运营期间的地铁隧道结构变形安全监测技术研究
- 格式:docx
- 大小:28.23 KB
- 文档页数:2
浅谈地铁施工过程中的变形监测技术地铁作为城市交通系统的重要组成部分,对于城市的交通发展和人们的出行具有重要意义。
地铁的建设和运行关系到城市的经济发展、环境改善和人民群众的出行安全。
而地铁的施工过程中,变形监测技术显得尤为重要。
本文将从地铁施工过程中的变形监测技术展开论述,旨在探讨地铁建设中的变形监测技术在保障安全和质量方面的重要性。
1.施工过程中的变形控制地铁施工过程中,常常需要对周围的建筑、道路、管线等进行变形监测。
这是因为地铁车站、隧道等工程往往会引起周围环境的变形,而这些变形可能会对周围的建筑和管线产生影响,甚至会引发安全事故。
对于地铁施工过程中的变形进行监测和控制显得尤为重要。
2.变形监测技术的应用地铁施工过程中的变形监测技术主要通过激光测距仪、全站仪、GPS等设备来进行测量,利用计算机技术对监测数据进行处理和分析,以实现对施工变形的实时监测和控制。
这些技术不仅可以对地铁工程的变形进行监测,还可以对周围建筑、管线等进行监测,确保地铁施工过程中的变形不会对周围环境产生不利影响。
1.保障施工安全2.保障工程质量地铁工程的施工质量直接关系到地铁的运行安全和使用寿命。
而施工过程中的变形如果得不到有效监测和控制,可能会产生一些隐藏的质量问题,对工程的安全和使用寿命产生影响。
对地铁施工过程中的变形进行监测和控制,有助于保障工程的质量。
3.减少施工成本地铁施工过程中,如果不能及时对施工变形进行监测和控制,可能会引发一些不必要的施工事故,导致施工成本的增加。
而通过变形监测技术,可以及时发现并处理施工过程中的变形问题,减少施工事故的发生,从而降低施工成本。
4.符合规范要求地铁施工过程中的变形监测技术的应用,可以有助于保障施工过程的符合规范要求。
地铁施工的变形监测技术的应用已成为国内外地铁施工的标准做法,符合国家标准和规范要求,有助于提高施工质量和工程安全性。
三、地铁施工过程中的变形监测技术的现状和发展趋势1.现状目前,国内外地铁施工过程中的变形监测技术已经得到广泛应用。
地铁主体结构变形监测的必要性分析地铁作为一种重要的城市交通工具,具有巨大的运输能力和重要的基础设施地位。
然而,由于地铁线路的长时间运行和环境的变化,地铁主体结构可能会遭受损坏或变形。
因此,进行地铁主体结构变形监测具有重要的必要性。
本文将从安全性、维护保养以及预防性维修等方面进行分析。
首先,地铁主体结构变形监测对于确保地铁运行安全极为关键。
地铁运行时,车辆通过轨道沿线的地下隧道,如果地铁主体结构存在变形问题,可能会对地铁的运行安全产生严重影响。
例如,地铁隧道的变形可能导致轨道错位、纵向倾斜等严重问题,进而影响地铁的正常运行。
因此,通过对地铁主体结构进行变形监测,可以及时发现问题,并采取相应措施进行修复,从而确保地铁运行的安全性。
其次,进行地铁主体结构变形监测对于维护保养也非常重要。
地铁主体结构一旦发生变形,可能会导致地铁设施的破损和老化。
例如,地铁隧道的变形可能引起墙壁脱落、渗水等问题,进而影响设施的寿命和使用寿命。
通过对地铁主体结构进行定期监测,可以及时发现变形问题,并进行维护保养工作,延长地铁设施的寿命,减少运营成本。
此外,进行地铁主体结构变形监测也有助于预防性维修。
地铁主体结构的变形往往是渐进式的,通过定期监测可以提前发现并进行修复,避免出现严重的问题。
如果不进行监测,地铁主体结构的变形问题可能会逐渐加剧,最终导致地铁设施的破损甚至倒塌。
此时进行修复将需要更大的投入,甚至会对地铁运营造成长时间的中断。
因此,通过对地铁主体结构进行变形监测,可以及时预防和修复问题,减少由此带来的损失和影响。
