第五章高炉送风系统设计解析
- 格式:ppt
- 大小:1.06 MB
- 文档页数:2
高炉送风直吹管结构优化设计浅析作者:郭朝来源:《科技风》2016年第05期摘要:送风装置的作用是将热风围管高温、高压的热风,输送到高炉本体,热风在小套出风口与煤粉生成一氧化碳,从而完成铁矿石的冶炼。
在整套送风装置系统中,直吹管由于受大中小套及附属水管的限制,其结构紧凑、耐火料较薄,是送风装置最薄弱的部件。
送风装置的发红烧穿,多发生在直吹管部位,因此,合理的优化设计直吹管显得尤为重要。
本文介绍了直吹管在结构设计时需要注意的一些问题。
关键词:送风装置;直吹管;优化设计1.前言近二十年来,世界钢铁工业发达国家迅速实现了炼铁高炉的大型化、高效化和自动化。
由于在高炉生产上采取了精料及喷吹煤粉等措施,加上操作水平的提高,保证了高炉的稳定运行,为高炉接受高风温奠定了基础。
送风装置在炼铁工艺中,是将热风炉加热的1250~1350℃的热空气送入高炉的主体装置。
送风装置的使用寿命,对高炉的稳定运行及安全生产有至关重要的作用。
近年来随着炼铁技术不断进步以及高风温、高富氧、大喷煤的应用,高炉送风系统不断出现开裂、烧塌或烧穿等事故,这些事故如果提前做好预防可以将损失降到最低。
否则,一旦发生事故,轻者烧坏设备,重者还会造成人员的伤害或死亡。
在送风装置设计中,鹅颈管、补偿器、弯头由于受到的限制较小,可以适当加大关键部位的管体尺寸,增加管内耐火材料的厚度,从而减低其表面温度、减少热风损失、提高热风利用率,从而延长其使用寿命。
但直吹管由于受到大中小套及其水管的空间限制,其外形尺寸较小、结构紧凑、耐火料较薄,从而成为送风装置中最薄弱的部件。
送风装置的发红、烧穿,多发生于直吹管。
由此,在有限的空间内,合理进行直吹管的结构设计,显得尤为重要。
2.直吹管的结构设计通过分析炼铁高炉直吹管烧穿的案例、高炉送风装置新做及改造的经验,直吹管耐火料最薄弱的位置是煤枪罩的末端。
根据以往的设计经验及现场使用状况,得出如下经验值:对于容积800以下的高炉,一般要求煤枪罩末端的料厚大于25mm,800以上的高炉料厚大于30mm,1260以上的高炉要大于35mm。
6 送风系统高炉送风系统包括鼓风机、冷风管路、热风炉、热风管路以及管路上的各种阀门等。
热风带入高炉的热量约占总热量的四分之一,目前鼓风温度一般为1000~1200℃,最高可达1400℃,提高风温是降低焦比的重要手段,也有利于增大喷煤量。
准确选择送风系统鼓风机,合理布置管路系统,阀门工作可靠,热风炉工作效率高,是保证高炉优质、低耗、高产的重要因素之一。
6.1 高炉鼓风机高炉鼓风机用来提供燃料燃烧所必需的氧气,热空气和焦炭在风口燃烧所生成的煤气,又是在鼓风机提供的风压下才能克服料柱阻力从炉顶排出。
因此没有鼓风机的正常运行,就不可能有高炉的正常生产。
6.1.1 高炉冶炼对鼓风机的要求1)要有足够的鼓风量。
高炉鼓风机要保证向高炉提供足够的空气,以保证焦炭的燃烧。
入炉风量通过物料平衡计算得到,也可以按照下列公式近似计算:14400IvV V u =m 3/min (6-1) 式中: 0V ——标态入炉风量,m 3/min ;u V ——高炉有效容积,m 3;I ——高炉冶炼强度,t/(m 3·d); v ——每吨干焦消耗标态风量,m 3/t 。
每吨干焦消耗标态风量主要与焦炭灰分和鼓风湿度有关,一般在2450~2800 m 3/t 之间,可根据炉料及生铁、煤气的成分计算。
2)要有足够的鼓风压力。
高炉鼓风机出口风压应能克服送风系统的阻力损失、克服料柱的阻力损失、保证高炉炉顶压力符合要求。
