直升机空气动力学-涡流理论
- 格式:ppt
- 大小:8.31 MB
- 文档页数:38
现代直升机旋翼空气动力学•目录:•第1章绪论1.1空气动力学的内容1.1.1定义1.1.2研究问题的类型1.2空气动力学的研究工具1.2.1解析工具1.2.2计算工具1.2.3实验工具1.3直升机概况1.3.1发展简述1.3.2直升机分类1.4直升机空气动力学发展概况1.4.1经典空气动力学理论1.4.2基于CFD技术的旋翼流场模拟1.4.3旋翼计算声学简介1.4.4旋翼/机身等多部件的气动干扰简介1.5旋翼基本参数介绍参考文献第2章旋翼动量理论2.1引言2.2垂直飞行时的动量理论2.2.1垂直上升状态2.2.2悬停状态2.2.3垂直下降状态2.2.4诱导速度普遍规律2.3前飞时的动量理论2.3.1平飞状态2.3.2爬升和下滑状态2.3.3诱导速度普遍规律参考文献第3章旋翼叶素理论3.1引言3.2桨叶翼型3.2.1桨叶翼型几何参数3.2.2桨叶翼型空气动力学特性3.2.3桨叶翼型设计3.3垂直飞行时的叶素理论3.3.1旋翼拉力和功率的微分形式3.3.2旋翼拉力和功率的积分形式3.3.3旋翼拉力的近似解析式3.3.4旋翼功率的近似解析式3.3.5完善系数3.4基于叶素-环量理论的拉力系数3.5基于叶素-动量组合理论的拉力系数3.6前飞时的叶素理论3.6.1旋翼拉力和功率的积分形式3.6.2旋翼拉力和功率的近似解析式3.6.3旋翼功率的一般表达式参考文献第4章旋翼涡流理论4.1引言4.2基本概念4.2.1Kelvin定理4.2.2Helmholtz定律4.2.3Biot-Savart定律4.2.4涡与环量4.3垂直飞行时的涡流理论4.3.1儒氏旋翼涡系模型4.3.2儒氏旋翼诱导速度4.3.3非儒氏旋翼涡系模型4.3.4非儒氏旋翼诱导速度4.4前飞时的涡流理论4.4.1旋翼涡系模型4.4.2旋翼诱导速度4.4.3桨叶附着涡环量的求解参考文献第5章旋翼自由尾流分析技术5.1引言5.2涡动力学基础5.3自由涡系模型5.3.1旋翼桨叶涡系模型5.3.2旋翼尾迹模型5.3.3旋翼桨尖涡模型5.3.4涡核扩散模型5.4桨叶附着涡环量求解5.5远尾迹涡丝控制方程5.6远尾迹涡丝控制方程的求解5.6.1远尾迹周期边界条件5.6.2PIPC松弛迭代法求解过程5.7自由尾迹/面元法的耦合模型算例5.7.1求解方法5.7.2涡/面干扰5.7.3算例分析参考文献第6章旋翼CFD理论基础知识6.1引言6.2适合旋翼的流体力学控制方程组6.2.1连续性方程6.2.2动量方程6.2.3能量方程6.2.4控制方程的选择形式6.3控制方程的离散化6.3.1有限差分法(FDM)6.3.2有限体积法(FVM)6.4网格生成简介6.4.1椭圆网格生成实例6.4.2多区重叠网格(嵌套网格)简介6.5结论参考文献第7章旋翼N-S方程SIMPLE数值模拟方法7.1引言7.2SIMPLE算法7.2.1交错网格技术7.2.2SIMPLE算法基本假设7.2.3SIMPLE算法基本步骤7.2.4SIMPLE算法的简单算例7.3SIMPLER算法简介7.4代数方程组的求解7.5前飞旋翼湍流场的数值模拟算例7.5.1流场控制方程7.5.2动量源项7.5.3算例方案描述7.5.4前飞流场分析7.5.5前飞性能预测7.6垂直下降旋翼湍流场的数值模拟算例7.6.1桨盘压差源项计算7.6.2垂直下降算例方案描述7.6.3模型旋翼悬停算例验证7.6.4垂直下降算例流场分析7.6.5垂直下降性能预测7.7斜下降旋翼湍流场的数值模拟算例7.7.1计算模型及方法7.7.2旋翼升阻气动特性7.7.3单片桨叶压力场随周期的变化7.7.4孤立旋翼流场分析7.7.5旋翼/机身组合流场分析参考文献第8章旋翼TVD数值模拟方法8.1引言8.2TVD格式的概念和性质8.2.1TVD的概念8.2.2TVD的性质8.3TVD格式的构造8.3.1一阶TVD格式8.3.2二阶TVD格式8.3.3高阶TVD格式简介8.4对一维和多维方程组的推广8.4.1一维方程组的推广8.4.2多维方程组的推广8.5算例:旋翼流场Euler方程Jameson/TVD数值模拟8.5.1主控方程8.5.2数值方法8.5.3结果分析参考文献第9章旋翼绕流N-S方程数值计算方法9.1引言9.2Jameson格式9.2.1标量人工粘性的中心差分方法9.2.2各向异性的人工粘性9.2.3矩阵人工粘性模型9.3TVD格式9.3.1TVD的概念9.3.2单调格式、保单调格式和TVD性质的充分条件9.3.3显式一阶TVD格式举例9.4一种Jameson/TVD混合格式9.4.1N-S方程和通量修正法9.4.2旋翼流场N-S方程Jameson/TVD数值模拟方法9.5Jameson格式与其他格式9.5.1积分形式下的旋翼流动控制方程9.5.2空间离散格式9.5.3悬停旋翼流动的数值模拟9.5.4前飞旋翼流动的数值模拟参考文献第10章旋翼洗流和旋翼/机身/发动机耦合流场分析10.1引言10.2旋翼洗流分析10.3旋翼/机身干扰流场10.3.1"作用盘"假设10.3.2N-S方程直接模拟10.4旋翼/机身/发动机耦合流场10.5旋翼/机身/柱体耦合流场10.5.1旋翼/机身耦合流场10.5.2机身/柱体耦合流场参考文献第11章旋翼计算声学基础11.1引言11.2Ffowcs Williams-Hawkings方程和Kirchhoff理论11.2.1Ffowcs Williams-Hawkings方程11.2.2Kirchhoff理论11.3两种方法的比较11.4桨涡干扰噪声的模拟11.5计算流体力学方法参考文献习题与思考题附录彩图页。
