于地铁运行的顺畅至关重要。
为了确保地铁隧道的结构安全,地铁隧道结构变形自动监测成为了一项重要的技术。
地铁隧道结构变形自动监测是指通过现代科技手段,对地铁隧道结构的形变进行实时监测和数据分析,以提前发现可能存在的安全隐患,及时采取相应的维修和加固措施。
这项技术的引入,不仅可以大大提高地铁隧道的安全性和稳定性,还可以降低地铁运行中的风险。
地铁隧道结构变形自动监测主要通过以下几种技术手段来实现。
首先是通过安装在地铁隧道结构上的传感器,采集隧道结构的形变、振动、温度----宋停云与您分享----等相关数据。
这些传感器可以实时监测隧道结构的变化,并将数据传输给监测系统。
其次是利用数据采集和处理技术,对传感器采集到的数据进行分析和处理,得出隧道结构的变形情况。
最后是通过监测系统的报警功能,一旦发现隧道结构存在异常,及时发出警报并通知相关部门进行处理。
地铁隧道结构变形自动监测技术的应用可以带来诸多益处。
首先,它可以实现对地铁隧道结构变形情况的实时监测,大大提高了地铁隧道的安全性和稳定性。
其次,它可以提前发现隧道结构可能存在的安全隐患,减少事故发生的概率,保障乘客和工作人员的安全。
此外,它还可以为地铁隧道的维修和加固提供科学依据,避免因为维修不及时而造成的运营中断和经济损失。
然而,地铁隧道结构变形自动监测技术也存在一些挑战和问题。
首先是技术成本的问题,部署和运营监测系统需要投入大量的资金和人力资源。
其次是数据处理和分析的问题,隧道结构的监测----宋停云与您分享----数据庞大且复杂,需要高效的算法和计算能力来进行处理和分析。
另外,隧道结构环境的复杂性也给监测技术带来了一定的困难,比如温度和湿度等因素对传感器和监测设备的稳定性和精确性要求较高。
施工工程中的变形监测与控制的方法与技巧1. 引言在施工工程中,变形是一个不可避免的问题,它会对工程的结构和稳定性产生重大影响。
因此,变形监测与控制是施工工程中非常重要的一项工作。
本文将对施工工程中的变形监测与控制的方法与技巧进行探讨。
2. 变形监测技术的应用变形监测技术是通过对施工工程中的变形进行实时监测和记录,为工程的安全和稳定提供有力的依据。
现代的变形监测技术包括全站仪、测量软件和无线传感器等。
这些技术能够快速、准确地获取工程变形信息,并进行实时分析和报警。
3. 变形监测方法的选择在选择变形监测方法时,需要根据工程的具体情况和要求进行判断。
一般来说,应该综合考虑工程类型、施工条件和监测目的等因素,并选择合适的监测方法。
例如,在大型桥梁工程中,可以采用全站仪进行变形监测,而在地铁隧道施工中,可以使用无线传感器进行变形监测。
4. 变形监测数据的分析与处理变形监测数据的分析与处理是变形监测工作的关键环节。
通过对监测数据的分析,可以判断施工工程的变形情况,并采取相应的措施。
同时,还可以进行数据的对比分析,找出工程中存在的问题,并进行调整和改进。
5. 变形控制的方法与技巧变形控制是在发现工程变形问题后,采取相应的措施进行调整和控制,以确保工程的安全和稳定。
常用的变形控制方法包括加固加强、压力平衡和轴力调整等。
此外,还需要注意变形控制的时机,合理选择控制时机会起到事半功倍的效果。
6. 变形监测与控制的案例分析通过对一些实际案例的分析,可以更好地了解变形监测与控制的方法与技巧。
例如,在某高速公路桥梁施工中,通过及时采取变形控制措施,成功避免了桥梁的变形问题,确保了工程的安全和稳定。
7. 变形监测与控制的挑战与展望当前,施工工程变形监测与控制面临着一些挑战和难题。