鼓风机出口风压可用下式表示:FS LS t P P P P ∆+∆+= (6-2)式中: P ——鼓风机出口风压,Pa ;t P ——高炉炉顶压力,Pa ; LS P ∆——高炉料柱阻力损失,Pa ; FS P ∆——高炉送风系统阻力损失,Pa 。
常压高炉炉顶压力应能满足煤气除尘系统阻力损失和煤气输送的需要。
高压操作可使高炉获得良好的冶炼效果,目前大中型高炉广为采用,大型高炉炉顶压力已达到0.25~0.40MPa 。
高炉风口参数的设计探讨郭俊奎马铁林摘要风口是高炉送风系统的重要设备之一,通过对高炉风口参数进行分析、论述、探讨,阐述了风口数目,风口高度,风口角度、长度,风口直径对高炉冶炼操作、生产技术经济指标的影响,并从设计角度提出了风口参数的设计、计算参考数据和建议。
关键词高炉风口参数设计探讨0 前言高炉炼铁是一个综合的工艺过程,每一项工艺参数设计对高炉生产都有不同程度的影响,高炉风口是炼铁高炉重要的送风设备之一,有高炉炼铁生产工艺以来就存在风口,高炉鼓风、喷吹的燃料都是通过风口进入高炉内的。
风口参数主要包括风口数量、高度、直径、角度和长度等数据,风口参数对其本身寿命及炼铁高炉生产技术经济指标有重要影响,是高炉下部调剂的重要手段之一。
本文结合节能减排、降低能耗及新工艺的需要,更重要的是通过工业实践,对风口参数进行分析总结、论述探讨,提出了自己的看法,并从设计角度提出了风口参数的设计、计算参考数据和建议,希望使风口参数更加科学合理,做好风口参数设计,从而进一步提高炼铁生产技术经济指标。
1 风口数目的确定高炉风口数目是高炉工艺设计的重要参数之一,主要取决于炉缸直径大小和鼓风机能力,高炉风口数目增多目前是一种趋势,增加风口数目有利于高炉的强化冶炼。
风口数目在满足炼铁工艺要求的同时,还应符合风口的安装尺寸和结构要求。
风口数目的计算有多种方法,但还没有严格的理论计算公式,一般按经验公式粗略计算后确定。
设计手册要求风口弧长间距在1200mm~1400mm,国内曾采用如下公式[1]:f=2d+1式中:f—风口数目,个;d—炉缸直径,m。
式中计算出来的风口数目较少。
国外一般采用如下公式[1]:f=πd/(1.0~1.2)或f=3d风口数目一般为双数。
高炉风口数目的合理设计与高炉操作、技术指标有很大关系。
风口数目增多,风口弧长间距就小,高炉圆周进风相对均匀,可改善煤气流、温度分布,减少风口之间的“死料区”,炉缸燃烧均匀,可活跃炉缸,利于炉况顺行,有节焦、增产等作用,更有利于节能减排。
送风制度1.送风制度的概念在一定的冶炼条件下,确定合适的鼓风参数和风口进风状态。
2.适宜鼓风动能的选择高炉鼓风所具有的机械能叫鼓风动能。
适宜鼓风动能应根据下列因素选择:◆原料条件原燃料条件好,能改善炉料透气性,利于高炉强化冶炼,允许使用较高的鼓风动能。
原燃料条件差,透气性不好,不利于高炉强化冶炼,只能维持较低的鼓风动能。
◆燃料喷吹量高炉喷吹煤粉,炉缸煤气体积增加,中心气流趋于发展,需适当扩大风口面积,降低鼓风动能,以维持合理的煤气分布。
但随着冶炼条件的变化,喷吹煤粉量增加,边缘气流增加。
这时不但不能扩大风口面积,反而应缩小风口面积。
因此,煤比变动量大时,鼓风动能的变化方向应根据具体实际情况而定。
◆风口面积和长度在一定风量条件下,风口面积和长度对风口的进风状态起决定性作用。
风口面积一定,增加风量,冶强提高,鼓风动能加大,促使中心气流发展。
为保持合理的气流分布,维持适宜的回旋区长度,必须相应扩大风口面积,降低鼓风动能。
◆高炉有效容积在一定冶炼强度下,高炉有效容积与鼓风动能的关系见表4—1。
表4—1 高炉有效容积与鼓风动能的关系高炉适宜的鼓风动能随炉容的扩大而增加。
