6-函数的单调性
- 格式:doc
- 大小:184.52 KB
- 文档页数:8
函数的单调性知识要点1、函数单调性定义:如果对于任意的 x 1、x 2∈(a,b),当x 1<x 2时,都有f (x 1)<f (x 2)〔或f (x 1)>f (x 2)〕,那么就说f (x )在这个区间(a,b)上是增函数(或减函数),(a,b)叫这个函数的单调递增(或递减)区间,说f (x )在这一区间上具有(严格的)单调性。
2、函数单调性指的是某个区间上的性质,是定义域中的一部分;要说函数是增函数则必须在整个定义域内递增;函数在每个区间上递增也未必是增函数,如正切函数,y = -1/x 等;3、复合函数单调性:同增异减4、判断函数单调性的方法:①定义法,即比较法;②图象法;③复合函数单调性判断法则;6、一些常用的结论:①在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数②函数(0)k y x k x=+>是奇函数,在(,-∞和)+∞上递增;在)⎡⎣和(0上是递减,进而可确定k y ax x =+型函数的的单调区间。
题型归类题型一:判断或证明函数的单调性例1 利用单调性的定义证明函数3()1f x x =-+在(-∞,+∞)上是减函数。
变式训练:讨论函数y =x +a x,(a >0)的单调性。
题型二:利用单调性求参数的值或取值范围例2(2004湖南)若f (x )= -x 2+2ax 与1)(+=x a x g 在区间[1,2]上都是减函数,则a 的值范围是题型三:函数单调性的应用例3 已知函数)(x f 的定义域是),0(+∞。
当1>x 时,,0)(>x f 且).()()(y f x f xy f +=(1) 求)1(f ;(2)证明)(x f 在定义域上是增函数;(3)如果1)31(-=f ,求满足不等式2)21()(≥--x f x f 的x 的取值范围。
函数单调性、奇偶性、周期性◆知识点梳理 (一)函数的奇偶性:1、定义域关于原点对称 奇函数)(x f 在原点有定义,则0)0(=f ;2、)(x f 是奇函数⇔)()(x f x f -=-⇔)(x f 图像关于原点对称;3、)(x f 是偶函数)()(x f x f =-⇔⇔)(x f 图像关于y 轴对称;4、一些判断奇偶性的规律: ①奇±奇=奇,偶±偶=偶②奇×/÷奇=偶,奇×/÷偶=奇,偶×/÷偶=偶(二)函数的单调性 方法:①导数法; ②规律判断法;③图像法。
1、单调性的定义:)(x f 在区间M 上是增(减)函数,,21M x x ∈∀⇔当21x x <时)0(0)()(21><-x f x f2、采用单调性的定义判定法应注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断正负; 3、对于已知单调区间求参数围,一般有以下两种方法: ①转化为恒成立问题,接着用求最值的视角去解决;②先求出该函数的完整单调区间,根据此区间比已知单调区间大去求解。
4、一些判断单调性的规律: ①减 + 减 =减,增 + 增 = 增;②1()()()f x f x f x -与、的单调性相反;(三)复合函数单调性的判定:定义域优先考虑1、首先将原函数)]([x g f y =分解为基本初等函数:)(x g u =与)(u f y =;2、分别研究两个函数在各自定义域的单调性;3、根据“同增异减”来判断原函数在其定义域的单调性。
(四)函数的周期性1、周期性的定义:若有)()(x f T x f =+,则称函数)(x f 为周期函数,T 为它的一个周期。
如没有特别说明,遇到的周期都指最小正周期。
2、三角函数的周期①π==T x y :tan ,||:tan ωπω==T x y ②||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y 3、与周期有关的结论:①)()(a x f a x f -=+或(2)()f x a f x +=⇒)(x f 的周期为a 2; ②)()(x f a x f -=+⇒)(x f 的周期为a 2;③1()()f x a f x +=⇒)(x f 的周期为a 2;◆考点剖析(一)考查一般函数的奇偶性例1、 设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值围是 .变式1、 若函数(1)()y x x a =+-为偶函数,则a =( ) A .2- B .1- C .1 D .2变式2、 函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称(二)考查函数奇偶性的判别 例2、判断下下列函数的奇偶性(1)22(1),0()(1),0x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩ (2)24()|3|3x f x x -=--变式3、已知函数0()(2≠+=x xax x f ,常数)a ∈R . (1)讨论函数)(x f 的奇偶性,并说明理由;变式4、判断下下列函数的奇偶性(1)21()log 1x f x x -=+ (2)1,0()1,0x x f x x x ->⎧=⎨--≤⎩(三)考查抽象函数的奇偶性例3、已知函数f(x),当x,y ∈R 时,恒有f(x+y)=f(x)+f(y).求证:f(x)是奇函数;变式5A 、若定义在R 上的函数f(x)满足:对任意12,x x ∈R 有1212()()()1f x x f x f x +=++,则下列说法一定正确的是( )(A)f(x)为奇函数 (B )f(x)为偶函数 (C) f(x)+1为奇函数 (D )f(x)+1为偶函数变式5B 、已知函数()f x ,当,x y R ∈时,恒有()()()f x y xf y yf x +=+,求证()f x 是偶函数。