直升机的飞行原理一般认为,直升机技术要比固定翼飞机复杂,其发展也比固定翼飞机慢。
但随着对直升机空气动力学、直升机动力学等学科认识的不断深化和先进航空电子技术、新工艺等的应用,直升机在近年来也有了很大的发展,直升机的直线飞行最大速度的世界纪录为400.87km/h,是英国“山猫”直升机于1986年8月11日创造的。
除了创纪录飞行,直升机的一般巡航速度在250~350km/h之间,实用升限达4000~6000m,航程达400~800km。
与固定翼飞机相比,直升机存在速度小、航程短、飞行高度低、振动和噪声较大,以及由此引起的可靠性较差等问题。
直升机飞行的特点是:它能垂直起降,对起降场地没有太多的特殊要求;它能在空中悬停;能沿任意方向飞行;但飞行速度比较低,航程相对来说也比较短。
当前,直升机在民用和军用的各个领域都得到了广泛的应用。
特别是在军用方面,武装直升机在现代战争中发挥的作用越来越大。
此外,吊运大型装备的起重直升机以及侦察、救护、森林防火、空中摄影、地质勘探等多用途直升机应用也非常广泛。
2.6.1直升机旋翼的工作原理旋翼是直升机的关键部件。
它由数片(至少两片)桨叶和桨毂构成,形状像细长机翼的桨叶连接在桨毂上。
桨毂安装在旋翼轴上,旋翼轴方向接近于铅垂方向,一般由发动机带动旋转。
旋转时,桨叶与周围空气相互作用,产生气动力。
直升机旋翼绕旋翼转轴旋转时,每个叶片的工作都与一个机翼类似。
沿旋翼旋转方向在半径r处切一刀,其剖面形状是一个翼型,如图2—67(a)所示。
翼型弦线与垂直于桨毂旋转轴的桨毂旋转平面之间的夹角称为桨叶的安装角(或桨距),以表示,如图2—67(b)所示。
相对气流与翼弦之间的夹角为该剖面的迎角。
因此,沿半径方向每段叶片上产生的空气动力R可分解为沿桨轴方向上的分量F和在旋转平面上的分量D。
F将提供悬停时需要的拉力;D产生的阻力力矩将由发动机所提供的功率来克服。
图2-67直升机旋翼的工作原理旋翼旋转所产生的拉力和阻力的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。
涡流增升原理
飞机飞行的原理是通过机翼划过空气通过机翼特殊的形状使得机翼上方的空气流速加快,流速快压强就低,机翼下方压强大机翼上方压强小,这样机翼就会受到一个向上的升力。
但是所谓人往高处走水往低处流空气的正常的流动规律是从气压高的方向流向气压低的方向,机翼下方高压的空气会自发的往机翼上方流动的,这种机翼下方的空气反窜向机翼上方的流动就是涡流,因为飞机是高速向前运动的所以涡流如果发生一般都在机翼翼尖后方,涡流的形状类似平着放的龙卷风。
当然上反下反是不是真的为了配合这个涡升效应也并不一定,其实气动外形为什么这么设计是个很复杂的问题,一定要经过严格的理论计算和风洞试验才能确定,这种凭眼睛看出来的只能说是揣测和可能性。
英文释义中文释义备注说明一、基础词汇1、直升机种类single-rotor helicopter (with tail rotor) 单旋翼带尾桨式直升机tandem rotors helicopter 纵列式双旋翼直升机side-by-side rotors helicopter 横列式双旋翼直升机coaxial rotors helicopter 共轴双旋翼式直升机tip-driven rotors helicopter 叶尖推进式直升机tilt rotors helicopter 倾转旋翼式飞机autogyro 旋翼机compound helicopter 复合式直升机2、常见作用力thrust 推力加上coefficient,即相应系数,例:升力系数lift 升力propulsion 推进力跟发动机有关的profile drag 型阻力aerodynamic drag 气动阻力drag force 阻力centrifugal force 离心力parasite drag 废阻力protuberance drag由于机身突起物所带来的阻力nose-down/nose up moment 低头力矩/抬头力矩对于迎角来说,抬头为正,低头为负3、直升机的一些部件rotor shaft 旋转轴main rotor axis 主旋翼轴aft 尾部fairing 整流装置fuselage 机身机身包括nose-section、corss-section