炉容相近,矮胖多风口高炉鼓风动能相应增加。
鼓风动能是否合适的直观表象见表4—2。
表4—2 鼓风动能变化对有关参数的影响3.合理的理论燃烧温度的选择风口前焦炭和喷吹燃料燃烧所能达到的最高绝热温度,即假定风口前燃料燃烧放出的热量全部用来加热燃烧产物时所能达到的最高温度,叫风口前理论燃烧温度。
理论燃烧温度的高低不仅决定了炉缸的热状态,而且决定炉缸煤气温度,对炉料加热和还原以及渣铁温度和成分、脱硫等产生重大影响。
适宜的理论燃烧温度,应能满足高炉正常冶炼所需的炉缸温度和热量,保证渣铁的充分加热和还原反应的顺利进行。
理论燃烧温度过高,高炉压差升高,炉况不顺。
理论燃烧温度过低,渣铁温度不足,炉况不顺,严重时会导致风口灌渣,甚至炉冷事故。
理论燃烧温度提高,渣铁温度相应提高,见图4—1。
高炉的休风、送风及煤气处理高炉是冶金工业中常用的高温反应设备,主要用于炼化铁和生产钢铁。
在高炉的运行过程中,休风、送风以及煤气处理等环节起着至关重要的作用。
以下将对高炉的休风、送风和煤气处理进行详细介绍。
休风是指高炉停炉期间的一种操作。
其目的是排空高炉内的废气和煤气,并进行相应的检修、维护以及更换耐火材料。
休风过程主要分为准备、排煤、处理煤气和排气四个步骤。
首先,在休风前要对高炉进行充分的准备。
这就包括炉渣的清理和炉壳的检查修理等工作。
其中,炉渣的清理是确保高炉内部清洁的前提,其通过将高炉内的炉渣清理干净,以确保下次操作能够正常进行。
而炉壳的检查修理则是为了保证高炉的正常运行。
只有将炉壳中的各个部分进行检查和修理,才能够保证高炉的操作安全性和稳定性。
其次,在休风期间需要对高炉内的煤气进行处理。
煤气处理是高炉休风过程中必不可少的环节。
在这一阶段,首先要将高炉内的矿渣抽出,并将其送入矿渣分选机进行分离。
这样可以使煤气中的灰、渣等杂质被分离出来,从而减少了后续处理过程中的压力。
然后,将分离出的煤气送入煤气净化设备进行处理。
煤气净化设备主要通过化学反应和物理分离等方式将煤气中的有害物质,如硫化氢、焦油等进行去除。
这样处理后的煤气就可以进一步利用,提高能源的利用效率。
另外,休风过程中还需要对高炉进行排煤。
排煤是将高炉内的残余煤炭去除的过程。
通过将高炉内的煤炭杂质清理干净,可以减少高炉开槽期间的不利影响,并确保高炉下一次操作的正常进行。
为了保证排煤的效率,通常采用机械装置对高炉进行清理,这样既提高了工作效率,又减少了工人的劳动强度。
最后,在完成休风过程中的前几个步骤后,还需要对高炉进行排气。
排气是确保高炉内部煤气进一步被清空的过程。
通过对高炉进行排气,可以使高炉内的废气和煤气完全排出,从而为下一次操作做好准备。
总之,高炉的休风、送风以及煤气处理等环节是高炉运行过程中不可或缺的一部分。
通过适时的休风操作,可以确保高炉内部的安全和稳定性。
高炉风口参数的设计探讨摘要风口是高炉送风系统的重要设备之一,通过对高炉风口参数进行分析探讨,论述了风口数目,风口高度,风口角度、长度,风口直径对高炉冶炼操作、生产技术经济指标的影响,并从设计角度提出了风口参数的设计、计算参考数据和建议。
关键词高炉风口参数设计探讨0 前言高炉炼铁是一个综合的工艺过程,每一项工艺参数设计对高炉生产都有不同程度的影响,高炉风口是炼铁高炉重要的送风设备之一,有高炉炼铁生产工艺以来就存在风口,高炉鼓风、喷吹的燃料都是通过风口进入高炉内的。
风口参数主要包括风口数量、高度、直径、角度和长度等数据,风口参数对其本身寿命及炼铁高炉生产技术经济指标有重要影响,是高炉下部调剂的重要手段之一。
