旋涡理论vortextheory
- 格式:ppt
- 大小:1.32 MB
- 文档页数:17
第五章不可压缩流体的二维流动引言:在前面几章主要讨论了理想流体和黏性流体一维流动,为解决工程实际中存在的一维流动问题打下了良好的基础。
本章讨论理想不可压流体的二维有势流动以及二维黏性流体绕物体流动的基本概念。
第一节有旋流动和无旋流动刚体的运动可分解为移动和转动两种运动形式,流体具有移动和转动两种运动形式。
另外,由于流体具有流动性,它还具有与刚体不同的另外一种运动形式,即变形运动(deformationmotion)。
本节只介绍流体旋转运动即有旋流动(rotation—alflow)和无旋流动(irrotational flow)。
一、有旋流动和无旋流动的定义流体的流动是有旋还是无旋,是由流体微团本身是否旋转来决定的。
流体在流动中,如果流场中有若干处流体微团具有绕通过其自身轴线的旋转运动,则称为有旋流动,如果在整个流场中各处的流体微团均不绕自身轴线的旋转运动,则称为无旋流动。
强调“判断流体流动是有旋流动还是无旋流动,仅仅由流体微团本身是否绕自身轴线的旋转运动来决定,而与流体微团的运动轨迹无关。
”举例虽然流体微团运动轨迹是圆形,但由于微团本身不旋转,故它是无旋流动;在图5—1(b)中,虽然流体微团运动轨迹是直线,但微团绕自身轴线旋转,故它是有旋流动。
在日常生活中也有类似的例子,例如儿童玩的活动转椅,当转轮绕水平轴旋转时,每个儿童坐的椅子都绕水平轴作圆周运动,但是每个儿童始终是头向上,脸朝着一个方向,即儿童对地来说没有旋转。
二、旋转角速度(rotationalangularvelocity)为了简化讨论,先分析流体微团的平面运动。
如图5—2所示有一矩形流体微团ABCD在XOY平面内,经丛时间后沿一条流线运动到另一位置,微团变形成A,B,C,D。
流体微团在Z周的旋转角速度定义为流体微团在XOY平面上的旋转角速度的平均值速度环量是一个标量,但具有正负号。
速度环量的正负号与速度方向和积分时所取的绕行方向有关。
772022年7月下 第14期 总第386期工艺设计改造及检测检修China Science & Technology Overview1.文献综述1.1 设计过程设计过程一般包括初始设计、throughflow 方法、叶栅计算、准三维计算、三维计算流体动力学模拟分析。
初始设计的重要性在于它能影响压气机布局甚至发动机循环。
初始设计用来构造速度三角形以及级负载(stage loading)、流系数等参数。
压气机的尺寸也能计算出来。
计算流体动力学(CFD)正被越来越来用在涡轮机械的设计和分析过程。
CFD 是对包含流体、传热、以及化学反应的系统的仿真。
在CFD 中,雷诺平均Navier-Storkes (RANS)方程在一个计算网格上求解,以获得网格上的流场。
CFD 能预测叶片表面压力分布、跨音速过程以及泄露等。
但边界层和二次流的预测可能不是很准确。
1.2 叶栅叶栅主要有C 系列、NACA 65以及双圆弧叶栅等。
C系列主要应用在英国,有C4、C5和C7。
NACA 65主要应用在美国。
这2种叶栅适用于亚音速情况。
而双圆弧可适用于跨音速情况。
1.3 漩涡理论(vortex theory)漩涡理论是关于流体元素径向平衡的理论。
一个流体元素在转子中旋转会受到离心力的作用,该离心力需要径向的静压差来平衡。
有几种旋涡理论如自由旋涡、强制旋涡、可变旋涡和混合旋涡。
1.4 激波及损失当进气马赫数低于1.5[1]时且无边界层分离,激波是一种有效的压缩空气的方式。
当进气马赫数低于1.5时,由正激波引起的损失非常小。
1.5 关键参数1.5.1涵道比和风扇压比涵道比(BPR)是外涵流量与内涵流量的比值。
高涵道比能提供更高的起飞推力且能使耗油率降低。
当涵道比、涡轮进口温度、总压比确定后,存在一个最优风扇压比,且最优压比随着涵道比的增加而降低。
1.5.2风扇叶尖速度叶尖速度通常受机械强度所限,其值一般小于500m/s [3]。
7-7已知有旋流动的速度场为。
试求旋转角速度,角变形速度和涡线方程。
[]1.1) 21212121c y z c x z yz xz z y x =-=-=====ωωω2))垂直,故涡量为零,,(与平面的法线212121)1,1,1(1=-==+-ωn z y x 3)s m z /105.024.-⨯=ω2.yz xz z y x =====212121ωωω3.2点对1点的诱导速度:21140x v u πΓ== 1点对2点的诱导速度:12240x v u πΓ== 涡对1,2的涡旋惯性中心:121211=Γ+ΓΓ-Γ=y x 涡对相互作用引起的自身运动是涡旋惯性中心的旋转运动,且旋转角速度:20211012x x x v πωΓ+Γ=-=直线涡1Γ的运动轨道:20212220212021210210221)2()2(2)()(x y x x x x x x x y x x Γ+ΓΓ=+Γ+ΓΓ-Γ+ΓΓ=--=+-直线涡2Γ的运动轨道:20211220212021110210221)2()2(2)()(x y x x x x x x x y x x Γ+ΓΓ=+Γ+ΓΓ-Γ+ΓΓ=++=+-4.kz y x 10===ωωω运用stokes 定理:kS k A J z ππω1812222=⋅⋅⋅===Γ 或0sin sin =+-=-=-=θθθθθy x r y x V con V V rkcon V V V在圆周上径向速度为常数,⎰==Γkdl V r π18例5.4 已知速度场22x y v x y -=+,22y xv x y=+,求绕圆心的速度环量。
解 由极坐标 cos x r θ= s i ny r θ= 有 sin cos x y v rv rθθ⎧=-⎪⎪⎨⎪=⎪⎩在r =R 上sin cos dx R d dy R d θθθθ=-⎧⎨=⎩ 所以 S x y r Rr Rvd s v dx v dy ==Γ==+⎰⎰222222022sin cos ()2R R d d R R ππθθθθπ+==⎰⎰15. 已知流线为同心圆族,其速度分别为15(5)15x y v y r v x ⎧=-⎪⎪≤⎨⎪=⎪⎩22225(5)5x y y v x y r x v x y -⎧=⎪+⎪⎨⎪=⎪+⎩试求:沿圆周222x y R +=的速度环量。