shape、afterbody taper、camber几个部分构成auxiliary components 辅助元件gas turbine engine 燃气涡流发动机piston engine 活塞式发动机hub 桨毂control column 驾驶杆cockpit 驾驶舱undercarriage\landing gear 起落架可以收回的起落架retraction(轮式的是wheel,雪橇式的是skid)engine nacelle 发动机舱deflector 变流装置canopy 座舱罩airframe 机身主要相对气动分析而言的概念propeller 螺旋桨(推进器)相对旋翼机而言articulated rotor 铰接式旋翼铰接articulation hingless rotor 无铰式旋翼4、数学概念equation 等式formula 公式iterative 迭代的non-dimensionalize 无因次化coefficent 系数empirical factor 经验系数dimensionless quantity 无因次量harmonic terms 各阶谐波项second harmonic control 二阶谐波控制numerical method 数值方法linearization of small perturbation 小扰动线性化polynomial 多项式vector sum 矢量和displacement 位移evaluate 求……的值5、直升机的基本参数rotor diameter 桨盘直径rotor radius 桨盘半径disc loading 单位桨盘载荷figure of merit 相对效率twist /negative 扭度/负扭center of gravity 重心angular velocity 角速度chord length 弦长spanwise width 展向宽度solidity factor 实度collective pitch 总距span 叶素全长Lock number 洛克数power-to-weight ration 功重比pitch 俯仰roll 滚转head 偏航sweepback 后掠角stiffness 刚度刚体的:rigidconing angle 锥度角angle fo incidence(attack) 迎角offset 偏置常用在挥舞铰偏置中二、直升机空气动力学1、滑流理论英文释义中文释义备注说明momentum theory滑流理论vertical flight垂直飞行hover悬停in descent/vertical descent/vertical climb下降/上升induced power/velocity诱导功率/速度outflow流出流inflow流入流disc桨盘streamtube流管线flow pattern流型steady/unstead定常/非定常downwash/upwash下洗流/上洗流kinetic energy动能compressibility effect压缩性效应tip loss叶尖损失2、叶素理论Blade Element Theory/Elementary Blade Theory 叶素理论section shape剖面inflow angle来流角airfoil翼型blade incidence桨叶迎角lift slop 升力线斜率blade span翼展(相对于旋翼而言)leading edge前缘trailing edge后缘blade桨叶沿半径从内向外分为三个部分:inboard、mid-span、tip partsnon-uniform flow 非均匀来流ideal twist儒氏旋翼blade mean lift coefficient平均升力系数与升力系数不是同一个概念3、涡流理论部分英文释义中文释义备注说明tip vortex 桨尖涡vortex-ring (state) 涡环(状态)vortex的复数vortices turbulent-wake state 紊流状态wake vortices 尾迹涡vortex cylinder 涡柱面trailing vortex system 尾迹涡系wake vortices 尾迹streamwise vortices 流向涡discrete 分离的三、前飞理论部分英文释义中文释义备注说明advance ratio前进比advancing side前行桨叶retreating side后行桨叶flapping motion挥舞运动flapping hinge挥舞铰flapping coefficient挥舞系数region of reversed flow反流区Equilibrium Equation力平衡方程Coriolis force/moment哥氏力/哥氏力力矩interia