笔者结合节能减排、降低能耗及新工艺的需要,通过工业实践,对风口参数进行了分析探索,提出了一些看法,并从设计角度提出了风口参数的设计、计算参考数据和建议,以使风口参数更加科学合理,做好风口参数设计,从而进一步提高炼铁生产技术经济指标。
1 风口数目的确定高炉风口数目是高炉工艺设计的重要参数之一,主要取决于炉缸直径大小和鼓风机能力,高炉风口数目增多目前是一种趋势,增加风口数目有利于高炉的强化冶炼。
风口数目在满足炼铁工艺要求的同时,还应符合风口的安装尺寸和结构要求。
风口数目的计算有多种方法,但还没有严格的理论计算公式,一般按经验公式粗略计算后确定。
设计手册要求风口弧长间距在 1200 mm ~ 1400mm,国内曾采用如下公式[1] :f =2d +1式中:f—风口数目,个;d—炉缸直径,m。
式中计算出来的风口数目较少。
国外一般采用如下公式[1] :f = πd/(1.0~1.2)或 f =3d风口数目一般为双数。
高炉风口数目的合理设计与高炉操作、技术指标有很大关系。
风口数目增多,风口弧长间距就小,高炉圆周进风相对均匀,可改善煤气流、温度分布,减少风口之间的“死料区”,炉缸燃烧均匀,可活跃炉缸,利于炉况顺行,有节焦、增产等作用,更有利于节能减排。
6.3高炉送风系统高炉送风系统是为高炉冶炼供给足够数量和高质量风的鼓风设施,送风系统的设备主要包括高炉鼓风机,热风炉,加湿或脱湿装置,送风管道和阀门等。
6.3.1高炉鼓风机高炉鼓风机是高炉冶炼的重要动力设备。
它不仅直接为高炉冶炼供给所需的氧气,还为炉内煤气流的运动抑制料柱阻力供给必需的动力,使高炉生产中各种气体循环流淌。
高炉鼓风机是高炉的“心脏”。
6.3.1.1高炉鼓风机技术要求(1)有足够的送风系统力气,即不仅能供给高炉冶炼所需要的风量,而且鼓风机的出口压力要能够足以抑制送风系统的阻力损失,高炉料柱阻力损失以保证有足够高的炉顶煤气压力。
(2)风机的风量及风压要有较大宽的调整范围,即风机的风量和风压均应适应与炉况的顺行。
冶炼强度的提高与降低,喷吹燃料与富氧操作以及其他的多种因数变化的影响。
(3)送风均匀而稳定,即风压变动时,风量不得自动的产生大幅度变化。
(4)能够保证长时间连续,安全及高效率运行。
6.3.1.2高炉鼓风机选择(1)鼓风机出口风量的计算鼓风机出口风量包括入炉风量、送风系统漏风量和热风炉换炉时的充风量之和。
计算时用标准状态下的风量表示。
1)高炉入炉风量的计算V Iqq =u jv 140式中: q ——高炉入炉风量,m 3/ min ;vV——高炉有效容积,m 3;uI ——冶炼强度,t/m 3 ⋅ d ,一般取综合冶炼强度,本设计为 1.1;——每吨干焦的耗风量,m 3/ t 。
qj每吨干焦的耗风量与焦炭的灰分含量和风的湿度有关,焦炭灰分为 12%时,每吨干焦的耗风量一般为 2550 m 3/ t 。
V Iq3200 ⨯1.1⨯ 2550q =u j =v 1440 1440= 6233.33m3 / min 2)送风系统漏风量损失计算q =η⋅qo v式中qo——送风系统漏风量损失,m 3/ min ;η——漏风系数,正常状况,大型高炉为10%左右,中小型高炉为15%左右。
q =η⋅q = 10% ⨯ 6233.33 = 623.33m3 / mino v3)热风炉换炉时的充风量计算热风炉换炉充风量,热风炉换炉时,假设风机仍依据原来的风量送风,高炉风口的风压势必会降低,从而导致炉内的煤气流淌性,影响炉况稳定,这种状况虽然对于中小型高炉影响并不重要,但是对于大型高炉来说,影响不行无视,大型高炉热风炉操作时,为了维护高炉风口风压不变,风纪从定风量调整,即增加风纪的供风量,充入送风的热风及充风时间长短等有关,按标准计算充风量比较简洁,生产中是依据阅历公式估算,或按阅历取值确定。