晶体管共射输出特性曲线
- 格式:pdf
- 大小:126.07 KB
- 文档页数:2
晶体管的输入输出特性曲线详解届别系别专业班级姓名指导老师二零一二年十月晶体管的输入输出特性曲线详解学生姓名:指导老师:摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。
依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。
晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。
生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。
利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值晶体管是一种半导体器件,放大器或电控开关常用。
晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。
由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。
晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。
关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。
【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.一、晶体管的基本结构晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图1-1(a)、(b)所示。
从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。
基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。
晶体管的共射特性曲线 - 电子技术晶体管的特性曲线是描述晶体管各个电极之间电压与电流关系的曲线,它们是晶体管内部截流子运动规律在管子外部的表现,用于对晶体管的性能、参数和晶体管电路的分析估算。
1、输入特性曲线输入特性曲线描述了在管压降UCE保持不变的前提下,基极电流IB和放射结压降UBE之间的函数关系,即(1) 由图1可见,NPN型晶体管的输入特性曲线的特点如下:图1 晶体管输入特性曲线(1)输入特性曲线有一个开启电压,只有当UBE的值大于开启电压后,IB的值与二极管一样随UBE的增加按指数规律增大,电流IB 有较大的变化,UBE的变化却很小,可以近似认为导通后放射结的电压基本保持不变。
硅管的开启电压为0.5V,放射结的导通电压UON 为0.6~0.7V;锗管的开启电压为0.2V,放射结的导通电压UON为0.2~0.3V;(2)当UCE=0时,集电极与放射极短路,即集电结与放射结并联,相当于两个二极管并联,输入特性曲线与二极管特性曲线相像。
当UCE=1V时,集电结处于反向偏置,内电场加强,放射区注入基区的电子绝大多数被拉到集电区,只有少数电子与基区的空穴复合形成基极电流IB。
在相同UBE下,基极电流比UCE=0V时削减,从而使曲线右移。
UCE1V以后,输入特性曲线基本上与UCE=1V时的特性曲线重合,这是因这UCE1V后,集电极将放射区放射过来的电子几乎全部收集走,对基区电子与空穴的复合影响不大,IB的转变也不明显。
所以通常UCE1时只画一条曲线。
2、输出特性曲线(2) 特性曲线如图2所示,当IB转变时,IC和UCE的关系是一组平行的曲线簇,并有截止、放大和饱和3个工作区。
图2 晶体管输出特性曲线(1)截止区IB=0特性曲线以下的区域称为截止区。
此时晶体管的集电结处于反偏,放射结电压ubeUON,也处于反偏。
集电极电流IC=0。
在电路中犹如一个断开的开关。
三极管工作在截止区时,三个电极之间的关系为:对于NPN型,VBVE;对于PNP型,VBVE;实际上处于截止状态下的晶体管集电极有很小的电流ICEO,该电流称为晶体管的穿透电流,它是在基极开路时测得的集电极-放射极间的电流,它不受IB的把握,但受温度的影响。
用晶体管特性图示仪测试晶体管主要参数一.实验目的掌握晶体管特性图示仪测试晶体管的特性和参数的方法。
二.实验设备(1)XJ4810晶体管特性图示仪(2)QT 2晶体管图示仪(3)3DG6A 3DJ7B 3DG4三.实验原理1.双极型晶体(以3DG4NPN 管为例)输入特性和输出特性的测试原理(1)输入特性曲线和输入电阻i R ,在共射晶体管电路中,输出交流短路时,输入电压和输入电流之比为i R ,即=常数CE V B BEi I V R ∂∂= (1.1)它是共射晶体管输入特性曲线斜率的倒数。