例如,监测数据的准确性和实时性需要不断提高,还需要加强与智能技术的结合,实现自动化监测与控制。
未来,随着技术的不断发展,变形监测与控制将更加精准、高效,为施工工程提供更好的保障。
地铁隧道结构变形监测数据管理系统的设计与实现摘要:探讨开发地铁隧道结构变形监测系统的必要性与紧迫性。
以VisualBasic编程语言和ACCESS数据库为工具, 应用先进的数据库管理技术设计开发地铁隧道结构变形监测数据管理系统。
系统程序采用模块化结构,具有直接与外业观测电子手簿连接下传原始观测资料、预处理和数据库管理等功能,实现了测量内外业的一体化。
系统结构合理、易于维护、利于后继开发,提高监测数据处理的效率、可靠性以及监测数据反馈的及时性,值得类似工程的借鉴。
关键词:地铁隧道;变形监测;管理系统随着经济的发展 ,越来越多的城市开始兴建地铁工程。
地铁隧道建造在地质复杂、道路狭窄、地下管线密集、交通繁忙的闹市中心,其安全问题不容忽视。
无论在施工期还是在运营期都要对其结构进行变形监测,以确保主体结构和周边环境安全。
地铁隧道结构变形监测内容需根据地铁隧道结构设计、国家相关规范和类似工程的变形监测以及当前地铁所处阶段来确定,由规范[1]与文献 [2]知,运营期的地铁隧道结构变形监测内容主要包括区间隧道沉降、隧道与地下车站沉降差异、区间隧道水平位移、隧道相对于地下车站水平位移和断面收敛变形等监测。
它是一项长期性的工作,其特点是监测项目多、线路长、测点多、测期频和数据量大,给监测数据处理、分析和资料管理带来了繁琐的工作,该项工作目前仍以手工为主,效率较低,不能及时快速地反馈监测信息。
因此,有必要开发一套高效、使用方便的变形监测数据管理系统,实现对监测数据的科学管理及快速分析处理。
现阶段国内出现了较多的用于地铁施工期的监测信息管理系统[3-4],这些系统虽然功能比较齐全、运行效率较高,能够很好地满足地铁施工期监测需要,但它主要应用于信息化施工,与运营期地铁隧道结构变形监测无论是在内容还是在目的上都有着很大的区别和局限性。
而现在国外研究的多为自动化监测系统[5-6],也不适用于目前国内自动化程度较低的地铁隧道监测。
此外,能够用于运营期并符合当前国内地铁隧道结构监测实际的监测数据管理系统还较为少见。
因此,随着国内建成地铁的逐渐增多,开发用于运营期地铁的变形监测数据管理系统变得越来越迫切。
为此,根据运营期地铁隧道结构变形监测内容[1-2]和特点,以isualBasic作为开发工具[7],应用先进的数据库管理技术[8],以目前较为流行的Access数据库作为系统数据库,设计和开发了用于运营期地铁隧道变形监测数据管理系统,不仅提高了监测数据处理的效率和可靠性,保证了监测数据反馈的及时性,而且在某城市地铁隧道变形监测中投入应用,取得较好的效果。
1系统的结构1.1系统数据库结构变形监测数据库用于存储监测点属性、监测成果等数据信息,是数据管理系统的基础。
因此,合理的数据库结构不仅是数据库设计的关键,还有利于系统对数据的管理和高效处理分析。
考虑到变形监测成果的特点,系统数据库结构设计应不仅能满足用户的需要,而且能使系统需求的资源最少,同时还要使数据库中数据冗余度尽量小,以达到结构合理、易于维护等目的[8]。
为此,根据变形监测内容,系统数据库设计由如下数据表构成。
1) 测段名表:包括测段编号和测段名称两个字段。
为便于变形监测分析,在监测中将相邻两个车站之间的隧道划分为一测段,并按车站和车站之间的隧道进行编号,测段名称则根据各个车站或者车站之间隧道的名称而定,监测点的测段属性值直接根据其所在测段来取对应的编号值,方便查询。