高三数学函数的单调性、反函数知识精讲一. 本周教学内容: 函数的单调性、反函数【基本知识】一. 函数的单调性1. 函数的单调性及单调区间 (1)增函数:对任意,则为上的增函数。
,,,,x x a b x x f x f x f x a b 121212∈<⇒<[]()()()[] (2)减函数:对任意,则为上的减函数。
,,,,x x a b x x f x f x f x a b 121212∈<⇒>[]()()()[] 单调区间:在某个区间M 上的递增函数或递减函数统称在区间M 上的单调函数,而这个区间M 称为单调区间。
图像特征:单增函数从左至右逐渐上升,单减函数从左至右逐渐下降。
注意:单调性必须以范围为前提,奇偶具有整体性,而单调性具有局部性。
2. 基本函数的单调性(1)一次函数y=kx+b ,当k>0时为定义域上的增函数;当k<0时为定义域上的减函数。
(2)二次函数y=ax 2+bx+c ,当a>0,在()[)-∞--+∞,,单减,在b a ba22 单增,当时,在上单增,在上单减。
,,a b a ba<-∞--+∞022()[)()反比例函数,当,在单减,在上单减,当,上,3000y kxk =>-∞+∞()()k<0,在(-∞,0)单增,在(0,+∞)单增。
(4)指数函数y=a x ,当a>1时,在R 上单增,当0<a<1时,在R 上单减。
(5)对数函数y=log a x ,当a>1时,在(0,+∞)单增,当0<a<1时,在(0,+∞)单减。
(6)幂函数y=x a ,当a<0时,在(0,+∞)上单减,当a>0时,在(0,+∞)上单减,x ∈(-∞,0)上的情形可借助函数的定义域和奇偶性判断。
3. 复合函数的单调性(不要求证明)4. 单调性的判断与证明:(1)范围是前提(先明确在某区域内)(2)定义即方法(用定义证明) (3)步骤:第一步:任取且,,;x x a b x x 1212∈<[] 第二步:证明(或)f x f x f x f x ()()()()1212<> 第三步:由定义得结论其中关键在于第二步证明,常用方法是作差→变形→判断符号。
第六章 微分中值定理及其应用§1.拉格朗日中值定理和函数的单调性引言为了了解中值定理的背景,我们可作以下叙述:弧AB 上有一点P ,该处的切线平行与弦AB .如何揭示出这一叙述中所包含的“数量"关系呢?联系“形”、“数”的莫过于“解析几何",故如建立坐标系,则弧AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f (x )在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()()f b f a b a --,曲线y=f(x )上点P 的切线平行于弦AB ⇔()()()f b f a f b aξ-'=-. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及函数在端点的函数值.这样这个公式就把函数及其导数联系起来.在二者之间架起了一座桥梁,这座“桥”就是导数在研究函数方面应用的理论基础.鉴于(,)a b ξ∈,故把类似公式称为“中值公式”;把类似的定理称为中值定理.剩下的问题是:中值定理何时成立呢?观察如下事实,可以发现:如果y=f(x)在[a,b]上不连续或不可导(无切线),是不一定有上述结论的.换言之,如保证类似点P 存在,曲线弧AB 至少是连续的,而且处处有切线.反映到函数y=f (x )上,即要求y=f (x)在[a,b ]上连续,在(a,b)内可导.一、 罗尔中值定理与拉格朗日中值定理1、罗尔中值定理定理6.1:若f 满足如下条件:(1)f ∈[a,b ];(2)f 在(a ,b )内可导;(3)f (a)=f (b),则存在ξ∈(a,b),使得()0f ξ'=.(分析)由条件(1)知f 在[a ,b]上有最大值和最小值,再由条件(2)及(3),应用费马定理便可得到结论.证明:因为f 在[a,b ]上连续,所以有最大值与最小值,分别用M 与m 表示,现分两种情况讨论:(i)若M = m , 则 f 在[a ,b ]上必为常数,从而结论显然成立.(ii )若m < M ,则因 f (a)=f (b ),使得最大值M 与最小值m 至少有一个在(a ,b)内某点ξ处取得,从而ξ是f 的极值点,由条件(2) f 在点ξ处可导,故由费马定理推知)(ξf '=0。
第6课函数的单调性【自主学习】第6课函数的单调性(本课时对应学生用书第页)自主学习回归教材1.(必修1P40练习8改编)下列说法中,正确的是.(填序号)①若定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)是R上的单调增函数;②若定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上不是单调减函数;③若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间[0,+∞)上也是单调增函数,则函数在R上是单调增函数;④若定义在R上的函数f(x)在区间(-∞,0]上是单调增函数,在区间(0,+∞)上也是单调增函数,则函数在R上是单调增函数.【答案】②③【解析】根据单调性的定义,结合函数图象分析.2.(必修1P55习题8改编)函数f (x )=ln(4+3x-x 2)的单调减区间是 .【答案】342⎡⎫⎪⎢⎣⎭, 【解析】函数f (x )的定义域是(-1,4),令u (x )=-x 2+3x+4,则u (x )=23--2x ⎛⎫⎪⎝⎭+254的单调减区间为342⎡⎫⎪⎢⎣⎭,.因为e >1,所以函数f (x )的单调减区间为342⎡⎫⎪⎢⎣⎭,.3.(必修1P44习题4改编)已知函数y=f (x )是定义在R 上的单调减函数,则满足f (2-a 2)<f (a )的实数a 的取值范围为 . 