因式分解运用公式法(完全平方公式)
- 格式:ppt
- 大小:303.00 KB
- 文档页数:55
因式分解的公式大全,因式分解万能公式法的应用因式分解的公式大全?因式分解公式:平方差公式:(a+b)(a-b)=a²-b²完全平方公式:(a±b)²=a²±2ab+b²把式子倒过来: (a+b)(a-b)=a²-b² a²±2ab+b²= (a±b)²就变成了因式分解,因为这个原因,我们把用利用平方差公式和完全平方公式进行因式分解的方式称之为公式法。
例子:1、25-16x²=5²-(4x)²=(5+4x)(5-4x)2、p4-1 =(p²+1)(p²-1) =(p²+1)(p+1)(p-1)3、x²+14x+49 =x²+2·7·x+7² =(x+7)²4、(m-2n)²-2(2n-m)(m+n)+(m+n)² =(m-2n)²+2(m-2n)²(m+n)+(m+n)² =[(m-2n)+(m+n)]² =(2m-n)²因式分解万能公式法?1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
中考数学因式分解的九种方法2020中考数学因式分解的九种方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
二、平方差公式1、式子:a^2-b^2=(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
四、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2 和 (a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2=(a+b)^2 和 a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、分解因式,必须分解到每一个多项式因式都不能再分解为止。
五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。
如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。
因式分解知识点回顾1、因式分解的概念:把一个多项式分解成几个整式的积的形式,叫做因式分解。
因式分解和整式乘法互为逆运算2、常用的因式分解方法:(1)提取公因式法:ma + mb + mc = m(a + b + c)(2)运用公式法:平方差公式:a2—b2 = (a + b)(a—b);完全平方公式:a2土2ab + b2= (a土b)2(3)十字相乘法:x2 + (a + b)x + ab = (x + a)(x + b)因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法; (3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法5、同底数幂的乘法法则:a m・a n = a m+n( m, n都是正整数)同底数幕相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:(a + b)2•(a + b)3 = (a + b)56、幂的乘方法则:(a m)n = a mn( m, n都是正整数)幕的乘方,底数不变,指数相乘。
如:(-35)2= 310幕的乘方法则可以逆用:即a mn = (a m ) n = (a n ) m如:46 = (42)3 = (43)27、积的乘方法则:(ab)n = a n b n( n是正整数)积的乘方,等于各因数乘方的积。
如:(一 2 x 3 y 2 z )5 = (-2)5 • (x 3)5 • ( y 2)5 • z 5 = -32 x 15 y 10 z 58、同底数幂的除法法则:a m + a n = a m - n ( a牛0, m, n都是正整数,且m n)同底数幕相除,底数不变,指数相减。
如:(ab)4 + (ab) = (ab)3 = a3b39、零指数和负指数;a 0 = 1,即任何不等于零的数的零次方等于1。
1a - p =——(a中0, p是正整数),即一个不等于零的数的-p次方等于这个数的P次方的倒数。
因式分解一、因式分解的概念:因式分解(分解因式):把一个多项式化为几个整式( )的形式。
二、因式分解的方法:1、提公因式法:(1)公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(2)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式。
(3)注意:①提取完公因式后,看另一个因式的项数与原多项式的项数是否一致,可用来检验是否漏项;②提取公因式后各因式应该是最简形式,即分解到“底";③如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的。
2、公式法:运用公式法分解因式的实质是:把整式中的乘法公式反过来使用;常用的公式:①平方差公式: a2-b2=②完全平方公式: a2+2ab+b2=a2-2ab+b2=3、十字相乘法:x2+(a+b)x+ab=特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
一、按知识点:题型一: 概念的理解:例1、下列由左到右的变形,哪些是因式分解?哪些不是?请说出理由.(1)、()ay ax y x a +=+ (2)、()()()1121222-+++=-++y y y x x y xy x (3)、)3)(3(92-+=-x x a a ax (4)、222)1(12xx x x +=++ (5)、a a a a ••=223题型二: 提公因式法:例2、(1)1+++b a ab (2)、m m m 2616423-+-(3))3(2)3(a a m -+- (4)32)(2)(6b a a b a ---题型三: 完全平方公式:例4、(1)49142+-a (2)412---m m(3)22)()(2c b c b a a ++++ (4)22363y xy x -+-题型四: 平方差公式:例3、下列各式中能用平方差公式分解因式的是( )①22b a -- ②2242b a - ③422--y x ④1922+-b a ⑤22)()(x y y x -+- ⑥14-x题型五:十字相乘法:(4)36152+-a a (5)542-+x x (6)22-+x x二、按解题技巧:技巧一 :符号变换例:(m+n )(x-y)+(m-n)(y —x ) 分解因式:-a 2-2ab-b 2技巧二 :系数变换例:分解因式 4x 2—12xy+9y 2分解因式221439xy y x ++技巧三 :指数变换例:分解因式x 4—y 4 分解因式 a 4-2a 4b 4+b 4技巧四: 展开变换例:a (a+2)+b(b+2)+2ab 分解因式x(x-1)-y(y-1)技巧五 :添项变换技巧六 :分组分解法(1)分组后能直接提公因式:例:分解因式:bn bm an am +++ 分解因式bx by ay ax -+-5102(2)分组后能直接运用公式:例:分解因式:ay ax y x ++-22 分解因式:2222c b ab a -+-因式分解在计算中的应用:计算212122+-++-++-+656543432222…+201020092010200920092008200920082222+-++-应用扩展:因式分解在解方程与等式变换中的应用:解方程0)2753)(3555()2653)(3555(=++-++x x x x因式分解题型总结:题型一:求未知数1. 若)15)(1(152-+=--x x ax x 则a =_____.2.若23(2)(5)x x a x x ++=-+则a =_____。
如何解(公式法的因式分解完全平方公式)因式分解是数学学习中的一个重要内容,而公式法中的完全平方公式更是其中的关键。
别担心,咱们一起来把这个难题给攻克掉!先来说说完全平方公式到底是啥。
它有两个形式:(a + b)² = a² + 2ab + b²以及 (a - b)² = a² - 2ab + b²。
那怎么用这两个公式来进行因式分解呢?咱们通过一些例子来瞅瞅。
比如说,有个式子 x² + 6x + 9 ,咱们来分解它。
先看,6x 正好是 2乘以 3 乘以 x ,而 9 是 3 的平方,这不就符合 (a + b)² = a² + 2ab + b²这个形式嘛,其中 a 就是 x ,b 就是 3 ,所以可以分解为 (x + 3)²。
再比如 4x² - 12xy + 9y²,这里 4x²可以看成 (2x)²,9y²可以看成(3y)²,而 -12xy 正好是 -2 乘以 2x 乘以 3y ,所以它可以分解为 (2x -3y)²。
我记得我以前教过一个学生,叫小李。
这孩子特别聪明,就是一碰到因式分解就犯迷糊。
有一次上课,我就专门讲完全平方公式的因式分解,出了一道题 16x² + 24x + 9 让大家做。
小李一开始眉头皱得紧紧的,嘴里还嘟囔着:“这可咋整啊!”我走到他身边,轻声问他:“来,咱们先看看,16x²是不是可以写成 (4x)²呀?9 是不是 3 的平方?那24x 是不是 2 乘以 4x 乘以 3 呢?”小李眼睛一下子亮了,兴奋地说:“老师,我懂啦,这就是一个完全平方!”然后很快就写出了正确答案(4x + 3)²。
从那以后,小李对因式分解的题目就越来越得心应手啦。
咱们再深入一点,有些式子可能不是一下子就能看出来是完全平方的形式,这时候就需要咱们稍微变一变。