2) 监测点属性表:包括监测点名、测段、车道、具体位置、里程、材料、布设时间、布设单位、当前状况、用情况、备注等。
其中车道为监测点所在的左、右道或上、下行线;具体位置指测点所处具体的空间位置,如地面、地下、高架等;当前状况是指目前监测点的完好情况,也就是可用否;使用情况是指监测时是否使用。
3) 沉降监测成果表:包括编号、监测点名、高程、测期、监测时间、备注等。
为了遵守数据库键的唯一性原则和方便查询,各个测点的每期编号由测期号与监测点名组成,因而表中将不会出现相同记录,保证了键的唯一性[8]。
4)沉降差异点属性表:除了测段为各个车站编号,其余与监测点属性相同。
5)沉降差异监测成果表:与沉降监测成果表相同。
6)水平位移监测成果表:包括编号、监测点名、X坐标、Y坐标、测期、监测时间、备注等,测点的编号设置与沉降监测成果表相同。
7)水平位移差异监测成果表:与水平位移监测成果表相同。
8)断面收敛变形监测成果表:包括编号、监测点名、直径1、直径2、测期、监测时间、备注等,测点的编号设置与沉降监测成果表相同。
在以上各表中,第一个字段为主关键字,各字段值的类型与字节宽度均按照实际所需的最佳值确定,考虑到测段名的繁琐和数据库管理操作的方便迅捷,在数据库管理时将测段名表与其他各表进行关联[8]。
1.2 系统的总体结构根据地铁隧道变形监测的内容与特点,系统由系统设置、预处理、数据库管理、在线帮助和退出5个模块组成,总体结构如图1所示。
2系统的功能及特点2.1系统的功能2.1.1系统设置功能1)参数设置:设置系统所使用数据库的地址,实现对地铁的不同隧道段监测数据库分别进行管理,同时还可设置显示计算成果的小数位数等参数。
2)用户设置:可以添加用户和更改用户登录密码,防止非系统用户进入破坏数据,保证监测数据的安全和系统的正常运行。
2.1.2预处理功能1)观测资料整理:用户可以通过系统的接口程序实现系统和外业观测电子手簿直接相连,下传原始观测资料,并对其计算处理,得到观测成果数据。
2)粗差检验:对观测成果数据进行检验,剔除不合格数据,保证监测数据的正确可靠,同时将检验后的成果数据录入到数据库中。
3)基准点稳定性检验:检验监测基准点的稳定性,确保监测数据的可靠性。
2.1.3数据库管理功能1)数据查询:包括属性数据查询和监测成果数据查询。
查询属性数据时,可以先对属性数据类别和属性值条件进行选择,同时系统动态搜索出满足条件的测点,然后可根据用户实际需要结合监测成果条件(前后测期、两期沉降量、两期沉降速率等)查询出满足要求的测点属性信息,实现对不同类监测点在不同监测成果条件下的属性值进行查询。
查询监测成果时,可首先对测点的测段、车道、具体位置等测点主要属性值进行选择,然后再对监测成果的测期、两期变化量、累积变化量和变化速率等条件进行设置,查询出满足用户要求的测点成果。
在查询出满足要求的数据后,可导入到EXCEL中进行编辑打印。
2)数据录入和添加:包括监测点属性数据录入添加和监测成果数据录入添加两个功能,用于向数据库录入添加监测点属性信息和监测成果数据。
设置有手工录入添加和自动导入两种方式,前者直接在程序界面上的相应空格中填入数据值,实现逐点录入;而后者则将文本数据格式或者EXCEL格式的数据自动导入数据库,实现多点自动导入。
添加数据时动态显示已添加的数据和添加后数据库中的所有数据信息,添加完成后可以将已添加的数据导入到EXCEL中进行编辑、打印。
在录入添加之前可将所要录入添加的数据按照预定的格式存储在EXCEL或记事本中,随后便可将数据导入到数据库中。