【答案】(-2,1)【解析】由于f (x )在R 上是单调减函数,所以由f (2-a 2)<f (a ),可得2-a 2>a ,解得-2<a<1.4.(必修1P44习题2改编)若函数f (x )=x 2-mx+3在[2,+∞)上是增函数,则实数m 的取值范围为 . 【答案】(-∞,4]【解析】依题意得2m≤2,解得m ≤4.1.函数单调性的定义(1)一般地,对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(或都有f(x1)>f(x2)),那么就说f(x)在这个区间上是增函数(或减函数).(2)如果函数y=f(x)在某个区间上是增函数(或减函数),那么就说f(x)在这个区间上具有(严格的)单调性,这个区间叫作f(x)的单调区间;若函数是增函数,则称该区间为增区间;若函数为减函数,则称该区间为减区间.2.复合函数的单调性对于函数y=f(u)和u=g(x),如果当x∈(a,b)时,u∈(m,n),且u=g(x)在区间(a,b)上和y=f(u)在区间(m,n)上同时具有单调性,那么复合函数y=f(g(x))在区间(a,b)上具有单调性,并且具有这样的规律:增增(或减减)则增,增减(或减增)则减.3.求函数单调区间或证明函数单调性的方法(1)函数单调性的定义法;(2)函数的图象法;(3)导函数法.【要点导学】要点导学各个击破函数单调性的判断与证明例1 (2015·南京一中)已知函数f (x )=-xx a (x ≠a ). (1)若a=-2,求证:f (x )在(-∞,-2)上单调递增;(2)若a>0且f (x )在(1,+∞)上单调递减,求实数a 的取值范围.【思维引导】用定义证明函数单调性:设元取值,作差变形,确定符号,得出结论;利用导数证明函数单调性:求导函数,确定符号,得出结论.【解答】(1)任取x 1<x 2<-2,则f (x 1)-f (x 2)=112x x +-222x x +=12122(-)(2)(2)x x x x ++.因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2,则f (x 1)-f (x 2)=11-x x a -22-x x a =2112(-)(-)(-)a x x x a x a .因为a>0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 综上,实数a 的取值范围是(0,1].【精要点评】判断函数的单调性或求函数的单调区间的一般方法有:(1)定义法;(2)图象观察法;(3)利用已知函数的单调性;(4)利用复合函数的单调性法则;(5)导数法.利用定义法的关键是对f (x 1)-f (x 2)的整理、化简、变形和符号的判断,其中变形的策略有因式分解、配方、分子(分母)有理化等.变式 已知函数f (x )=x+1x ,求证:函数f (x )在区间(0,1]上是单调减函数. 【解答】在区间(0,1]上任取x 1,x 2,且x 1<x 2.则f (x 1)-f (x 2)=111x x ⎛⎫+ ⎪⎝⎭-221x x ⎛⎫+ ⎪⎝⎭=(x 1-x 2)+2112-x x x x =121212(-)(-1)x x x x x x , 因为x 1<x 2,所以x 1-x 2<0, 又因为0<x 1<x 2≤1, 所以x 1x 2>0,x 1x 2-1<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在区间(0,1]上是单调减函数.结合函数单调性求参数范围例2 若函数f (x )=-11ax x +在区间(-∞,-1)上是减函数,求实数a 的取值范围. 【思维引导】利用函数的单调性求参数的取值范围,解题思路为视参数为已知数,依据函数的图象或单调性的定义,确定函数的单调区间,与已知单调区间比较求参.【解答】f (x )=-11ax x +=a-11a x ++,设x 1<x 2<-1,则f (x 1)-f (x 2)=11-1a a x ⎛⎫+ ⎪+⎝⎭-21-1a a x ⎛⎫+ ⎪+⎝⎭=211a x ++-111a x ++=1221(1)(-)(1)(1)a x x x x +++. 又函数f (x )在(-∞,-1)上是减函数, 所以f (x 1)-f (x 2)>0, 由于x 1<x 2<-1,所以x 1-x 2<0,x 1+1<0,x 2+1<0, 所以a+1<0,即a<-1.故实数a 的取值范围是(-∞,-1).【精要点评】已知函数的单调性确定参数的值或范围,可以通过解不等式或转化为不等式恒成立问题求解.需要注意的是,若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.变式(1)如果二次函数f(x)=x2-(a-1)x+5在区间112⎛⎫⎪⎝⎭,上是增函数,那么f(2)的取值范围为.(2)已知函数f(x)=21-212-1xx a xa a x⎧+≤⎪⎨⎪>⎩,,,,若f(x)在(0,+∞)上单调递增,则实数a的取值范围为.【答案】(1)[7,+∞)(2)(1,2]【解析】(1)由于f(2)=22-(a-1)×2+5=-2a+11,所以求f(2)的取值范围就是求一次函数y=-2a+11的值域,当然就应先求其定义域.二次函数f(x)在区间112⎛⎫ ⎪⎝⎭,上是增函数,由于其图象开口向上,于是-12a≤12,解得a≤2,故f(2)≥-2×2+11=7,即f(2)的取值范围是[7,+∞).(2)由题意,得12+12a-2≤0,且a>1,解得1<a≤2,所以实数a的取值范围为(1,2].抽象函数的单调性例3已知函数f(x)对于任意的x,y∈R,总有f(x)+f(y)=f(x+y),f(1)=-23,且当x>0时,f(x)<0.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.