数字信号处理习题课11
- 格式:ppt
- 大小:934.50 KB
- 文档页数:10
《数字信号处理》习题集一. 填空题1、一线性时不变系统,输入为 x〔n〕时,输出为y〔n〕;则输入为2x〔n〕时,输出为;输入为x〔n-3〕时,输出为。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真复原,采样频率fs与信号最高频率f max关系为:。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X〔e jw〕,它的N点离散傅立叶变换X〔K〕是关于X〔e jw〕的点等间隔。
4、有限长序列x(n)的8点DFT为X〔K〕,则X〔K〕= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的所产生的现象。
6、δ(n)的z变换是。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较,阻带衰减比较。
8、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= 。
9、假设正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。
10、序列x1〔n〕的长度为4,序列x2〔n〕的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。
11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的,而周期序列可以看成有限长序列的。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= 。
13、无限长单位冲激响应〔IIR〕滤波器的结构是型的。
14.线性移不变系统的性质有、和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有、和。
16.无限长单位冲激响应滤波器的基本结构有型,型和。
17.如果通用电脑的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此电脑上计算210点的基2 FFT需要级蝶形运算,总的运算时间是______μs。
18.用窗函数设计FIR滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。
数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4.如果输入信号为,求下述系统的输出信号。
1-1画出下列序列的示意图(1)(2)(3)(1)(2)(3)1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。
图1.41 信号x(n)的波形(1) (2)(3) (4)(5) (6)(修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期(1)解:非周期序列;(2)解:为周期序列,基本周期N=5;(3)解:,,取为周期序列,基本周期。
(4)解:其中,为常数,取,,取则为周期序列,基本周期N=40。
1-4 判断下列系统是否为线性的?是否为移不变的?(1)非线性移不变系统(2) 非线性移变系统(修正:线性移变系统)(3) 非线性移不变系统(4) 线性移不变系统(5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的?(1) ,其中因果非稳定系统(2) 非因果稳定系统(3) 非因果稳定系统(4) 非因果非稳定系统(5) 因果稳定系统1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图(1)(2)(3)解:(1)(2)(3)1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真?(1)(2)(3)解:(1)采样不失真(2)采样不失真(3),采样失真1-8已知,采样信号的采样周期为。
(1) 的截止模拟角频率是多少?(2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何?(3)若,求的数字截止角频率。
解:(1)(2)(3)1-9计算下列序列的Z变换,并标明收敛域。
(1) (2)(3) (4)(5)解:(1)(2)(3)(4) ,,收敛域不存在(5)1-10利用Z变换性质求下列序列的Z变换。
(1)(2)(3)(4)解:(1) ,(2) ,(3),(4) , 1-11利用Z变换性质求下列序列的卷积和。
(1)(2)(3)(4)(5)(6)解:(1) ,,,,(2) ,,,(3) , ,,(4) ,,(5) ,,,(6) ,,,1-12利用的自相关序列定义为,试用的Z 变换来表示的Z变换。
【最新整理,下载后即可编辑】第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T表示采样周期(假设T足够小,足以防止混叠效应),把从t x到的整个系统等效为一个模拟滤波器。
)(t y)((a ) 如果kHz T rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X T j X T e Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
习 题1. 给定 f(t) = rect(t+2) + rect(t-2), 画出下列函数的图形。
(a) f(t)(b) g(t) = f(t-1) (c) h(t) = f(t)u(t) (d) f(t/2)2. 设 f(t) 是某一函数,a, t 0, T 为实常数,证明:(a))()()()(000t t t t f a at t f -=-δδ(b))()(1)()(000a t a f a at t f t t t -=-δδ(c))()()()(00nT t nT f TTt comb t f t tt n --+=-∑∞-∞=δ3.(a) 如 f(t) F(Ω),证明:eeetjty j tj t f dy y F F Ω-∞∞--Ω-Ω-==*Ω⎰)(2)()()(π(b) 用 (a ) 的结果,证明频域卷积定理)()(21)()(2121Ω*Ω↔F Ffft t π4. 求下图中 f(t) 脉冲的傅氏变换。
5. (a) )()()(a H H -Ω=Ω*Ωδ(b) )()()(0Ω+Ω=Ω+Ω*Ω∑∑∞-∞=∞-∞=n H n H n n δ6. 设eta t f -=)(,证明脉冲序列)()(nT t nT f n -∑∞-∞=δ的傅氏变换等于aTaT aT e T e e 22cos 211---+Ω--7.(a) 证明T n n n jnT eπδ2),(1000=ΩΩ+Ω=Ω∑∑∞-∞=∞-∞=Ω-(b) 若f(t) F(Ω),证明)()(0Ω+Ω=∑∑∞-∞=∞-∞=Ω-n F nT f Tn n jnT e习 题1. 下列系统中,y(n) 表示输出,x(n) 表示输入,试确定输入输出关系是否线性?是否非移变?(a) y(n) = 2x(n) +3(b) y(n) = x 2(n)(c) ∑-∞==nm m x n y )()(2. 确定下列系统是否因果的?是否稳定的? (a) y(n) = g(n) x(n), g(n) 有界(b) ∑-==nk n k x n y 0)()( n>n 0 (c) y(n) = x(n-n 0)(d) x(n) = a nu(n), h(n) = u(n)(e) x(n) = a n u(n), h(n) = (1/2) nu(n)3. x(n) 为输入序列, h(n) 为系统的单位取样响应序列,确定输出序列 y(n), (a) 如图 p 2.1 (a) 所示 (b) 如图 p 2.1 (b) 所示 (c) 如图 p 2.1 (c) 所示⎪⎩⎪⎨⎧=0)(a n n h⎪⎩⎪⎨⎧=-0)(0βn n x n 的卷积 y(n) = x(n) * h(n)5. 讨论具有下列单位取样响应的线性时域离散非移变系统。
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。