综上所述,地铁主体结构变形监测对于确保地铁运行安全、维护保养以及预防性维修具有重要的必要性。
通过定期监测地铁主体结构的变形情况,可以及时发现问题,采取措施进行修复,避免事故的发生,延长地铁设施的使用寿命,同时减少运营成本和安全风险。
因此,应当高度重视地铁主体结构变形监测的必要性,并加强相关监测技术的研发和应用,以确保地铁运行的安全和可靠。
地铁隧道结构沉降监测分析摘要:随着城镇化进程的加快,我国重要基础设施建设取得了显著的成效。
目前国内已经有许多城市地铁线路建成运营,通过对一些已运营的线路调查研究发现,在建设过程和运营期间,其隧道、高架桥、U型结构、路基挡墙等主体结构均有变形发生,从而引起线路沉降、轨道变形,严重时则影响运营安全。
为了及时掌握地铁主体结构的变形情况,及时消除安全隐患,在运营期间,对主体结构采取适宜的变形监测是非常必要的,选择代表性部位进行沉降变形监测,对变形较大的地段及时采取适当的补救措施,确保运营安全,延长结构使用寿命,对保证地铁安全运营和长期节约维修成本具有重要的意义。
本文就地铁隧道结构沉降监测展开探讨。
关键词:沉降监测;基准网;监测网;数据分析引言在工程实践中,很多地下工程都需要在恶劣的地质条件下进行设计和建设,经常面临较大风险。
地铁隧道施工在多种因素影响下,往往会出现土体变形、沉降情况。
土体变形、沉降达到一定限度,不仅会影响地铁的正常运行,还可能引发安全事故,造成人员伤亡,因此需要及时对其进行监测。
传统的沉降监测方法的监测精度低,针对于此我们设计了新的地铁穿越工程沉降监测方法。
1沉降观测地铁沉降监测通常采用水准测量方法。
在地铁隧道内进行夜间水准测量,作业难度大、时间紧且精度要求高。
由于地铁隧道前进方向通视无遮挡,可以采用电子水准仪进行观测,可提高观测效率和精度。
天宝(Trimble)DiNi03水准仪稳定性好、测量精度高、测量速度快,其每千米往返中误差小于±0.5mm,适用于在地铁隧道内进行观测。
考虑到地铁隧道的特征,水准网通常布设成附合水准路线。
水准基准点布设在远离变形区域的地铁轨道底板上,监测点沿地铁轨道中心和两侧交叉布设,通常每隔20-30m布设一个监测点。
为提高观测精度,需要固定观测人员、观测仪器、设站点、观测线路和观测环境条件,同时还需要在水准标尺上安装灯带照明。
2监测技术与方法2.1处理地铁穿越工程沉降监测数据由于从真实土体中获得的变形数据不能用于即时监测,因此需要设计沉降数据监测步骤。
地铁隧道围岩变形规律研究地铁隧道是城市交通规划中必不可少的一部分,是连接城市各个区域的重要工程。
然而,建设地铁隧道需要克服许多工程难点,其中之一就是解决隧道围岩变形问题。
一、隧道围岩变形的原因地铁隧道地下深处,地下水的存在无疑是隧道围岩变形的主要原因之一。
除此之外,脆弱的地质结构和不同地质层之间的接触面也会造成变形。
此外,地铁隧道在开挖过程中,由于爆破挖掘和地质条件的差异,围岩会产生集中解体现象,这也是围岩变形的原因之一。
二、隧道围岩变形的分类及特点具体而言,隧道围岩变形可以分为以下几种类型:1. 岩爆。
当采用爆炸方法开挖地铁隧道时,可能会引起围岩的爆炸现象。
这种变形往往是突然的,造成的危害也很大。
岩爆的危险性有时甚至不能用工程措施来消除。
2. 岩溶。
这种变形是由于围岩中的溶洞或裂隙导致,它对地铁隧道的安全运行产生了很大的影响。
此外,岩溶现象还会对地下水的分布产生影响,为地下水污染带来风险和危害。
3. 内部变形。
内部变形是指物理性质弱化和物质回流现象的发生,也可称为“地下泄漏”现象。
这种变形很难通过人类干预而得以遏制,会持续性地给地下环境和城市地下设施带来巨大的威胁。
三、围岩变形的危害及防治措施变形对地铁隧道的安全运行带来极大威胁,可能会导致隧道坍塌、漏水、地基沉降等问题。