【思维引导】(1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值,证明f(x)为单调减函数的首选方法是选用单调性的定义来证.(2)用函数的单调性即可求最值.【解答】(1)方法一:因为函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),令x=y=0,得f(0)=0.再令y=-x,得f(-x)=-f(x).在R上任取x1>x2,则x1-x2>0,f(x)-f(x2)=f(x1)+f(-x2)=f(x1-x2).1因为当x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2).因此函数f(x)在R上是减函数.方法二:设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x)=f(x1-x2).2因为当x>0时,f(x)<0,而x1-x2>0,所以f(x1-x2)<0,即f(x1)<f(x2),所以函数f(x)在R上为减函数.(2)因为f(x)在R上是减函数,所以f(x)在[-3,3]上也是减函数,所以f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2,所以函数在[-3,3]上的最大值为2,最小值为-2.【精要点评】对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x1,x2,在所给区间内比较f(x1)-f(x2)与0的大小,或比较12()()f xf x与1的大小.有时根据需要,需作适当地变形,如x1=x2·12xx或x 1=x2+x1-x2等;利用函数单调性可以求函数最值.变式已知函数f(x)对任意的m,n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.【解答】(1)设x1<x2,所以x2-x1>0,因为当x>0时,f(x)>1,所以f(x2-x1)>1.又f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,所以f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),所以f(x)在R上为增函数.(2)因为m,n∈R,不妨设m=n=1,所以f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,f(3)=4⇒f(2+1)=f(2)+f(1)-1=3f(1)-2=4,所以f(1)=2,所以f(a2+a-5)<2=f(1),因为f(x)在R上为增函数,所以a2+a-5<1⇒-3<a<2,即不等式的解集是(-3,2).1.(2014·南通中学)已知函数f(x)为R上的减函数,那么满足f(|x|)<f(1)的实数x 的取值范围是.【答案】(-∞,-1)∪(1,+∞)【解析】因为f(x)为R上的减函数,且f(|x|)<f(1),所以|x|>1,所以x<-1或x>1.2.(2015·海安中学)已知函数f(x)=(3-1)41log1aa x a xx x+<⎧⎨≥⎩,,,在(-∞,+∞)上是减函数,则实数a的取值范围是.【答案】11 73⎡⎫⎪⎢⎣⎭,【解析】因为函数f(x)=(3-1)41log1aa x a xx x+<⎧⎨≥⎩,,,在区间(-∞,+∞)上是减函数,那么在每一段上都是递减的,可知3a-1<0,0<a<1,且3a-1+4a≥0,所以实数a的取值范围是1173⎡⎫⎪⎢⎣⎭,.3.(2014·苏锡常镇调研)已知奇函数f(x)是R上的单调函数,若函数y=f(x2)+f(k-x)只有一个零点,则实数k的值为.【答案】1 4【解析】令y=f(x2)+f(k-x)=0,得f(x2)=-f(k-x)=f(x-k).又f(x)是R上的单调函数,故原命题等价于方程x2=x-k有唯一解,由Δ=0,得k=1 4.4.(2015·陕西卷改编)设f(x)=ln x,0<a<b,若p=f,q=f2a b+⎛⎫⎪⎝⎭,r=12[f(a)+f(b)],有下列关系式:①q=r<p;②q=r>p;③p=r<q;④p=r>q,其中正确的是.(填序号)【答案】③【解析】p=f(ab)=ln ab=12ln ab,q=f2a b+⎛⎫⎪⎝⎭=ln2a b+,r=12[f(a)+f(b)]=12 ln ab.因为2a b+>ab,且f(x)=ln x在(0,+∞)上是单调增函数,所以f 2a b+⎛⎫⎪⎝⎭>f(ab),所以q>p=r.5.(2015·盐城中学)已知函数f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,求实数m的取值范围.【解答】因为f(x)在(-2,2)上是减函数,所以由f(m-1)-f(1-2m)>0,得f(m-1)>f(1-2m),所以-2-12-21-22-11-2mmm m<<⎧⎪<<⎨⎪<⎩,,,即-1313-2223mmm⎧⎪<<⎪⎪<<⎨⎪⎪<⎪⎩,,,解得-12<m<23,所以实数m的取值范围是12-23⎛⎫⎪⎝⎭,.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第11~12页.【检测与评估】第6课函数的单调性一、填空题1.(2014·郑州质检)已知定义在R上的函数f(x)是增函数,那么满足f(x)<f(2x-3)的x的取值范围是.2.若函数y=2x2-(a-1)x+3在(-∞,1]上单调递减,在(1,+∞)上单调递增,则实数a的值是.3.函数y=-(x-3)|x|的单调增区间是.4.若函数f(x)=12axx++在区间(-2,+∞)上是增函数,则实数a的取值范围是.5.若函数f(x)=x-[1,4]上单调递增,则实数a的最大值为.6.