force/moments惯性力restraining force约束力gravitational force/moments重力/力矩damping 阻尼mechanical damper机械阻尼器gyroscopic moment陀螺力矩crosscoupling交叉耦合oscillatory bending stress 振荡弯曲应力roll moment滚转力矩resultant force/moment合力/合力矩 A be communicated to B力A传到Blead-lag hinge摆振铰feathering hinge变距铰oncoming stream direction迎流方向reference plane参考面separated flow气流分离全称:retreating blade stallblade stalling桨尖失速全称:advancing blade compressiblity dragriseazimuth angle方位角shock induced flow seperation激波-气流分离stalling characteristic失速特性free stream dynamic pressure自由来流动压boundary layer附面层asymmetry/symmetry不对称/对称flow reversl气流反向horizontal tailplane水平安定面vertical fin垂直安定面lateral/longitudinal cyclic coefficient横向/纵向周期变距headwind逆风tailwind顺风四、性能计算部分:英文释义中文释义备注说明performance assessment性能评估helicopter performance calculation直升机性能计算ground effect地面效应autorotation自转飞行high rate of climb悬停升限wind tunnel test风洞测试patrol/loiter task巡航飞行cruise speed巡航速度weight capability承重能力rate of climb 爬升率absolute ceiling绝对升限service ceiling 实用升限optimum speed 最佳速度minimum rate of descent 最小下降率maximum edurance/loiter time 最大续航时间maximum glide distance最大航行距离maximum range最大航行里程maximum speed最大速度specific range比航程dihedral action上反作用longitudinal/lateral trim equation纵向/横向配平方程shaft power轴功率power requirement需用功率induced requirement诱导功率stability 稳定性static stability静稳定dynamic stability动稳定incidence disturbance动稳定扰动的几种情况forward speed disturbance angular velocity disturbancesideslip disturbance yawing disturbancestability augmentation system增稳系统。
升力基础知识点总结升力是飞行原理中非常重要的一部分,它是飞机可以在空中飞行的关键。
升力的产生是由于飞机的机翼的作用,通过机翼的形状和飞机的速度可以产生升力。
在本文中,我们将总结升力的基础知识点,包括产生原理、影响因素和计算方法等,以便更好地理解和应用升力在飞行中的作用。
一、升力的产生原理1. 卡门涡流理论卡门涡流理论是解释升力产生原理的一个重要理论。
通过卡门涡流理论,我们可以了解到机翼上方气流速度比下方快,压力也小于下方,产生了一个向上的压力差,从而产生了升力。
这个理论解释了为什么机翼形状和角度可以影响升力大小。
2. 伯努利定律伯努利定律认为,在气流速度增加的地方,气压会下降;而在气流速度减小的地方,气压会增加。
这个定律解释了为什么气流在机翼上下表面之间产生了差异,从而形成了升力。
3. 牛顿第三定律牛顿第三定律认为,物体受到的压力和它所作用的物体之间有一个相等的反作用力。
这个定律解释了为什么机翼受到气流压力的作用,产生了相等大小的向上的反作用力,从而产生了升力。
二、升力的影响因素1. 机翼形状机翼形状对升力的产生起着至关重要的作用。
常见的机翼形状有对称型、凸翼和扁平翼等,它们的形状不同会导致机翼上下表面的气流差异,从而产生不同大小的升力。
2. 机翼角度机翼的攻角也对升力产生影响。
攻角越大,产生的升力也越大。
但是当攻角过大时会出现失速现象,即升力突然减小,飞机失去升力支撑而坠落。
3. 飞机速度飞机的速度与升力的大小成正比。