基于此,需要采用一系列措施来预防和控制围岩的变形,其中最重要的是做好隧道围岩的预处理工作。
1. 预处理。
预处理是指采取一定的手段对地质形态进行修复和整顿。
比如,在隧道开挖前,可以进行围岩支护、地下止水等措施,以减轻对围岩的损害,从而减少隧道围岩变形的危害。
2. 支护结构。
隧道支护结构可以分为明挖法和暗挖法。
明挖法是在开挖过程中直接固定围岩,暗挖法是指采用预制法将支护结构放置在隧道内。
这些支护结构能够起到承重和稳定围岩的作用。
3. 闭环监控。
闭环监控是指利用传感器对隧道围岩的变形情况进行实时监测,以判断隧道运行状态。
在发现变形问题时,及时采取措施,通过科学方法解决隧道围岩变形问题。
盾构掘进过程中的土体变形与监测技术研究一、引言盾构是一种现代化的地下隧道施工方法,其应用范围广泛,但在掘进过程中土体变形是不可避免的。
为了确保施工的安全与稳定,需要进行土体变形与监测技术的研究。
本文将深入探讨盾构掘进过程中土体变形的原因及监测技术的应用。
二、盾构掘进过程中的土体变形原因分析1. 土体松散程度:盾构掘进过程中,土体由于受到切削和排渣等作用,会发生松散变形,导致土体的力学性质发生改变。
2. 土体刚度与强度:盾构施工过程中,土体受到盾构机的挤压和切削作用,从而导致土体的刚度和强度发生变化,进而引起土体的变形。
3. 土体固结与沉降:盾构施工过程中,土体围压与盾构机的相互作用,会产生土体固结,并引起土体沉降,进而导致土体变形。
三、盾构掘进过程中的土体变形监测技术1. 测量技术a. 土体位移监测:通过安装测量点和测量仪器,对盾构掘进过程中的土体位移进行实时监测,可以掌握土体变形情况。
b. 土压力监测:通过设置土压力传感器,对盾构施工过程中土压力进行实时监测,可以判断土体变形的程度。
c. 周边建筑物监测:结合激光测距仪、倾斜仪等设备,对盾构掘进过程中的周边建筑物进行监测,以保证其安全。
2. 预警与控制技术a. 变形预警系统:结合监测数据与预警模型,建立盾构掘进过程中土体变形的预警系统,及时发现异常情况,采取措施防止事故发生。
b. 注浆技术:盾构掘进过程中,可以通过注浆技术,加固周围的土体,提高其强度和刚度,减小土体变形的风险。
c. 支护结构设计:通过合理的支护结构设计,可以减少土体变形,保证盾构施工过程的安全与稳定。
四、案例分析以某城市地铁盾构施工为例,运用上述土体变形监测技术,实施了以下措施:1. 安装土体位移监测设备,并结合激光测距仪和倾斜仪,对施工现场进行实时监测。
2. 设置土压力传感器,对盾构施工过程中的土压力进行实时监测。
3. 建立变形预警系统,及时发现土体变形异常情况,通过注浆技术加固变形区域。
地铁隧道结构的安全性评价及优化随着城市化进程不断加快,越来越多的人们选择地铁作为主要交通工具,城市地铁的运营质量和安全性越来越受到人们的关注。
而地铁的一个重要组成部分就是隧道结构,它直接关系到地铁的安全性。
本文将对地铁隧道结构的安全性评价及优化进行探讨。
一、地铁隧道结构的安全性评价地铁隧道结构的安全性评价是非常重要的,它是保障地铁安全运营的前提。
地铁隧道结构的安全性评价主要包括以下几方面:1.地表沉降地铁隧道结构施工时必须对地表沉降进行评估。
地面沉降是由于地下水位下降造成的,而地下水位下降则是由于地铁隧道挖掘所造成的。
地面沉降不仅会影响人民生活,也会影响地下管线的功能,甚至对房屋的安全会带来威胁。
2.隧道结构强度地铁隧道结构的强度是非常重要的,它能够保证隧道的安全性。
当地铁隧道结构的强度达不到要求时,就会出现隧道壁面开裂,隧道变形等现象,这些现象会给地铁的运营带来威胁。
3.隧道结构防水隧道结构防水是地铁隧道结构安全性评价的重要内容之一,它能够有效地防止隧道内的洪水和地下水渗漏。