若函数f(x)=|2x+a|的单调增区间是[3,+∞),则实数a的值为.7.(2014·成都外国语学校)已知函数f(x)=1000-10xxx>⎧⎪=⎨⎪<⎩,,,,,,g(x)=x2f(x-1),那么函数g(x)的单调减区间是.8.(2015·福建卷)若函数f(x)=2|x-a|(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.二、解答题9.试讨论函数f (x )=2-1ax x ,x ∈(-1,1)的单调性(其中a ≠0).10.已知函数f (x )=log a (3x 2-2ax )在区间112⎡⎤⎢⎥⎣⎦,上是减函数,求实数a 的取值范围.11.已知函数f (x )=22x x ax ++,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意的x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.三、选做题(不要求解题过程,直接给出最终结果)12.已知定义在R 上的函数y =f (x ),f (0)≠0,当x >0时,f (x )>1,且对任意的a ,b ∈R ,有f (a +b )=f (a )·f (b ). (1)求f (0)的值;(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)求证:f (x )是R 上的增函数;(4)若f (x )·f (2x -x 2)>1,求x 的取值范围.【检测与评估答案】第6课函数的单调性1.(3,+∞)【解析】依题意得,不等式f(x)<f(2x-3)等价于x<2x-3,解得x>3,即x的取值范围是(3,+∞).2.5【解析】依题意可得对称轴为x=-1 22a⨯=1,所以a=5.3.32⎡⎤⎢⎥⎣⎦,【解析】y=-(x-3)|x|=22-30-30.x x xx x x⎧+>⎨≤⎩,,,作出该函数的图象如图所示,观察图象知单调增区间为32⎡⎤⎢⎥⎣⎦,.(第3题)4.12∞⎛⎫+⎪⎝⎭,【解析】设x1>x2>-2,则f(x1)>f(x2),而f(x1)-f(x2)=1112axx++-2212axx++=1221122-2-(2)(2)ax x ax xx x+++=1212(-)(2-1)(2)(2)x x ax x++>0,由x1-x2>0,x1+2>0,x2+2>0,知2a-1>0,所以a> 12.5.2 【解析】令x =t ,所以t ∈[1,2],即f (t )=t 2-at ,因为f (x )在[1,4]上单调递增,所以2a≤1,即a ≤2,所以a 的最大值为2.6.-6 【解析】容易作出函数f (x )的图象(图略),可知函数f (x )在,2a ⎛⎤-∞- ⎥⎝⎦上单调递减,在,2a ⎡⎫-+∞⎪⎢⎣⎭上单调递增,又已知函数f (x )的单调增区间是[3,+∞),所以-2a=3,解得a=-6.7.[0,1) 【解析】由条件知g (x )=22101-1x x x x x ⎧>⎪=⎨⎪<⎩,,,,,,其图象如图所示,其单调减区间是[0,1).(第7题)8.1 【解析】由f (1+x )=f (1-x ),得函数f (x )关于直线x=1对称,故a=1,则f (x )=2|x-1|,由复合函数单调性得f (x )在[1,+∞)上单调递增,故m ≥1,所以实数m 的最小值等于1.9.方法一:任取x 1,x 2∈(-1,1),且x 1<x 2,则f (x 2)-f (x 1)=222-1ax x -121-1ax x =12122221(-)(1)(-1)(-1)a x x x x x x +.因为-1<x1<x2<1,所以|x1|<1,|x2|<1,x1-x2<0,21x-1<0,22x-1<0,|x1x2|<1,即-1<x1x2<1,所以x1x2+1>0.因此,当a>0时,f(x2)-f(x1)<0,即f(x2)<f(x1),此时函数为减函数;当a<0时,f(x2)-f(x1)>0,即f(x1)<f(x2),此时函数为增函数.方法二:f'(x)=-222(1)(-1)a xx+,x∈(-1,1),所以当a>0时,f'(x)<0,此时函数为减函数;当a<0时,f'(x)>0,此时函数为增函数.10.当0<a<1时,若f(x)=log a(3x2-2ax)在区间112⎡⎤⎢⎥⎣⎦,上是减函数,则2132113-2022aa⎧≤⎪⎪⎨⎛⎫⎪⨯⋅>⎪⎪⎝⎭⎩,,解得0<a<3 4.当a>1时,若f(x)=log a(3x2-2ax)在区间112⎡⎤⎢⎥⎣⎦,上是减函数,则21331-20aa⎧≥⎪⎨⎪⨯>⎩,,无解.综上,实数a的取值范围是34⎛⎫ ⎪⎝⎭,.11.(1)当a=12时,f(x)=x+12x+2.因为f(x)在区间[1,+∞)上是增函数,所以f(x)在区间[1,+∞)上的最小值为f(1)=7 2.(2)方法一:在区间[1,+∞)上,f(x)=22x x ax++>0恒成立⇔x2+2x+a>0恒成立.设函数y=x2+2x+a,因为y=(x+1)2+a-1在[1,+∞)上单调递增,所以当x=1时,y min=3+a,当且仅当y min=3+a>0时,函数f(x)>0恒成立,故a>-3.方法二:f(x)=x+ax+2,x∈[1,+∞),当a≥0时,函数f(x)的值恒为正;当a<0时,函数f(x)单调递增,所以当x=1时,f(x)min=3+a.当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,所以a>-3. 综上,实数a的取值范围为(-3,+∞).12.(1)令a=b=0,则f(0)=f(0)·f(0),又f(0)≠0,解得f(0)=1.(2)当x<0时,-x>0,所以f(0)=f(x)·f(-x)=1,因为x>0时,f(x)>1>0,所以f(-x)=1()f x>0.又f(0)=1>0,所以对任意的x∈R时,恒有f(x)>0.(3)设x1<x2,则x2-x1>0,所以f(x2-x1)>1,所以f(x2)=f(x2-x1+x1)=f(x2-x1)·f(x1)>f(x1),即f(x)在R上是增函数.(4)由f(x)·f(2x-x2)>1,可得f(x+2x-x2)>1,即f(3x-x2)>f(0).由(3)知f(x)在R上是增函数,所以3x-x2>0,所以0<x<3. 即x的取值范围是(0,3).。