例如需测3DG 4在V CE =10时某一作点Q 的R 值,晶体管接法如图1.1所示。
各旋扭位置为峰值电压%80% 峰值电压范围0~10V 功耗电阻50Ω X 轴作用基极电压1V/度 Y 轴作用 阶梯选择μ20A/极 级/簇10 串联电阻10K 集电极极性 正(+)把X 轴集电极电压置于1V/度,调峰值电压为10V ,然后X 轴作用扳回基极电压0.1V/度,即得CE V =10V 时的输入特性曲线。
这样可测得图1.2:V CE V B BEi I V R 10=∆∆= (1.2)根据测得的值计算出i R 的值图1.1晶体管接法 图1.2输入特性曲线 (2)输出特性曲线、转移特性曲线和β、FE h在共射电路中,输出交流短路时,输出电流和输入电流增量之比为共射晶体管交流电流放大系数β。
在共射电路中,输出端短路时,输出电流和输入电流之比为共射晶体管直流电流放大系数FE h 。
晶体管接法如图1.1所示。
旋扭位置如下:峰值电压范围10V 峰值电压%80% 功耗电阻250Ω X 轴集电极电压1V/度 Y 轴集电极电流2mA/度 阶梯选择μ20A/度 集电极极性 正(+)得到图1.3所示共射晶体管输出特性曲线,由输出特性曲线上读出V V CE 5=时第2、4、6三根曲线对应的C I ,B I 计算出交流放大系数BC I I ∆∆=β (1.3) FE h >β主要是因为基区表面复合等原因导致小电流β较小造成的,β、FE h 也可用共射晶体管的转移特性(图1.4)进行测量只要将上述的X 轴作用开关拨到“基极电流或基极源电压”即得到共射晶体管的转移特性。
作者: 尹顺云
作者机构: 云南玉溪师专物理系 玉溪653100
出版物刊名: 玉溪师范学院学报
页码: 10-11页
主题词: 输出特性曲线;晶体管;发射电子;函数关系;晶体三极管;共射;线性增长;恒流特性;集电极电流;共发射极
摘要: 晶体三极管共发射极输出特性曲线是指基极电流i_B一定时,集电极电流i_C和集电极——发射极间压v_CE的函数关系曲线。
函数关系为ic=f(v_CE) IB=常数 v_CE∠1伏以下——ic 受控于v_CE线性增长陡,漂移过C结的电子随v_CE相应场力增大而增大。
i_C失控于i_B如图OA 段。
v_CE∠1伏以上——i_C授控于i_B线性增长,v_CF的电场力够强,e区发射电子在B区复合形成I_B少,场力吸过C结形成I_C的多,其比例固定为p,v_BE稍增,复合的I_B增大,I_C也正比地增大。
i_C失控于v_CE如图AB段,v_CE在1伏以上增大,i_C几乎不变,曲线近平行于v_CE轴——恒流特性。
第一章1.1 在一本征硅中,掺入施主杂质,其浓度D N =⨯21410cm 3-。
(1)求室温300K 时自由电子和空穴的热平衡浓度值,并说明半导体为P 型或N 型。
(2 若再掺入受主杂质,其浓度A N =⨯31410cm 3-,重复(1)。
(3)若D N =A N =1510cm 3-,,重复(1)。
(4)若D N =1610cm 3-,A N =1410cm 3-,重复(1)。
解:(1)已知本征硅室温时热平衡载流子浓度值i n =⨯5.11010 cm3-,施主杂质D N =⨯21410cm 3->> i n =⨯5.11010 cm 3-,所以可得多子自由浓度为0n ≈D N =⨯21410cm 3-少子空穴浓度0p =02n n i =⨯125.1610cm 3-该半导体为N 型。
(2)因为D A N N -=14101⨯cm 3->>i n ,所以多子空穴浓度 0p ≈14101⨯cm 3-少子电子浓度0n =02p n i =⨯25.2610cm 3-该半导体为P 型。
(3)因为A N =D N ,所以0p = 0n = i n =⨯5.11010cm 3-该半导体为本征半导体。
(4)因为A D N N -=10-161014=99⨯1014(cm 3-)>>i n ,所以,多子自由电子浓度0n =⨯991410 cm 3-空穴浓度0p =02n n i =142101099)105.1(⨯⨯=2.27⨯104(cm 3-)该导体为N 型。
1.3 二极管电路如图1.3所示。
已知直流电源电压为6V ,二极管直流管压降为0.7V 。
(1) 试求流过二极管的直流电流。
(2)二极管的直流电阻D R 和交流电阻D r 各为多少?解:(1)流过二极管的直流电流也就是图1.3的回路电流,即 D I =A 1007.06-=53mA (2) D R =AV310537.0-⨯=13.2Ω D r =D T I U =AV3310531026--⨯⨯=0.49Ω1.4二极管电路如题图1.4所示。