如果隧道结构的防水措施不到位,就会导致洪水和地下水泛滥进入隧道,造成严重的安全事故。
二、地铁隧道结构的优化措施地铁隧道结构的优化措施有多种,下面介绍一些常用的措施:1.分类施工分类施工是指在地铁隧道结构施工时,根据不同的地质条件和隧道结构特点,采用不同的施工方法和技术。
这种施工方式可以有效地提高隧道结构施工的效率和质量,降低地铁隧道工程的风险。
2.优化隧道结构优化隧道结构是指对地铁隧道的结构进行适当改进,以提高结构的强度和安全性。
例如可采用高性能混泥土、预应力钢筋等先进技术和材料,以提高隧道结构的承载能力。
3.建立监测体系建立地铁隧道监测体系是非常必要的,它可以实时监控地铁隧道的安全性。
这种监测体系可以及时发现地铁隧道结构的变形和破坏,以及其他可能引起事故的因素。
三、总结地铁隧道结构的安全性评价及优化是确保地铁安全运营的关键技术。
基于智能型全站仪的地铁隧道变形自动化监测技术及应用摘要:在地铁建设和运行的时候,要始终监测隧道结构的变形情况,以往使用的人工监测技术很难达到预期的目标。
为了使地铁既有线路正常运行和在建项目顺利施工,可利用智能型全站仪自动化监测技术,实现对地铁隧道变形情况的实时监测。
文章从全站仪变形监测的原理入手,具体包含三维坐标监测原理、围岩收敛变形监测的目的与原理等内容,并围绕其设计和实现展开探讨,结合实际案例探讨其应用,保证地铁既有工程的正常运行和在建工程施工的顺利实施。
关键词:智能型全站仪;自动化监测;地铁隧道引言由于新建地铁工程工作量大,施工、计量工作繁杂,各种工作过程错综复杂,对邻近运营的轨道交通监控造成了一定的影响,故对已经投入运营的地铁进行实时监控。
智能全站仪的自动监控技术能够实现地下隧道的实时数据采集,从而准确、及时地掌握和了解隧道的变形情况,因此,采用智能全站仪对地下隧道的变形进行自动监控有着十分重要的意义。
地铁隧道变形监测精度高、频次高、时效性强,但是隧道变形监测环境复杂,天窗时间段,存在着一定的安全风险,常规的手工操作方式很难适应地铁监控的需要。
采用全天候自动化的变形监测方法,是目前地铁隧道监控的最佳方法。
全站仪自动化变形监控系统能够全天候、高精度、高频率、安全稳定地进行变形监测,并能实时、准确、快速、安全、稳定地进行变形监测,并产生变形曲线、变形报告,对安全事故进行预测,消除隐患,确保地铁的安全施工和运行。
1.地铁隧道施工监测现状目前国内隧道工程监测主要采用手工监测,其优点是简单、技术成熟可靠,但其缺点是时间短、监测效率低、成本高、危险性大。
采用自动监控技术对地铁隧道施工进行实时监控,是目前地铁隧道工程监控发展的必然趋势,通过自动监控技术,可以实现对隧道工程的实时监控,并对其进行快速、高效的分析,对解决人工测量弊端具有很强的实际意义。
目前,我国隧道工程监测的重点是隧道纵向变形监测、隧道横向变形监测、隧道管径收敛变形监测。
区域治理交通规划与工程现代测绘技术在地铁隧道变形监测中的应用研究罗子端浙江华东工程安全技术有限公司,浙江 杭州 310000摘要:全站仪自动化监测系统及三维激光扫描技术在现代化隧道变形监测中的应用,并在测量平差理论的基础上,对实测数据进行了精度分析。
结果表明,现代化变形监测技术较比传统变形监测方法在精度、效率以及自动化水平上有了明显的提高,是当今地铁隧道施工及运营维护中可靠的地保监测手段。
关键词:三维激光扫描技术;全站仪;地铁隧道;变形监测城市轨道交通是城市公共交通的骨干。
其中,地铁系统以其运量大、空间利用率高、安全节能等特点,成为当今城市化进程中优化城市交通的有效手段。
地铁建设和运营会带动沿途经济及城市建设的发展同时,会因地铁施工及沿线城市建设所造成的土体应力状态变化导致建筑物、构筑物及地铁结构的变形,从而产生安全隐患。