3)数据修改:考虑到操作的规范性,系统只允许对监测点属性进行修改。
通过查询所要修改的监测点,对其属性信息进行修改,同时可以动态显示数据库中的监测点属性信息,方便用户及时看到修改结果。
4)数据删除:与数据修改功能相似,通过对数据信息查询后再进行删除,删除前须经确认,然后才能操作,确保准确无误。
5)数据导出:由于在前述操作中已包括本功能,因此系统中无需再单独设此功能模块,避免重复。
2.1.4在线帮助功能包括帮助目录与帮助主题搜索两个功能,用于系统运行过程中的在线帮助,以文本和图像的形式对系统进行操作说明,并对常见问题作详细解答。
2.1.5退出功能退出系统。
2.2系统的特点1)系统充分利用了先进计算机技术的优势,克服了传统的监测数据管理存在的数据查询繁琐、处理分析低效等缺陷。
2)系统操作通过窗口和菜单进行,具有界面友好、操作帮助完善等优点。
3)系统可通过接口程序与外业观测电子手簿相连,下传原始观测资料,并进行计算处理,实现测量内外业一体化。
4)经系统处理的数据成果可直接导入到EX-CEL中,充分利用了EXCEL报表制作的优点,满足了用户对报表格式多样性的要求。
5)监测数据通过系统存入数据库进行管理,使复杂、繁琐的监测数据管理工作变得简单易行,如数据的查询、添加、删除、导入EXCEL等可通过鼠标单击直接实现,提高了工作效率。
3 系统的实现与应用系统采用Windows2000/Me/XP作为操作平台,以桌面式关系型数据库ACCESS和面向对象的程序设计语言VisualBasic6。
0作为开发工具,通过数据库引擎(ADO)[7]与数据库有机的联系在一起。
系统开发采用面向对象的方法 ,它是根据应用问题所涉及的对象,建立于现实世界的一种软件开发思想[7]。
利用该方法的关键是对前端概念的理解,只有当应用领域固有的概念被识别和理解了,才能较好的设计系统的数据结构以及实现其功能。
VisualBasic是一个面向对象的图形界面应用程序开发环境,利用它可开发面向对象的基于Win-dows的应用程序[7]。
由于VisualBasic充分利用了Windows的窗口资源,因而开发应用程序的用户界面美观、简洁。
本系统中所使用的菜单、按钮和结果显示等功能方式均以模块化开发实现,有利于系统的后续开发升级。
系统应用过程:首先,按照系统数据库中数据表的字段格式对车站、区间段和监测点进行统一编号、命名和归类,并根据实际情况确定测点属性值,将整理后的测段信息与测点属性数据录入数据库;然后,通过系统的接口程序从外业观测电子手簿下传各期原始观测资料,对其进行预处理后将满足要求的成果数据录入数据库;最后,对监测数据进行管理和处理计算,分析地铁隧道结构变形情况。
该系统在某城市地铁监测中得到了很好的应用,发挥了较大的作用,实际应用表明:1) 监测数据管理的效率得到了明显的提高。
应用系统后,数据处理分析所花时间从原先手工进行所需的7d至8d缩短为1d至2d。
2)系统计算准确、成果可靠。
3)系统功能完善,操作简单,界面友好、美观。
4 结论地铁隧道结构变形监测数据管理系统是结合地铁隧道结构变形监测实际情况进行设计和开发的具有较高的实用价值。
1)系统应用了先进的ADO数据库开发技术实现了数据库与系统的有机结合,使Access数据库与VisualBasic语言的优势得到了最大的发挥,值得类似系统借鉴。
2)通过实践应用表明该系统功能完善、方便实用、计算准确、数据成果可靠,能够较好地满足实际应用需求,大大减少了数据管理工作量,提高了效率。
3)系统中测量内外业一体化的实现为地铁隧道自动化变形监测系统的开发积累了一定的经验。