当飞机速度增加时,气流在机翼上下表面的速度差也增加,从而产生更大的升力。
4. 空气密度空气密度是影响升力大小的重要因素。
空气密度越大,产生的升力也越大。
而在高海拔地区,空气密度较小,也会导致升力减小。
5. 机翼面积机翼的面积也会直接影响升力的大小。
机翼面积越大,产生的升力也越大。
三、升力的计算方法1. 卡门公式卡门公式是计算升力大小的一种常用方法。
它可以通过机翼的形状和攻角等参数来计算出升力的大小。
直升机空气动力学限制直升机速度的一个重要因素是旋翼桨叶的挥舞,桨叶的惯性在不断地挥舞中增加了机械振动,铰链的磨损(或弹性元件的疲劳)使直升机的可靠性总是不如固定翼飞机。
常规直升机的柔性桨叶虽然是非常规机动成为可能,但柔性的桨叶也限制了直升机的机动性,难于像固定翼飞机一样做迅猛的滚翻、拉起、俯冲、盘旋动作,过于激烈的机动动作可能使桨叶和机体碰撞,严重危害飞行安全。
刚性桨叶的限制要小得多,采用刚性桨叶的直升机或许有这样、那样的问题,但都具有比常规直升机远为出色的机动性。
为此,刚性桨叶一直是直升机研究的一个目标。
洛克希德“夏延”的下马给刚性桨叶的发展蒙上阴影,但刚性桨叶的研究并没有就此偃旗息鼓,近来又柳暗花明的迹象。
为了大幅度提高直升机性能,美国从70 年代开始,进行了一系列直升机研究机项目。
西科斯基的“前行桨叶概念”(Advancing Blade Concept,简称ABC)在较早就获得成功。
如前所述,刚性旋翼的一个大问题是由于前飞的相对速度叠加在旋翼旋转速度引起的非对称升力,但对于刚性的共轴反转双桨来说,两边的非对称升力叠加起来,就对称了,刚性的桨叶和桨轴吸收所有的扭力,这就是ABC 可以免去挥舞铰的基本思路。
由于刚性桨叶没有挥舞,上下旋翼可以离得很近,而没有碰撞的危险。
差动式地加减上下旋翼的桨距以形成扭力差不仅形成水平方向上的转向,还由于刚性旋翼非对称升力造成横滚,进一步加速转弯过程,所以ABC 具有异乎寻常的机动性,大大超过常规直升机。
ABC 直升机有专用的推进发动机,高速平飞时,用气动舵面实现飞行控制。
采用ABC 的S-69(军用代号XH-59A)参加了LHX 竞争,但技术终究不够成熟,在悬停中低头或抬头也比较困难,落选于同出于西科斯基的常规旋翼加涵道尾桨的方案,后者最终成为RAH-66“科曼奇”,现在也下马了。
西科斯基XH-59A“前行桨叶”概念研究机,用共轴反转的刚性旋翼,既抵消扭力,又抵消非对称升力流线型的S-69 蛮俊俏的前行桨叶在无人机的大潮中得到复苏,西科斯基的Mariner/Cypher II 将前行桨叶和涵道风扇结合起来,动力从“碗边”通过传动轴传递,可以分别传递给上下旋翼,而不必用套筒轴驱动,大大简化机械设计和制造。
直升机旋翼空气动力学理论研究-论文网论文摘要:旋翼空气动力学在直升机空气动力学中占有十分重要的地位,因其问题复杂,涉及的学科较多,一直吸引众多研究者的注意。
对旋翼滑流理论、叶素理论、涡流理论和CFD 方法进行了综合评述,并在此基础上展望了旋翼流场计算技术发展的前景。
论文关键词:直升机,旋翼,空气动力学1前言直升机具有独特的飞行性能——依靠旋翼在空中悬停、在狭小空间内垂直起降,使其成为重要的空中运输和作战平台。
旋翼既是直升机起升力作用的气动机翼部件,又是起主要操纵控制作用的气动舵面部件,这是与其它机种主要区别之所在。
而且直升机旋翼本身还具有自由度多、与其它部件气动干扰等特点,对旋翼空气动力学研究必然成为整个直升机飞行动力学研究的重中之重。
旋翼空气动力学,即研究旋翼与周围空气相互作用的空气动力现象及机理,包括对旋翼及其流场的深入了解以准确地计算旋翼空气动力特性,以及对旋翼几何外形的设计以更好地发挥其气动效能。
2旋翼气动理论的发展直升机旋翼气动载荷是直升机空气动力学计算的出发点,低频的桨叶气动载荷确定直升机的性能,中频气动载荷引起直升机振动,高频气动载荷确定直升机的外部和内部噪声水平,因而旋翼气动载荷计算是直升机空气动力学的重点研究课题之一。
根据研究方法的不同,旋翼气动理论分为滑流理论、叶素理论和涡流理论三种旋翼理论。
这三种理论各有优点又相互补充,构成了对旋翼运动认识的完整图像。
2.1旋翼的滑流理论所谓滑流,是把旋翼简单地看作一个无限薄的作用桨盘,把受旋翼作用的气流当作一根流管单独处理,进而研究桨盘对气流的作用。
其前提是空气是没有粘性的、不可压缩的理想气体;旋转着的旋翼是一个均匀作用于空气的无限薄的圆盘(桨盘),流过桨盘的气流速度在桨盘各点处为一常数;滑流没有扭转(不计旋翼的旋转影响),在定常飞行中,滑流没有周期性的变化。
旋翼滑流理论的起源可追朔到十九世纪的船用螺旋桨的研究。
20世纪初,Betz将动量理论扩展应用于飞机的螺旋桨上。
南航直升机飞行器设计专业英语翻译专业简介:最王牌的当然是飞行器制造和电气工程及自动化了,这是南航的开山之斧;其次南航民航学院是南航的一大特色,由于民航这一行业的特殊性和我国民航正处在快速的发展期,学习相对轻松但就业前景很好,其中最好的当属一专业空中交通管理及签派,我本人就是签派,毕业转正并生成责任签派以后月工资在七八千以上,当然还有机务(修飞机的)、民航电子电器等都不错,只是只适合男生,因为比较辛苦。