一、全站仪自动化监测系统全站仪自动化监测系统是集电磁波测距技术、数据库技术、移动互联网通讯及自动目标识别技术等,利用计算机语言开发,基于服务器、控制器、客户端等硬件的C/S架构的自动化测量系统。
该系统在待测区域内布设控制网,于各断面布设小棱镜,基于全站仪免棱镜测距及ATR技术实现自动化空间信息获取,其位移精度可达±0.3mm。
在实际工程应用中,以高精度电子水准仪观测沉降数据为准,对比该系统在沉降监测中的实际成果。
二、三维激光扫描技术相比传统监测方式和自动化监测技术而言,三维激光扫描技术作为变形监测领域的前沿技术,利用高速激光测距技术配合精密时钟编码器量测隧道实体空间离散矢量距离点即点云。
在扫描仪独立坐标系下的斜距、水平方向及距离、天顶距、反射强度等信息,配合CCD传感器解算空间实体拓扑信息,经过对点云数据的配准、抽稀、去噪及滤波等过程,最终实现对空间实体线、面、体等空间信息数字化高还原度重构。
三维激光扫描技术以其观测快速、主动式非接触测量、抗干扰能力强、数据精度高、成果直观等特点,适用于现代地铁高效施工及高频率运营维护中隧道变形监测工作。
隧道围岩的变形监测技术解析隧道工程在现代交通建设中起着至关重要的作用。
然而,由于复杂的地质条件和外力因素,隧道围岩在使用过程中往往会发生变形。
为了及时发现并解决这些变形问题,隧道围岩的变形监测技术应运而生。
本文将从多个角度对隧道围岩的变形监测技术进行解析。
一、传统监测方法传统的隧道围岩变形监测方法主要包括测量筛孔法、钢尺法和测量轮法。
测量筛孔法是通过在围岩表面钻孔并安装固定目镜进行测量的。
钢尺法则是以钢尺为工具,在围岩表面进行直接测量。
测量轮法则是在围岩表面进行直接测量,并根据测得的数据计算围岩变形量。
尽管这些方法成本低,但是由于操作复杂且容易受到人为因素的影响,其准确度和可靠性相对较低。
二、现代监测技术随着科技的进步,现代技术在隧道围岩的变形监测方面得到了广泛应用。
其中,常用的技术包括激光扫描测量、岩体控制点法和微插值方法。
激光扫描测量技术可以快速、准确地获取隧道围岩表面的几何形态变化。
该技术是通过激光器和高速获取系统进行测量,然后通过数据分析和处理,得到围岩的变形情况。
激光扫描测量技术具有高精度、无接触和全局测量的优点,可以大大提高变形监测的准确性。
岩体控制点法是通过在隧道围岩表面设置一系列控制点,通过测量这些控制点的坐标变化来反映围岩的变形情况。
该方法可以全方位地监测围岩的变形情况,并且对于不同类型的隧道具有较好的适应性。
微插值方法是一种基于数学模型的变形监测方法。
通过将围岩的变形信息建模,并利用插值算法进行数据处理,可以实现对围岩变形的精细化监测。
该方法具有较高的计算效率和准确性,适用于复杂地质条件下的隧道工程。
三、影响因素在实际监测过程中,影响隧道围岩变形监测的因素有很多。
其中,地质条件、围岩材料和施工技术是影响围岩变形的主要因素。
地质条件包括地下水位、地下应力、地层变形等。
围岩材料的性质也会对围岩变形产生重要影响,如围岩的岩性、裂隙度、岩层之间的接触性等。
此外,施工技术也是影响围岩变形的关键因素,包括掘进方法、支护方式以及施工质量等。
城市轨道交通隧道变形监测方法摘要:随着社会的不断发展和人们生活水平的不断提高,人们对城市的发展提出了更高的要求,这在一定程度上促进我国城市化的逐渐发展,而城市化发展最为重要的是城市轨道交通的建设和发展,在城市化建设过程中,城市轨道交通的建设常常容易受到一些自然因素影响,如果在轨道交通建设过程中出现降雨等情况,极有可能给导致轨道交通建设出现故障。
因此,在城市轨道交通建设过程中对其进行变形检测,可以大大降低隧道变形引发安全事故的可能性,保障施工和运营的安全。
在轨道交通建设过程中,地质条件直接决定了轨道交通隧道结构的稳定性,特别是考虑到地质结构的发展,很可能会部分或系统地影响轨道交通交通的结构。