函数单调性的证明一、定义法证明普通函数的单调性1、求证函数y=x ³+x 在R 上是增函数。
3、求证:函数x x f -=)(在定义域上是减函数.4、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5、证明函数xx x f 1)(+=在)1,0(上是减函数。
6、求证:函数x x x f --=21)(在R 上是单调减函数.7、指出f(x)=2x ²+4x 的单调区间,并对减区间的情况给予证明。
8、求12)(2--=x x x f 的单调区间一、定义法证明带字母的函数的单调性1、 用定义证明:(1)函数f(x)=kx+b(k<0,k 、b 为常数)在R 上是减函数。
(2)函数xk x g =)((k<0,k 为常数)在)0,(-∞上是增函数。
2、 求证函数x a x x f +=)((a>0)在(0,a )上是减函数,在(a ,+∞)上是增函数。
3、 讨论1)(2-=x ax x f (-1<x<1,a ≠0)的单调性 4、 设函数(a >b>0),求b x a x x f ++=)(的单调区间,并证明f(x)在其单调区间上的单调性。
二、定义法证明抽象函数的单调性:1、已知函数f(x)的定义域为R ,满足f(-x)= 0)(1>x f ,且g(x)=f(x)+c(c 为常数),在区间[a,b]上是减函数,判断并证明g(x)在区间[-b,-a]上的单调性。
2、已知g(x)在[m,n]上的减函数,且a ≤g(x)≤b,f(x)是[a,b]上的增函数,求证f[g(x)]在[m,n]上也是减函数。
三、利用单调性求函数的值域:求下列函数的值域:1、 y=-+2x x -6 2、 y=+x 1-x3、 y=+3-x 2x +四、利用函数单调性比较大小1、 如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。
函数的单调性与最值复习:按照列表、描点、连线等步骤画出函数2x y =的图像.图像在y 轴的右侧部分是上升的,当在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有1y <2y .这时就说函数y =2()f x x =在[0,+ ∞)上是增函数.图像在y 轴的左侧部分是下降的,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值反而随着减小,如果取21,x x ∈[0,+∞),得到11()y f x =,2()y f x =,那么当1x <2x 时,有12y y <。
这时就说函数y =2()f x x =在[0,+ ∞)上是减函数.1.函数的单调性(1)单调函数的定义(2)单调区间的定义若函数f (x )在区间D 上是增函数或减函数,那么称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x 1,x 2的任意性;(3)函数的单调性是对某个区间而言的,它是一个局部概念。
(4)若函数()f x 在其定义的两个区间A 、B 上都是单调增(减)函数,一般不能认简单地认为()f x 在区间A B U 上是增(减)函数. 例如1()f x x=在区间(,0)-∞上是减函数,在区间(0,)+∞上也是减函数,但不能说它在定义域(,0)(0,)-∞+∞U 上是减函数.(3)用定义法判断函数的单调性:①定义域取值;任取x 1,x 2∈D ,且x 1<x 2; ②作差;作差f (x 1)-f (x 2); ③变形;通常是因式分解和配方; ④定符号;即判断差f (x 1)-f (x 2)的正负⑤下结论.指出函数f (x )在给定的区间D 上的单调性例1 证明函数xx f 1)(=在(0,+∞)上是减函数. 证明:设1x ,2x 是(0,+∞)上的任意两个实数,且1x <2x ,则)(1x f -)(2x f =11x -21x =2112x x x x -, 由1x ,2x ∈(0,+ ∞),得1x 2x >0,又由1x <2x ,得2x -1x >0 ,于是)(1x f -)(2x f >0,即)(1x f > )(2x f ∴xx f 1)(=在(0,+ ∞)上是减函数.练习:讨论函数21)(x x f -=在[-1,0]的单调性.在[-1,0]上任取x 1,x 2且x 1<x 2则2111)(x x f -=,2221)(x x f -= 从而)(1x f -2221211)(x x x f ---== 2221222111)1()1(xx x x -+----=222112122221212211))((11xx x x x x xx x x -+--+=-+--∵21x x < ∴012>-x x 另外,恒有0112221>+++x x∵-1≤x 1<x 2≤0 则 x 1+x 2<0 则)(1x f -0)(2<x f )(1x f <)(2x f ∴ 在[-1,0]上f (x )为增函数2.基本函数的单调性例:讨论函数322+-=ax x f(x)在(-2,2)的单调性.解:∵222332a (x-a)ax x f(x)-+=+-=,对称轴a x = ∴若2-≤a ,则322+-=ax x f(x)在(-2,2)是增函数;若22<<-a 则322+-=ax x f(x)在(-2,a)是减函数,在[a,2]是增函数 若2≥a ,则322+-=ax x f(x)在(-2,2)是减函数.3.