另外像其他院地自动化、材料等专业都很好,找工作不成问题......有问题再问我。
Qq:785071009考研复习资料这里有~一、基础词汇free stream dynamic pressure自由来流动压boundary layer附面层asymmetry/symmetry不对称/对称flow reversl气流反向horizontal tailplane水平安定面vertical fin垂直安定面lateral/longitudinal cyclic coefficient横向/纵向周期变距headwind逆风tailwind顺风四、性能计算部分:英文释义中文释义备注说明performance assessment性能评估helicopter performance calculation直升机性能计算ground effect地面效应autorotation自转飞行high rate of climb悬停升限wind tunnel test风洞测试patrol/loiter task巡航飞行cruise speed巡航速度weight capability承重能力rate of climb 爬升率absolute ceiling绝对升限service ceiling 实用升限optimum speed 最佳速度minimum rate of descent 最小下降率maximum edurance/loiter time 最大续航时间maximum glide distance最大航行距离maximum range最大航行里程maximum speed最大速度specific range比航程dihedral action上反作用longitudinal/lateral trim equation纵向/横向配平方程shaft power轴功率power requirement需用功率induced requirement诱导功率stability 稳定性static stability静稳定dynamic stability动稳定incidence disturbance动稳定扰动的几种情况forward speed disturbance angular velocity disturbancesideslip disturbance yawing disturbancestability augmentation system增稳系统。
旋翼的空气动力特点(1)产生向上的升力用来克服直升机的重力。
即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。
(2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。
(3)产生其他分力及力矩对直升机;进行控制或机动飞行,类似于飞机上各操纵面的作用。
旋翼由数片桨叶及一个桨毂组成。
工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。
桨叶一般通过铰接方式与桨毂连接(如下图所示)。
旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。
先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。
由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。
在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω绕轴旋转,并以速度 Vo沿旋转轴作直线运动。
如果在想象中用一中心轴线与旋翼轴重合,而半径为 r的圆柱面把桨叶裁开(参阅图 2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。
既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度 (等于Ωr)和垂直于旋转平面的速度(等于 Vo),而合速度是两者的矢量和。
显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的:大小不同,方向也不相同。
如果再考虑到由于桨叶运动所激起的附加气流速度(诱导速度) ),那么桨叶各个剖面与空气之间的相对速度就更加不同。
与机翼相比较,这就是桨叶工作条件复杂,对它的分析比较麻烦的原因所在。
旋翼拉力产生的滑流理论现以直升机处于垂直上升状态为例,应用滑流理论说明旋翼拉力产生的原因。
此时,将流过旋翼的空气,或正确地说,受到旋翼作用的气流,整个地看做一根光滑流管加以单独处理。