关键词:城市轨道交通;隧道变形;监测方法引言在城市轨道交通工程中,隧道结构更为重要,直接影响到整个工程的运营管理效果。
但是,一些轨道交通隧道在运营过程中经常会出现变形问题,严重影响其性能和有效性,因此需要做好监管。
1城市轨道交通隧道变形监测重要性在轨道交通系统的建设和运营中,要做好隧道变形监测,在开挖和铺设过程中,要了解影响隧道变形的因素,建立科学的管理制度,确保将隧道整体结构的应力控制在合理的范围内,防止危险岩石的垂直或水平位移,防止隧道隐蔽变形的影响。
同时,在变形监测中,应及时开展数据和信息更新活动,了解可能出现的变形问题,遵循科学发展的原则,提高变形监测工作的整体效果,加强确保全面管理工作在各方面工作中发挥积极作用。
同时,在隧道变形监测中,要树立正确的安全管理理念,防范城市建设中的风险问题,监测技术和模式协调好各工作环节的关系,提高整体监测水平。
相关的工作人员还应积极总结工作水平,这样有助于丰富经验,建立科学合理的工作机制,确保工作整体效果全面提升,适应时代发展需要。
2城市轨道交通隧道变形监测方法(1)随着我国城市轨道交通建设的脚步逐渐加快,城市轨道交通的隧道变形监测工作也变得越来越重要,只有做好了隧道变形的监控,才能最大可能的减少建设过程中的安全隐患。
地铁工程变形监测方案一、项目概述地铁工程建设是城市交通发展的重要组成部分,也是大型公共基础设施建设的关键项目。
在地铁建设和运营过程中,地铁隧道、车站和地下结构的变形监测是一项十分重要的工作。
通过对地铁工程的变形进行定期监测和分析,可以及时发现和处理潜在的安全隐患,保障地铁工程运营的安全和稳定。
本文将就地铁工程变形监测的方案进行详细介绍,包括监测的对象、监测的内容、监测的方法和技术手段等方面,旨在为地铁工程建设和运营提供科学、可靠的变形监测方案。
二、监测对象地铁工程的变形监测对象主要包括地铁隧道、车站和地下结构。
地铁隧道是地铁线路的主要组成部分,其稳定性直接关系到地铁运行的安全和顺畅。
地铁车站是地铁线路的重要节点,其安全稳定性对地铁的客流量和运营效率有着重要的影响。
地下结构主要包括隧道周边的地基土体和基础设施,其变形状态直接关系到地铁工程的整体安全。
三、监测内容地铁工程的变形监测内容主要包括地表沉降、隧道变形、地下水位变化、地铁结构振动等多个方面。
其中,地表沉降是地铁工程建设过程中常见的问题,其变形监测能够及时发现并处理地表沉降造成的安全隐患。
隧道变形是地铁工程变形监测的重点内容,主要包括隧道的收敛变形、开挖变形、压裂变形等多种形式。
地下水位变化是地铁工程变形监测的重要内容之一,其变形监测能够及时发现并处理地下水位引发的地铁工程漏水等安全隐患。
地铁结构振动是地铁运营期间的变形监测内容,主要包括地铁列车行驶和乘客运营等因素引发的地铁结构振动。
四、监测方法地铁工程变形监测的方法主要包括传统监测方法和新兴监测技术两种。
传统监测方法主要包括地表测点监测、隧道地表沉降观测、地下水位监测等。
新兴监测技术主要包括遥感监测、激光测量、地面雷达等技术手段,这些技术手段能够较好地实现地铁工程变形的实时监测和分析。
五、监测技术手段地铁工程变形监测的技术手段主要包括监测系统、传感器设备、数据处理软件等多个方面。
监测系统是地铁工程变形监测的基础设施,其能够通过监测点布设和数据采集实现对不同变形内容的监测。
轨道交通(地铁)专项监测技术总结及数据分析摘要:为保障地铁前期建设施工的顺利进行以及后期的安全运营,地铁监测工作将伴随着地铁建设及运营的全过程。
地铁结构(主要有车站、隧道)变形可发生在建设期、运营期,也可发生在外部施工作业期。