判断函数的单调性的常见结论①设任意x 1,x 2∈[a ,b ],且x 1<x 2,那么()()210f x f x ->⇔f (x )在[a ,b ]上是增函数;()()210f x f x -<⇔f (x )在[a ,b ]上是减函数.②设任意x 1,x 2∈[a ,b ],那么()()21210f x f x x x ->-⇔f (x )在[a ,b ]上是增函数; ()()21210f x f x x x -<-⇔f (x )在[a ,b ]上是减函数.③ (x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.例:求函数y =x 2+x -6的单调区间.4. 关于分段函数的单调性(1)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是增函数, ()h x 在区间[],c d 上是增函数,则()f x 在区间[][],,a b c d U 上不一定是增函数,若使得()f x 在区间[][],,a b c d U 上一定是增函数,需补充条件: ()()g b h c ≤(2)若函数()()[]()[],,,,g x x a b f x h x x c d ⎧∈⎪=⎨∈⎪⎩,()g x 在区间[],a b 上是减函数, ()h x 在区间[],c d 上是减函数,则()f x 在区间[][],,a b c d U 上不一定是减函数,若使得()f x 在区间[][],,a b c d U 上一定是减函数,需补充条件: ()()g b h c ≥例:已知函数()(0)(3)4(0)x a x f x a x a x ⎧<⎨-+≥⎩=若对任意x 1,x 2,都有()()21210f x f x x x -<-成立,则实数a 的取值围是( )A .(0,14] B .(0,1) C .[14,1) D .(0,3)5.函数的最值例:f(x)=x 2-2x (x ∈[-2,4])的单调增区间为__________;f(x)max =________.6.利用函数的单调性求最值例题:已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.(1)证明:令0x y ==,则(0)0f =;再令y x =-,则应有()()f x f x -=-,从而在R 上任取12x x >,则121212()()()()()f x f x f x f x f x x -=+-=-.1212,0.x x x x >∴->Q 又0x >Q 时,()0f x <,从而12()0f x x -<,即12()()f x f x <,由定义可知函数()f x 在R 上的减函数.(2)Q 函数()f x 是R 上的减函数,()f x ∴在区间[3,3]-上也是减函数.从而可知在区间[3,3]-上,(3)f -最大,(3)f 最小.2(3)(2)(1)(1)(1)(1)3(1)3()2,3f f f f f f f =+=++==⨯-=-Q (3)(3) 2.f f ∴-=-=即()f x 在[3,3]-上的最大值为2,最小值为-2.练习:已知定义在区间(0,+∞)上的函数f(x)满足f (yx)=f (x )-f (y ).,且当x >1时,f(x)<0. (1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.(1)f(1) = f(1/1) = f(1) - f(1) = 0。
高一数学同步测试(6)—函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是 ( ) A .y =2x +1 B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是( ) A .(3,8) B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围( ) A .(0,21) B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2 ),那么函数g (x )( ) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A(0,-1)、B(3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集( ) A .(-1,2) B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1)∪[2,+∞) 8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9)9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311.已知f (x )在区间(-∞,+∞)上是增函数,a 、b ∈R 且a +b ≤0,则下列不等式中正确的是 ( ) A .f (a )+f (b )≤-f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b )C .f (a )+f (b )≥-f (a )+f (b )]D .f (a )+f (b )≥f (-a )+f (-b )12.定义在R 上的函数y =f (x )在(-∞,2)上是增函数,且y =f (x +2)图象的对称轴是x =0,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (-3)D .f (2)<f (3)二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数y =x -2x -1+2的值域为__ ___.15、设()y f x =是R 上的减函数,则()3y f x =-的单调递减区间为 .16、函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 三、解答题:17.f (x )是定义在( 0,+∞)上的增函数,且f (yx) = f (x )-f (y ) (1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .18.