为满足施工和后期运营接管单位对沉降测量与管径收敛测量的要求,编制详细的测量方案,合理布设长期沉降观测点,并结合长期沉降观测点合理布设长期收敛测量标志,按照相关规定及规范采集数据并经严密平差计算,形成测量成果报告。
为轨道交通运营阶段长期线路结构监测采集线路初始数据,确定合适的技术标准和参照基准,为隧道安全提供基础数据。
关键词:专项监测、沉降、收敛、自动化监测、钢环1、引言随着我国经济的发展城市化率的不断提高,城市交通与城市发展的矛盾问题日益突出。
为提高城市空间的综合利用率,发展城市轨道交通成为缓解交通和城市用地这一矛盾的关键。
地铁隧道在多种因素影响下,会出现土体变形、沉降情况。
土体变形、沉降达到一定限度,不仅会影响地铁施工及后期的正常运行,还可能引发安全事故,造成人员伤亡,因此需要全程对其进行监测。
在地铁隧道建设期因地质、施工事故及地铁运营期外部施工等可能引起地铁隧道结构变形的情况要进行地铁专项监测。
2、项目背景某轨交线路某段上下行安全联络通道建设过程中出现大面积渗漏。
针对该区段情况采取了内衬钢环加固。
为保障建设施工及后期地铁的安全运营,对该区段进行专项监测工作。
3、项目概况3.1、监测区域简表表1.某轨道交通某号线某站1#联络通道区域简况3.2、监测范围及内容该项目监测范围为:上行线1545环~1400环(其中1460环~1481环为钢环片)、下行线1545环~1400环(其中1458环~1485环为钢环片)。
监测内容包含:静力水准自动化沉降监测、人工沉降监测及人工收敛监测3.3、监测频率静力水准自动化沉降监测采样频率为1次/2小时;人工沉降、收敛及裂隙监测频率为2次/周—1次/月。
工业技术科技创新导报Science and Technology Innovation Herald83DOI:10.16660/ k i.1674-098X.2017.21.083运营中地铁隧道变形的动态监测方法及研究张明(上海轨道交通监护管理办公室 上海市 200070)摘要:上海地铁隧道的变形及形变的因素有很多,包括地质条件、地下水状况、地表沉降、安保区违规施工等因素,均会对在建地铁、运营地铁产生一定影响。
如果不能对地铁隧道重点区间进行全天候实时监测,造成的后果难以估量。
工程经验表明地铁隧道一旦发生险情,将会造成巨大的灾难和损失,民众也会恐慌心理,对社会安定产生不良影响。
该研究借助某工程施工监测状况进行了分析,对紧邻基坑施工扰动影响的隧道变形进行了全面合理的动态监测,主要使用设备为全站仪,可实现24 h无人值守连续监测,每次监测均可在地铁运行间隔内完成要求。
监测数据、采集数据可为后期施工提供一定的理论参考依据,为工程应用的顺利实现打下良好的基础。
关键词:地铁隧道;变形监测;基坑施工;安全控制中图分类号:U457文献标识码:A文章编号:1674-098X(2017)07(c)-0083-02近年来上海地铁的运营里程的不断增加,数以千万的日客流量已成为常态化,轨道交通大动脉的贯通,为城市高速发展奠定了基础,为上海这座金融中心的提供了强大发展动力。
随着网络化运营的发展,地铁沿线周围深基坑开挖作业不断增多,部分基坑与地铁隧道间距越来越小。
加强运营期地铁隧道的维保工作,减小紧邻地铁隧道基坑开挖、建筑施工等作业产生的负面影响,是当下地铁运营期需主要考虑的任务。
信息化施工在当前在建地铁,运营线路施工中贯穿始终,信息化作业可有效指导施工过程。
施工中主要采用时空效应法、逆作法及注浆法等保护临近隧道,避免隧道变形等状况的发生。
但上述一切要求需建立在对地铁隧道变形的严密监控基础上。
常规地铁变形监测方法主要有:连通管法、巴塞特等手段,对运营地铁速调的监测难度较高。
地铁盾构施工穿越高速铁路车站变形监测技术【摘要】地铁盾构施工穿越高速铁路车站变形监测技术是一项关键的工程技术,本文首先介绍了这一技术的背景和意义。