函数f (x )=-x 3+1在R 上是否具有单调性?如果具有单调性,它在R 上是增函数还是减函数?试证明你的结论.19.试讨论函数f (x )=21x -在区间[-1,1]上的单调性.20.设函数f (x )=12+x -ax ,(a >0),试确定:当a 取什么值时,函数f (x )在0,+∞)上为单调函数.21.已知f (x )是定义在(-2,2)上的减函数,并且f (m -1)-f (1-2m )>0,求实数m 的取值范围.22.已知函数f (x )=xax x ++22,x ∈[1,+∞](1)当a =21时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.参考答案一、选择题: CDBBD ADCCA BA二、填空题:13. (1,+∞), 14. (-∞,3),15.[)3,+∞, ⎥⎦⎤ ⎝⎛-∞-21,三、解答题:17.解析:①在等式中0≠=y x 令,则f (1)=0.②在等式中令x=36,y=6则.2)6(2)36(),6()36()636(==∴-=f f f f f故原不等式为:),36()1()3(f xf x f <-+即f [x (x +3)]<f (36),又f (x )在(0,+∞)上为增函数,故不等式等价于:.23153036)3(00103-<<⇒⎪⎪⎩⎪⎪⎨⎧<+<>>+x x x xx18.解析: f (x )在R 上具有单调性,且是单调减函数,证明如下:设x 1、x 2∈(-∞,+∞), x 1<x 2 ,则f (x 1)=-x 13+1, f (x 2)=-x 23+1.f (x 1)-f (x 2)=x 23-x 13=(x 2-x 1)(x 12+x 1x 2+x 22)=(x 2-x 1)[(x 1+22x )2+43x 22].∵x 1<x 2,∴x 2-x 1>0而(x 1+22x )2+43x 22>0,∴f (x 1)>f (x 2).∴函数f (x )=-x 3+1在(-∞,+∞)上是减函数.19.解析: 设x 1、x 2∈-1,1]且x 1<x 2,即-1≤x 1<x 2≤1.f (x 1)-f (x 2)=211x --221x -=2221222111)1()1(x x x x -+----=2221121211))((x x x x x x -+-+-∵x 2-x 1>0,222111x x -+->0,∴当x 1>0,x 2>0时,x 1+x 2>0,那么f (x 1)>f (x 2).当x 1<0,x 2<0时,x 1+x 2<0,那么f (x 1)<f (x 2).故f (x )=21x -在区间[-1,0]上是增函数,f (x )=21x -在区间[0,1]上是减函数.20.解析:任取x 1、x 2∈0,+)∞且x 1<x 2,则f (x 1)-f (x 2)=121+x -122+x -a (x 1-x 2)=1122212221+++-x x x x -a (x 1-x 2)=(x 1-x 2)(11222121++++x x x x -a )(1)当a ≥1时,∵11222121++++x x x x <1,又∵x 1-x 2<0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2)∴a ≥1时,函数f (x )在区间[0,+∞)上为减函数. (2)当0<a <1时,在区间[0,+∞]上存在x 1=0,x 2=212aa-,满足f (x 1)=f (x 2)=1 ∴0<a <1时,f (x )在[0,+)∞上不是单调函数 注: ①判断单调性常规思路为定义法; ②变形过程中11222121++++x x x x <1利用了121+x >|x 1|≥x 1;122+x >x 2;③从a 的范围看还须讨论0<a <1时f (x )的单调性,这也是数学严谨性的体现.21.解析: ∵f (x )在(-2,2)上是减函数∴由f (m -1)-f (1-2m )>0,得f (m -1)>f (1-2m )∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<-<<-⎪⎩⎪⎨⎧-<-<-<-<-<-32232131211,2212212m m m m m m m 即 解得3221<<-m ,∴m 的取值范围是(-32,21)22.解析: (1)当a =21时,f (x )=x +x21+2,x ∈1,+∞) 设x 2>x 1≥1,则f (x 2)-f (x 1)=x 2+1122121x x x --=(x 2-x 1)+21212x x x x -=(x 2-x 1)(1-2121x x ) ∵x 2>x 1≥1,∴x 2-x 1>0,1-2121x x >0,则f (x 2)>f (x 1) 可知f (x )在[1,+∞)上是增函数.∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)在区间[1,+∞)上,f (x )=xa x x ++22>0恒成立⇔x 2+2x +a >0恒成立设y =x 2+2x +a ,x ∈1,+∞),由y =(x +1)2+a -1可知其在[1,+∞)上是增函数,当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时函数f (x )>0恒成立.故a >-3.。