随后通过概述地铁盾构施工技术、阐述高速铁路车站的特点、探讨变形监测技术的重要性、分析穿越高速铁路车站的挑战以及探讨地铁盾构施工在此过程中的技术应用,全面展示了这一技术的复杂性和可行性。
结尾部分包括对地铁盾构施工穿越高速铁路车站变形监测技术的发展前景进行展望,同时对全文内容进行了总结。
地铁盾构施工穿越高速铁路车站的技术应用对于城市交通建设具有重要意义,值得进一步深入研究和推广。
【关键词】地铁盾构施工、高速铁路车站、变形监测技术、挑战、技术应用、发展前景、监测、施工技术、变形、车站、穿越、监测、发展、安全、工程、施工。
1. 引言1.1 介绍地铁盾构施工穿越高速铁路车站变形监测技术变形监测技术在地铁盾构施工中扮演着至关重要的角色,它可以实时监测地铁盾构施工过程中周围环境的变形情况,及时发现并处理潜在的安全隐患。
特别是在穿越高速铁路车站这样的复杂环境中,变形监测技术更是必不可少。
只有通过监测技术的精密监控,才能确保地铁盾构施工过程中不会对高速铁路车站造成影响,保障施工的顺利进行和车站的安全运营。
2. 正文2.1 地铁盾构施工技术概述地铁盾构是一种在地下施工的机械化土方开挖工具,是地铁隧道施工中常用的技术之一。
盾构施工主要是利用土压平衡的原理,通过推进机构将盾构机沿着预定的隧道线路向前推进,同时利用推进机构和掘头进行土方开挖,形成地铁隧道。
地铁盾构施工技术通常适用于软土、淤泥等地质条件下的隧道施工。
地铁盾构机通常由推进机构、主机构、掘进机构、控制机构等部分组成,通过这些部分的协作实现地铁隧道的施工。
推进机构主要负责推动盾构机向前推进,保证隧道的开挖和施工进度;主机构负责支撑和保护隧道结构,提供稳定的推进环境;掘进机构负责土方的开挖和排运;控制机构则负责监控和调控盾构机的施工参数,保证施工质量和安全。
地铁隧道变形监测技术及分析预报方法研究作者:凌邦富来源:《中小企业管理与科技·中旬刊》2015年第09期摘要:随着城市地下轨道交通网的建设和发展,建设运营中的隧道可能会在多种因素的影响下发生不同程度的变形,传统的人工变形监测技术无法满足工程的实际需求,利用测量机器人对隧道工程进行实时的自动监测可为隧道工程的建设和后期维护提供可靠的数据参考。
本文主要以地铁隧道的变形监测为核心,围绕变形发生的原因、监测内容、监测技术、自动监测的应用、数据处理等内容展开相关讨论。
关键词:隧道工程;变形监测;三维监测技术;数据处理1 概述经济的发展,社会的进步,离不开交通运输行业的支持,随着我国城市化进程的不断加快,社会对交通运输行业的要求越来越高,而在人均占地面积不断减小的情况下,发展交通运输业,只能依靠地下隧道交通运输的发展。
地铁隧道工程在建设中和建设后,可能会由于自身结构、地质、水体、临近地区施工等因素的影响,发生隧道裂缝、变形等危及隧道安全的病害,因此对地铁隧道进行实时的、长期的变形监测以便及时发现险情,保障隧道运营的安全性是十分必要的;地铁隧道的变形监测不仅可为地铁的安全运营提供可靠保障,还能为今后地铁工程的修建及周边工程的施工提供重要的参考价值。
2 地铁隧道变形监测2.1 地铁隧道变形原因2.1.1 轨道结构变形地铁隧道变形包括轨道结构变形和隧道结构变形两种形式。
其中轨道结构变形的主要原因是列车荷载长期对轨道产生反复作用,使轨道发生几何偏差,进而影响轨道的平整性和顺畅性;除列车荷载作用外,隧道周边建设施工的卸载、负荷、加载也会引起道床的不均匀沉降,这种沉降同样会影响轨道的平整度及顺畅性。
对于铁路来说,地铁运行车辆重量较轻、速度低,轨道和车辆行走部分的变形一般不会引起地铁事故,但轨道变形造成的不平顺可能会导致列车发生不正常振动,这会降低列车运行的稳定性,减少用户的舒适度,更重要的是会加快轨道结构部件的损坏速度,从而间接影响列车的行车安全。